
Lecture 8 -Silvio Savarese 6-Feb-14

• Problem formulation
• Least square methods
• RANSAC
• Hough transforms 
• Multi-model fitting
• Fitting helps matching!

Lecture 9
Fitting and Matching

Reading:  
[HZ] Chapter: 4 “Estimation – 2D projective transformation”, 

Chapter 11 “Computation of the fundamental matrix F”
[FP] Chapters: 16 “Segmentation and fitting using probabilistic methods”

Some slides of this lectures are courtesy of profs. S. Lazebnik & K. Grauman



Fitting

Goals:
• Choose a parametric model to fit a certain 

quantity from data

• Estimate model parameters

- Lines 

- Curves

- Homographic transformation

- Fundamental matrix

- Shape model



Example: fitting lines
(for computing vanishing points)



H

Example: Estimating an homographic 

transformation



Example: Estimating F



A

Example: fitting a 2D shape template



Example: fitting a 3D object model



Fitting, matching and recognition 
are interconnected problems



Fitting

Critical issues:
- noisy data

- outliers

- missing data



Critical issues: noisy data
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Critical issues: noisy data 

(intra-class variability)



H

Critical issues: outliers



Critical issues: missing data 

(occlusions)



Fitting

Goal: Choose a parametric model to 

fit a certain quantity from data

Techniques: 
•Least square methods

•RANSAC

•Hough transform

•EM (Expectation Maximization) [not covered]



Least squares methods
- fitting a line -

• Data: (x1, y1), …, (xn, yn)

• Line equation: yi – m xi – b = 0

• Find (m, b) to minimize 
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Normal equation
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Least squares methods
- fitting a line -

  YXXXB
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Find B=[m, b]T that minimizes E 



Least squares methods
- fitting a line -
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• Fails completely for vertical lines

Limitations



• Distance between point 

(xn, yn) and line ax+by=d 

• Find (a, b, d) to minimize the 

sum of squared perpendicular 

distances

ax+by=d
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Least squares methods
- fitting a line -
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Least squares methods
- fitting a line -
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Least squares methods
- fitting an homography -
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Least squares: Robustness to noise



Least squares: Robustness to noise

outlier!
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Critical issues: outliers

CONCLUSION: Least square is not robust w.r.t. outliers



Least squares: Robust estimators

• ui = error (residual) of ith point w.r.t. model parameters β = (a,b,d)
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The robust function ρ
• Favors a configuration 

with small residuals

• Penalizes large residuals
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Least squares: Robust estimators

• ui = error (residual) of ith point w.r.t. model parameters β = (a,b,d)
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dybxau iii We minimize

• ρ = robust function of ui with scale parameter σ

The robust function ρ
• Favors a configuration 

with small residuals

• Penalizes large residuals

•Small sigma  highly penalize large 

residuals

•Large sigma  mildly penalize large 

residual (like LSQR)



The effect of the outlier is eliminated

Least squares: Robust estimators

Good scale parameter σ



Least squares: Robust estimators

Bad scale parameter σ (too small!)

Fits only locally

Sensitive to initial condition



Least squares: Robust estimators

Bad scale parameter σ (too large!)

Same as standard LSQ

•CONCLUSION: Robust estimator useful if prior info 

about the distribution of points is known

•Robust fitting is a nonlinear optimization problem (iterative solution)

•Least squares solution provides good initial condition



Fitting

Goal: Choose a parametric model to 

fit a certain quantity from data

Techniques: 
•Least square methods

•RANSAC

•Hough transform



Basic philosophy
(voting scheme)

• Data elements are used to vote for one (or 

multiple) models

• Robust to outliers and missing data

• Assumption1: Noise features will not vote consistently for 

any single model   (“few” outliers)

• Assumption2: there are enough features to agree on a 

good model  (“few” missing data)
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Model parameters

RANSAC

Fischler & Bolles in ‘81.

(RANdom SAmple Consensus) :
Learning technique to estimate 

parameters  of a model by random 

sampling of observed data



RANSAC

Algorithm:

1. Select random sample of minimum required size to fit model 

2. Compute a putative model from sample set

3. Compute the set of inliers to this model from whole data set

Repeat 1-3 until model with the most inliers over all samples is found 

Sample set = set of points in 2D



RANSAC

Algorithm:

1. Select random sample of minimum required size to fit model [?]

2. Compute a putative model from sample set

3. Compute the set of inliers to this model from whole data set

Repeat 1-3 until model with the most inliers over all samples is found 

Sample set = set of points in 2D



RANSAC

Algorithm:

1. Select random sample of minimum required size to fit model [?]

2. Compute a putative model from sample set

3. Compute the set of inliers to this model from whole data set

Repeat 1-3 until model with the most inliers over all samples is found 

Sample set = set of points in 2D





RANSAC

Algorithm:

1. Select random sample of minimum required size to fit model [?]

2. Compute a putative model from sample set

3. Compute the set of inliers to this model from whole data set

Repeat 1-3 until model with the most inliers over all samples is found 

O = 14

Sample set = set of points in 2D





RANSAC

Fischler & Bolles in ‘81.

(RANdom SAmple Consensus) :

O = 6

Algorithm:

1. Select random sample of minimum required size to fit model [?]

2. Compute a putative model from sample set

3. Compute the set of inliers to this model from whole data set

Repeat 1-3 until model with the most inliers over all samples is found 



How many samples?

• Number of samples N
 p = probability at least one random sample is free from outliers 

(e.g. p=0.99)

 e = outlier ratio

 s = minimum number needed to fit the model

proportion of outliers e

s 5% 10% 20% 25% 30% 40% 50%

2 2 3 5 6 7 11 17

3 3 4 7 9 11 19 35

4 3 5 9 13 17 34 72

5 4 6 12 17 26 57 146

6 4 7 16 24 37 97 293

7 4 8 20 33 54 163 588

8 5 9 26 44 78 272 1177



Estimating H 

by RANSAC

Algorithm:

1. Select a random sample of minimum required size [?]

2. Compute a putative model from these

3. Compute the set of inliers to this model from whole sample space 

Repeat 1-3 until model with the most inliers over all samples is found 

Sample set = set of matches between 2 images

•H  8 DOF

•Need 4 correspondences



Estimating F 

by RANSAC

Algorithm:

1. Select a random sample of minimum required size [?]

2. Compute a putative model from these

3. Compute the set of inliers to this model from whole sample space 

Repeat 1-3 until model with the most inliers over all samples is found 

Sample set = set of matches between 2 images

•F  7 DOF

•Need 7 (8) correspondences

Outlier matches



• Simple and easily implementable

• Successful in different contexts

RANSAC - conclusions

Good:

Bad:

• Many parameters to tune

• Trade-off accuracy-vs-time

• Cannot be used if ratio inliers/outliers is too small



Fitting

Goal: Choose a parametric model to 

fit a certain quantity from data

Techniques: 
•Least square methods

•RANSAC

•Hough transform
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Hough transform

Given a set of points, find the curve or line that explains 

the data points best

P.V.C. Hough, Machine Analysis of Bubble Chamber Pictures, Proc. Int. Conf. High 

Energy Accelerators and Instrumentation, 1959 
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y = m x + n

Hough transform

Given a set of points, find the curve or line that explains 

the data points best

P.V.C. Hough, Machine Analysis of Bubble Chamber Pictures, Proc. Int. Conf. High 

Energy Accelerators and Instrumentation, 1959 

Hough space

y1 = m x1 + n

(x1, y1)
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Hough transform

Issue : parameter space [m,n] is unbounded…

P.V.C. Hough, Machine Analysis of Bubble Chamber Pictures, Proc. Int. Conf. High 

Energy Accelerators and Instrumentation, 1959 

Hough space

    siny  cosx

 



•Use a polar representation for the parameter space 

 





features votes

Hough transform - experiments



features votes

How to compute the intersection point?

IDEA: introduce a grid a count intersection points in each cell
Issue: Grid size needs to be adjusted…

Hough transform - experiments

Noisy data



Issue: spurious peaks due to uniform noise

features votes

Hough transform - experiments



• All points are processed independently, so can cope with 

occlusion/outliers

• Some robustness to noise: noise points unlikely to 

contribute consistently to any single bin

Hough transform - conclusions

Good:

Bad:

• Spurious peaks due to uniform noise

• Trade-off noise-grid size (hard to find sweet point)



Courtesy of TKK Automation Technology Laboratory

Hough transform - experiments



Credit slide: C. Grauman



p

a

θ r(θ)

Generalized Hough transform

D. Ballard, Generalizing the Hough Transform to Detect Arbitrary Shapes, Pattern 

Recognition 13(2), 1981

• Identify a shape model by measuring the location of its 
parts and shape centroid

• Measurements: orientation theta, location of p

• Each measurement casts a vote in the Hough space: p + r(θ)

[more on forthcoming lectures]



B. Leibe, A. Leonardis, and B. Schiele, Combined Object Categorization and Segmentation 

with an Implicit Shape Model, ECCV Workshop on Statistical Learning in Computer Vision 

2004

Generalized Hough transform

http://www.pascal-network.org/challenges/VOC/pubs/leibe04.pdf
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• Problem formulation
• Least square methods
• RANSAC
• Hough transforms 
• Multi-model fitting
• Fitting helps matching!

Lecture 9
Fitting and Matching

Reading:  
[HZ] Chapter: 4 “Estimation – 2D projective transformation”, 

Chapter 11 “Computation of the fundamental matrix F”
[FP] Chapters: 16 “Segmentation and fitting using probabilistic methods”



Fitting multiple models

• Incremental fitting

• E.M. (probabilistic fitting)

• Hough transform



Incremental line fitting

Scan data point sequentially (using locality constraints)

Perform following loop:

1. Select N point and fit line to N points

2. Compute residual RN

3. Add a new point, re-fit line and re-compute RN+1

4. Continue while line fitting residual is small enough, 

 When residual exceeds a threshold, start fitting new 

model (line)



Hough transform
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Same cons and pros as before…
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[HZ] Chapter: 4 “Estimation – 2D projective transformation”, 
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[FP] Chapters: 16 “Segmentation and fitting using probabilistic methods”



Features are matched (for instance, based on correlation)

Fitting helps matching!



Idea: 
•Fitting an homography  H (by RANSAC) mapping features from images 1 to 2 

•Bad matches will be labeled as outliers (hence rejected)!

Matches bases on appearance only
Red: good matches

Green: bad matches

Image 1 Image 2

Fitting helps matching!



Fitting helps matching!



M. Brown and D. G. Lowe. Recognising Panoramas. In Proceedings of the 9th International Conference on 

Computer Vision -- ICCV2003

Recognising Panoramas



Fitting helps matching!

Images courtesy of Brandon Lloyd





Next lecture:

Feature detectors and descriptors





bAx 

• More equations than unknowns

• Look for solution which minimizes ||Ax-b|| = (Ax-b)T(Ax-b)

• Solve                              

• LS solution 
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Least squares methods
- fitting a line -
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Least squares methods
- fitting a line -
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= SVD decomposition of A





Least squares methods
- fitting an homography -

A h = 0
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From n>=4 corresponding points:


