Lecture 9 Fitting and Matching

- Problem formulation
- Least square methods
- RANSAC
- Hough transforms
- Multi-model fitting
- Fitting helps matching!

Reading:

 [HZ] Chapter: 4 "Estimation – 2D projective transformation", Chapter 11 "Computation of the fundamental matrix F"
 [FP] Chapters: 16 "Segmentation and fitting using probabilistic methods"

Some slides of this lectures are courtesy of profs. S. Lazebnik & K. Grauman

Lecture 8 -

Fitting

Goals:

- Choose a parametric model to fit a certain quantity from data
- Estimate model parameters

- Lines
- Curves
- Homographic transformation
- Fundamental matrix
- Shape model

Example: fitting lines (for computing vanishing points)

Example: Estimating an homographic transformation

Example: Estimating F

Example: fitting a 2D shape template

Example: fitting a 3D object model

Fitting, matching and recognition are interconnected problems

Fitting

- Critical issues:
 - noisy data
 - outliers
 - missing data

Critical issues: noisy data

Critical issues: noisy data (intra-class variability)

Critical issues: outliers

Critical issues: missing data (occlusions)

Fitting

Goal: Choose a parametric model to fit a certain quantity from data

Techniques:

- Least square methods
- •RANSAC
- Hough transform
- •EM (Expectation Maximization) [not covered]

- Data: $(x_1, y_1), \dots, (x_n, y_n)$
- Line equation: $y_i mx_i b = 0$
- Find (*m*, *b*) to minimize

$$E = \sum_{i=1}^{n} (y_i - mx_i - b)^2$$

$$E = \sum_{i=1}^{n} (y_i - mx_i - b)^2$$

$$\mathbf{E} = \sum_{i=1}^{n} \left(\mathbf{y}_{i} - \begin{bmatrix} \mathbf{x}_{i} & \mathbf{1} \end{bmatrix} \begin{bmatrix} \mathbf{m} \\ \mathbf{b} \end{bmatrix} \right)^{2} = \left\| \begin{bmatrix} \mathbf{y}_{1} \\ \vdots \\ \mathbf{y}_{n} \end{bmatrix} - \begin{bmatrix} \mathbf{x}_{1} & \mathbf{1} \\ \vdots \\ \mathbf{x}_{n} & \mathbf{1} \end{bmatrix} \begin{bmatrix} \mathbf{m} \\ \mathbf{b} \end{bmatrix} \right\|^{2} = \left\| \mathbf{Y} - \mathbf{X} \mathbf{B} \right\|^{2}$$

$$= (Y - XB)^{T}(Y - XB) = Y^{T}Y - 2(XB)^{T}Y + (XB)^{T}(XB)$$

Find $B=[m, b]^T$ that minimizes E

$$\frac{dE}{dB} = -2X^TY + 2X^TXB = 0$$

 $X^{T}XB = X^{T}Y$ Normal equation

$$\mathbf{B} = \left(\mathbf{X}^{\mathrm{T}}\mathbf{X}\right)^{-1}\mathbf{X}^{\mathrm{T}}\mathbf{Y}$$

$$E = \sum_{i=1}^{n} (y_i - mx_i - b)^2$$

$$B = \left(X^T X\right)^{-1} X^T Y \quad B = \begin{bmatrix} m \\ b \end{bmatrix}$$
imitations

• Fails completely for vertical lines

- Distance between point
 (x_n, y_n) and line ax+by=d
- Find (a, b, d) to minimize the sum of squared perpendicular distances

$$E = \sum_{i=1}^{n} (ax_i + by_i - d)^2$$

$$UN=0$$

data model parameters

Ah=0

Minimize ||Ah|| subject to ||h||=1

 $A = UDV^T$

h = last column of V

Least squares methods - fitting an homography -

Least squares: Robustness to noise

Least squares: Robustness to noise

Critical issues: outliers

CONCLUSION: Least square is not robust w.r.t. outliers

Instead of minimizing $E = \sum_{i=1}^{n} (ax_i + by_i - d)^2$

We minimize

$$E = \sum_{i} \rho(u_i; \sigma) \quad u_i = a x_i + b y_i - d$$

- $u_i = \text{error (residual) of } i^{\text{th}} \text{ point w.r.t. model parameters } \beta = (a,b,d)$
- ρ = robust function of u_i with scale parameter σ

The robust function ρ

- Favors a configuration with small residuals
- Penalizes large residuals

Instead of minimizing
$$E = \sum_{i=1}^{n} (ax_i + by_i - d)^2$$

We minimize

$$E = \sum_{i} \rho(u_i; \sigma) \quad u_i = a x_i + b y_i - d$$

• $u_i = \text{error (residual) of i}^{\text{th}} \text{ point w.r.t. model parameters } \beta = (a,b,d)$

• ρ = robust function of u_i with scale parameter σ

The robust function ρ

- Favors a configuration with small residuals
- Penalizes large residuals
- •Small sigma \rightarrow highly penalize large residuals
- •Large sigma → mildly penalize large residual (like LSQR)

The effect of the outlier is eliminated

•CONCLUSION: Robust estimator useful if prior info about the distribution of points is known

- •Robust fitting is a nonlinear optimization problem (iterative solution)
- •Least squares solution provides good initial condition

Fitting

Goal: Choose a parametric model to fit a certain quantity from data

Techniques:

Least square methods

•RANSAC

Hough transform

Basic philosophy (voting scheme)

- Data elements are used to vote for one (or multiple) models
- Robust to outliers and missing data
- Assumption1: Noise features will not vote consistently for any single model ("few" outliers)
- Assumption2: there are enough features to agree on a good model ("few" missing data)

(RANdom SAmple Consensus) : Learning technique to estimate parameters of a model by random sampling of observed data

 δ

Fischler & Bolles in '81.

- 1. Select random sample of minimum required size to fit model
- 2. Compute a putative model from sample set
- 3. Compute the set of inliers to this model from whole data set
- Repeat 1-3 until model with the most inliers over all samples is found

Algorithm:

RANSAC

- Select random sample of minimum required size to fit model [?]
- Compute a putative model from sample set 2.
- Compute the set of inliers to this model from whole data set 3.
- Repeat 1-3 until model with the most inliers over all samples is found

Sample set = set of points in 2D

- 1. Select random sample of minimum required size to fit model [?]
- 2. Compute a putative model from sample set
- 3. Compute the set of inliers to this model from whole data set Repeat 1-3 until model with the most inliers over all samples is found

Sample set = set of points in 2D

|O| = 14

- 1. Select random sample of minimum required size to fit model [?]
- 2. Compute a putative model from sample set
- 3. Compute the set of inliers to this model from whole data set
- Repeat 1-3 until model with the most inliers over all samples is found

(RANdom SAmple Consensus) :

Fischler & Bolles in '81.

- 1. Select random sample of minimum required size to fit model [?]
- 2. Compute a putative model from sample set
- 3. Compute the set of inliers to this model from whole data set
- Repeat 1-3 until model with the most inliers over all samples is found

How many samples?

- Number of samples N
 - p = probability at least one random sample is free from outliers (e.g. p=0.99)
 - e = outlier ratio
 - s = minimum number needed to fit the model

proportion of outliers <i>e</i>							
S	5%	10%	20%	25%	30%	40%	50%
2	(2)	3	5	6	7	11	17
3	3	4	7	9	11	19	35
4	3	5	9	13	17	34	72
5	4	6	12	17	26	57	146
6	4	7	16	24	37	97	293
7	4	8	20	33	54	163	588
8	5	9	26	44	78	272	1177

Estimating H by RANSAC

•H \rightarrow 8 DOF •Need 4 correspondences

Sample set = set of matches between 2 images

Algorithm:

- 1. Select a random sample of minimum required size [?]
- 2. Compute a putative model from these
- 3. Compute the set of inliers to this model from whole sample space Repeat 1-3 until model with the most inliers over all samples is found

Estimating F by RANSAC

•F \rightarrow 7 DOF •Need 7 (8) correspondences

Sample set = set of matches between 2 images

Algorithm:

- 1. Select a random sample of minimum required size [?]
- 2. Compute a putative model from these

3. Compute the set of inliers to this model from whole sample space Repeat 1-3 until model with the most inliers over all samples is found

RANSAC - conclusions

Good:

- Simple and easily implementable
- Successful in different contexts

Bad:

- Many parameters to tune
- Trade-off accuracy-vs-time
- Cannot be used if ratio inliers/outliers is too small

Fitting

Goal: Choose a parametric model to fit a certain quantity from data

Techniques:

- Least square methods
- •RANSAC

Hough transform

P.V.C. Hough, *Machine Analysis of Bubble Chamber Pictures,* Proc. Int. Conf. High Energy Accelerators and Instrumentation, 1959

Given a set of points, find the curve or line that explains the data points best

P.V.C. Hough, *Machine Analysis of Bubble Chamber Pictures,* Proc. Int. Conf. High Energy Accelerators and Instrumentation, 1959

Given a set of points, find the curve or line that explains the data points best

P.V.C. Hough, *Machine Analysis of Bubble Chamber Pictures,* Proc. Int. Conf. High Energy Accelerators and Instrumentation, 1959

Issue : parameter space [m,n] is unbounded...

•Use a polar representation for the parameter space

How to compute the intersection point? IDEA: introduce a grid a count intersection points in each cell Issue: Grid size needs to be adjusted...

Issue: spurious peaks due to uniform noise

Hough transform - conclusions

Good:

- All points are processed independently, so can cope with occlusion/outliers
- Some robustness to noise: noise points unlikely to contribute consistently to any single bin

Bad:

- Spurious peaks due to uniform noise
- Trade-off noise-grid size (hard to find sweet point)

Courtesy of TKK Automation Technology Laboratory

Generalized Hough transform

[more on forthcoming lectures]

D. Ballard, Generalizing the Hough Transform to Detect Arbitrary Shapes, Pattern Recognition 13(2), 1981

- Identify a shape model by measuring the location of its parts and shape centroid
- Measurements: orientation theta, location of p
- Each measurement casts a vote in the Hough space: $p + r(\theta)$

Generalized Hough transform

B. Leibe, A. Leonardis, and B. Schiele, <u>Combined Object Categorization and Segmentation</u> <u>with an Implicit Shape Model</u>, ECCV Workshop on Statistical Learning in Computer Vision 2004

Lecture 9 Fitting and Matching

- Problem formulation
- Least square methods
- RANSAC
- Hough transforms
- Multi-model fitting
- Fitting helps matching!

Reading:

 [HZ] Chapter: 4 "Estimation – 2D projective transformation", Chapter 11 "Computation of the fundamental matrix F"
 [FP] Chapters: 16 "Segmentation and fitting using probabilistic methods"

Silvio Savarese

Lecture 8 -

6-Feb-14

Fitting multiple models

- Incremental fitting
- E.M. (probabilistic fitting)
- Hough transform

Incremental line fitting

Scan data point sequentially (using locality constraints)

Perform following loop:

- 1. Select N point and fit line to N points
- 2. Compute residual R_N
- 3. Add a new point, re-fit line and re-compute R_{N+1}
- 4. Continue while line fitting residual is small enough,
- When residual exceeds a threshold, start fitting new model (line)

Same cons and pros as before...

Lecture 9 Fitting and Matching

- Problem formulation
- Least square methods
- RANSAC
- Hough transforms
- Multi-model fitting
- Fitting helps matching!

Reading:

 [HZ] Chapter: 4 "Estimation – 2D projective transformation", Chapter 11 "Computation of the fundamental matrix F"
 [FP] Chapters: 16 "Segmentation and fitting using probabilistic methods"

Silvio Savarese

Lecture 8 -

6-Feb-14

Features are matched (for instance, based on correlation)

Matches bases on appearance only Red: good matches Green: bad matches

Idea:

•Fitting an homography H (by RANSAC) mapping features from images 1 to 2 •Bad matches will be labeled as outliers (hence rejected)!

Recognising Panoramas

M. Brown and D. G. Lowe. Recognising Panoramas. In Proceedings of the 9th International Conference on Computer Vision -- ICCV2003

Next lecture: Feature detectors and descriptors

Least squares methods - fitting a line -

$$Ax = b$$

- More equations than unknowns
- Look for solution which minimizes $||Ax-b|| = (Ax-b)^T(Ax-b)$
- Solve $\frac{\partial (Ax-b)^T (Ax-b)}{\partial x_i} = 0$
- LS solution

$$x = (A^T A)^{-1} A^T b$$

Least squares methods - fitting a line -

Solving
$$x = (A^t A)^{-1} A^t b$$

$$A^{+} = (A^{t}A)^{-1}A^{t}$$
 = pseudo-inverse of A

- $A = U \sum V^t$ = SVD decomposition of A
- $A^{-1} = V \sum^{-1} U$
- $A^+ = V \sum^+ U$
- with \sum^+ equal to \sum^{-1} for all nonzero singular values and zero otherwise

Least squares methods - fitting an homography -

$$h_{11}x + h_{12}y + h_{13} - h_{31}xx' - h_{32}yx' - x' = 0$$

$$h_{21}x + h_{22}y + h_{23} - h_{31}xy' - h_{32}yy' - y' = 0$$

From n>=4 corresponding points:

$$A h = 0$$

$$\begin{pmatrix} x_{1} & y_{1} & 1 & 0 & 0 & 0 & -x_{1}x'_{1} & -y_{1}x'_{1} & -x'_{1} \\ 0 & 0 & 0 & x_{1} & y_{1} & 1 & -x_{1}y'_{1} & -y_{1}y'_{1} & -y'_{1} \\ x_{2} & y_{2} & 1 & 0 & 0 & 0 & -x_{2}x'_{2} & -y_{2}x'_{2} & -x'_{2} \\ 0 & 0 & 0 & x_{2} & y_{2} & 1 & -x_{2}y'_{2} & -y_{2}y'_{2} & -y'_{2} \\ \vdots & \vdots \\ x_{n} & y_{n} & 1 & 0 & 0 & 0 & -x_{n}x'_{n} & -y_{n}x'_{n} & -x'_{n} \\ 0 & 0 & 0 & x_{n} & y_{n} & 1 & -x_{n}y'_{n} & -y_{n}y'_{n} & -y'_{n} \end{pmatrix} \begin{bmatrix} h_{1,1} \\ h_{1,2} \\ \vdots \\ h_{3,3} \end{bmatrix} = 0$$