Problem Set 2 Review

Chentai Kao 1/31/2014

Outline

- Block matrix multiplication
- 8-point algorithm
- Factorization

Block matrix multiplication

Block matrix

Just treat them as elements.

Problem 1

 $\Rightarrow AH_1 + bH_3 = I_3$ $\Rightarrow AH_2 + bH_4 = 0$ $How to choose H_3 and H_4?$

8-point algorithm

Epipolar geometry

Fundamental matrix F $p_1^T \cdot F p_2 = 0$

- F is rank 2
 - why? $F = K^{-T}[T_{\times}]RK'^{-1}$, and T_{\times} is rank 2.

– Use SVD to ensure this property.

- F has 7 dof
 - 8 independent ratio due to scaling.
 - $-\det F = 0 \rightarrow 7 \operatorname{dof}$
- Transpose
 - F for cameras (O_1, O_2) iff F^T for cameras (O_2, O_1)

Fundamental matrix *F* (cont'd) $p_1^T \cdot F p_2 = 0$

- Epipolar lines: $l_1 = Fp_2$, $p_1^T \cdot l_1 = 0$ - 2D line: $\bar{x} \cdot \tilde{l} = ax + by + c = 0$.
- Epipole: $\forall p_2, e_1^T(Fp_2) = 0$
 - $-e_1$ is left null vector of F
 - Similarly, $\forall p_1, (p_1^T F) e_2 = 0$, so e_2 is right null vector of F

0

 \mathbf{p}_2

Numerical error

Normalized 8-point algorithm

- Normalize: $q_i = Tp_i$, $q'_i = T'p_i'$
- 8-point algorithm to solve F_q from \longrightarrow SVD! $q_i'^T F_q' q_i = 0$
- Force F_q ' to have rank 2
- De-normalize F_q to get F $F = T'^T F_q T$

Normalizing data points

- Goal
 - Mean: 0
 - Average distance to the mean: $\sqrt{2}$
- Intuitively, we want $q_i = (p_i \overline{p_i}) \frac{\sqrt{2}}{d}$

$$- \overline{x_i} = \frac{1}{n} \sum_i x_i, \ \overline{y_i} = \frac{1}{n} \sum_i y_i,$$
$$- d = \frac{1}{n} \sum_i \sqrt{(x_i - \overline{x_i})^2 + (y_i - \overline{y_i})^2}$$

•
$$q_i = \begin{bmatrix} \sqrt{2}/d & 0 & -\bar{x}\sqrt{2}/d \\ 0 & \sqrt{2}/d & -\bar{y}\sqrt{2}/d \\ 0 & 0 & 1 \end{bmatrix} p_i$$

3x1 3x1

Use SVD on least square problem

• Solve over-determined
$$Ax = 0$$

 $\min |Ax|^2$
 $s.t. |x|^2 = 1$
From SVD, $A = U\Sigma V^T$, want to minimize
 $|Ax|^2$
 $= x^T A^T A x$
 $= x^T (U\Sigma V^T)^T (U\Sigma V) x$
 $= x^T V \Sigma^T U^T U\Sigma V^T x$
 $= x^T V \Sigma^T \Sigma V^T x$
 $= \sum_k \sigma_k^2 (v_k^T x)^2$

Choose x to be v_k corresponding to smallest σ_k

Use SVD to reduce rank

•
$$A = U\Sigma V^T = U \begin{bmatrix} \sigma_1 & \cdots & \cdots \\ \vdots & \sigma_2 & \vdots \\ \cdots & \ddots & \vdots \end{bmatrix} V^T = \sum_i \sigma_i u_i v_i^T$$

- Intuition: only retain k components
 Gives best rank k approximation of A
- For formal proof, see Eckart-Young theorem

Enforcing rank 2 on F

Non-singular F

Singular F

Factorization

Structure From Motion

 $\underline{\mathbf{x}_{ij}} = \underline{\mathbf{M}_i \mathbf{X}_j}, \quad i = 1, \dots, m, \quad j = 1, \dots, n$ known solve for

Factorization

known

solve for

(2) SVD

Factorization

• DEMO