Problem Set 2 Review

Chentai Kao

$$
1 / 31 / 2014
$$

Outline

- Block matrix multiplication
- 8-point algorithm
- Factorization

Block matrix multiplication

Block matrix

$$
\mathbf{A}=\left[\begin{array}{cccc}
\mathbf{A}_{11} & \mathbf{A}_{12} & \cdots & \mathbf{A}_{1 s} \\
\mathbf{A}_{21} & \mathbf{A}_{22} & \cdots & \mathbf{A}_{2 s} \\
\vdots & \vdots & \ddots & \vdots \\
\mathbf{A}_{q 1} & \mathbf{A}_{q 2} & \cdots & \mathbf{A}_{q s}
\end{array}\right] \mathbf{B}=\left[\begin{array}{cccc}
\mathbf{B}_{11} & \mathbf{B}_{12} & \cdots & \mathbf{B}_{1 r} \\
\mathbf{B}_{21} & \mathbf{B}_{22} & \cdots & \mathbf{B}_{2 r} \\
\vdots & \vdots & \ddots & \vdots \\
\mathbf{B}_{s 1} & \mathbf{B}_{s 2} & \cdots & \mathbf{B}_{s r}
\end{array}\right]
$$

$$
\begin{gathered}
\mathbf{C}=\mathbf{A B} \\
\mathbf{C}_{\alpha \beta}=\sum_{\gamma=1}^{s} \mathbf{A}_{\alpha \gamma} \mathbf{B}_{\gamma \beta}
\end{gathered}
$$

Just treat them as elements.

Problem 1

- $M H=[A, b]\left[\begin{array}{l}H_{1}, H_{2} \\ H_{3}, H_{4}\end{array}\right]=\left[I_{3}, 0\right]$

$\rightarrow A H_{1}+b H_{3}=I_{3}$
$\rightarrow A H_{2}+b H_{4}=0$
How to choose H_{3} and H_{4} ?

8-point algorithm

Epipolar geometry

epipolar plane

Fundamental matrix F

$$
p_{1}^{T} \cdot F p_{2}=0
$$

- F is rank 2
- why? $F=K^{-T}\left[T_{\times}\right] R K^{\prime-1}$, and T_{\times}is rank 2.
- Use SVD to ensure this property.
- F has 7 dof
-8 independent ratio due to scaling.
$-\operatorname{det} F=0 \rightarrow 7$ dof
- Transpose
- F for cameras $\left(\mathrm{O}_{1}, \mathrm{O}_{2}\right)$ iff F^{T} for cameras $\left(\mathrm{O}_{2}, \mathrm{O}_{1}\right)$

Fundamental matrix F (cont'd)

$$
p_{1}{ }^{T} \cdot F p_{2}=0
$$

- Epipolar lines: $l_{1}=F p_{2}, p_{1}^{T} \cdot l_{1}=0$
-2D line: $\quad \overline{\boldsymbol{x}} \cdot \tilde{l}=a x+b y+c=0$.
- Epipole: $\forall p_{2}, e_{1}^{T}\left(F p_{2}\right)=0$
- e_{1} is left null vector of F
- Similarly, $\forall p_{1},\left(p_{1}^{T} F\right) e_{2}=0$, so e_{2} is right null vector of F

- Correlation: for epipolar line pair $/$ and I^{\prime}, any point p on / is mapped to l' (no inverse)

Computation of F

$$
\begin{gathered}
p_{1}^{T} \cdot F p_{2}=0 \\
(u, v, 1)\left(\begin{array}{lll}
F_{11} & F_{12} & F_{13} \\
F_{21} & F_{22} & F_{23} \\
F_{31} & F_{32} & F_{33}
\end{array}\right)\left(\begin{array}{c}
u^{\prime} \\
v^{\prime} \\
1
\end{array}\right)=0
\end{gathered}
$$

For each pair of corresponding points ($\left.\mathbf{u}^{\prime}, \mathrm{v}^{\prime}, 1\right),(\mathrm{u}, \mathrm{v}, 1): \quad\left(u u^{\prime}, u v^{\prime}, u, v u^{\prime}, v v^{\prime}, v, u^{\prime}, v^{\prime}, 1\right)\left(\begin{array}{l}F_{22} \\ F_{23} \\ F_{31} \\ F_{32} \\ F_{33}\end{array}\right)=0$

Numerical error

Normalized 8-point algorithm

- Normalize: $q_{i}=T p_{i}, q_{i}^{\prime}=T^{\prime} p_{i}{ }^{\prime}$
- 8-point algorithm to solve $F_{q}{ }^{\prime}$ from

$$
q_{i}^{\prime T} F_{q}^{\prime} q_{i}=0
$$

- Force F_{q} ' to have rank 2

- De-normalize F_{q} to get F

$$
F=T^{\prime T} F_{q} T
$$

Normalizing data points

- Goal
- Mean: 0
- Average distance to the mean: $\sqrt{2}$
- Intuitively, we want $q_{i}=\left(p_{i}-\bar{p}_{i}\right) \frac{\sqrt{2}}{d}$
$-\overline{x_{i}}=\frac{1}{n} \sum_{i} x_{i}, \overline{y_{i}}=\frac{1}{n} \sum_{i} y_{i}$,
$-d=\frac{1}{n} \sum_{i} \sqrt{\left(x_{i}-\overline{x_{i}}\right)^{2}+\left(y_{i}-\overline{y_{i}}\right)^{2}}$
- $q_{i}=\left[\begin{array}{ccc}\sqrt{2} / d & 0 & -\bar{x} \sqrt{2} / d \\ 0 & \sqrt{2} / d & -\bar{y} \sqrt{2} / d \\ 0 & 0 & 1\end{array}\right] p_{i}$

Use SVD on least square problem

- Solve over-determined $A x=0$

$$
\begin{gathered}
\min |A x|^{2} \\
\text { s. t. }|x|^{2}=1
\end{gathered}
$$

From SVD, $A=U \Sigma V^{T}$, want to minimize

$$
\begin{aligned}
& |A x|^{2} \\
& =x^{T} A^{T} A x \\
& =x^{T}\left(U \Sigma V^{T}\right)^{T}(U \Sigma V) x \\
& =x^{T} V \Sigma^{T} U^{T} U \Sigma V^{T} x \\
& =x^{T} V \Sigma^{T} \Sigma V^{T} x \\
& =\sum_{k} \sigma_{k}^{2}\left(v_{k}^{T} x\right)^{2}
\end{aligned}
$$

Choose x to be v_{k} corresponding to smallest σ_{k}

Use SVD to reduce rank

- $A=U \Sigma V^{T}=U\left[\begin{array}{ccc}\sigma_{1} & \cdots & \cdots \\ \vdots & \sigma_{2} & \vdots \\ \ldots & \cdots & \ddots\end{array}\right] V^{T}=\sum_{i} \sigma_{i} u_{i} v_{i}^{T}$
- Intuition: only retain k components
- Gives best rank k approximation of A
- For formal proof, see Eckart-Young theorem

Enforcing rank 2 on F

Non-singular F

Singular F

Factorization

Structure From Motion

Factorization

(1) $\hat{\mathbf{x}}_{y}=\mathbf{x}_{y}-\frac{1}{n} \sum_{k=1}^{n} \mathbf{x}_{k}$ Factorization
(3) Columns are the 3D points

(2) SVD

Factorization

- DEMO

