Lecture 8 SFM & Volumetric stereo

- SFM: Self-calibration
- Volumetric stereo:
 - Space carving
 - Voxel carving

Reading:

[HZ] Chapters 19 "Auto-calibration"[Szelisky] Chapter 7 "Structure from motion"[Szelisky] Chapter 11 "Multi-view stereo"

Silvio Savarese

Lecture 7 -

30-Jan-14

Structure from motion problem

Courtesy of Oxford Visual Geometry Group

From the mxn correspondences \mathbf{x}_{ii} , estimate:

•*m* projection matrices \mathbf{M}_{i} motion •*n* 3D points \mathbf{X}_i structure

Projective Ambiguity

R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision, 2nd edition, 2003

Metric reconstruction (upgrade)

- The problem of recovering the metric reconstruction from the perspective one is called **self-calibration**
- Stratified reconstruction:
 - from perspective to affine
 - from affine to metric

SFM problem - summary

- 1. Estimate structure and motion up perspective transformation
 - 1. Algebraic
 - 2. factorization method
 - 3. bundle adjustment
- 2. Convert from perspective to metric (self-calibration)
- 3. Bundle adjustment

** or **

1. Bundle adjustment with self-calibration constraints

Self-calibration

[HZ] Chapters 19 "Auto-calibration"

Several approaches:

- Use single-view metrology constraints (lecture 4)
- Direct approach (Kruppa Eqs) for 2 views
- Algebraic approach
- Stratified approach

Direct approach

We use the following results:

- 1. A relationship that maps conics across views
- 2. Concept of absolute conic and its relationship to K
- 3. The Kruppa equations

Projections of conics across views

Projection of absolute conics across views

From lecture 4, [HZ] page 210, sec. 8.5.1

Kruppa equations

[Faugeras et al. 92]

$$\begin{pmatrix} u_{2}^{T}K'K'^{T}u_{2} \\ -u_{1}^{T}K'K'^{T}u_{2} \\ u_{1}^{T}K'K'^{T}u_{1} \end{pmatrix} \times \begin{pmatrix} \sigma_{1}^{2}v_{1}^{T}KK^{T}v_{1} \\ \sigma_{1}\sigma_{2}v_{1}^{T}KK^{T}v_{2} \\ \sigma_{2}^{2}v_{2}^{T}KK^{T}v_{2} \end{pmatrix} = 0$$

• Where u_i , v_i and σ_i are the columns and singular values of SVD of F

These give us two independent constraints in the elements of Ks

Kruppa equations

[Faugeras et al. 92]

$$\begin{pmatrix} u_{2}^{T}K'K'^{T}u_{2} \\ -u_{1}^{T}K'K'^{T}u_{2} \\ u_{1}^{T}K'K'^{T}u_{1} \end{pmatrix} \times \begin{pmatrix} \sigma_{1}^{2}v_{1}^{T}KK^{T}v_{1} \\ \sigma_{1}\sigma_{2}v_{1}^{T}KK^{T}v_{2} \\ \sigma_{2}^{2}v_{2}^{T}KK^{T}v_{2} \end{pmatrix} = 0$$

$$\frac{u_2^T K K^T u_2}{\sigma_1^2 v_1^T K K^T v_1} = \frac{-u_1^T K K^T u_2}{\sigma_1 \sigma_2 v_1^T K K^T v_2} = \frac{u_1^T K K^T u_1}{\sigma_2^2 v_2^T K K^T v_2}$$

• Special case where
$$K' = K = \begin{pmatrix} f & 0 & 0 \\ 0 & f & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\alpha f^2 + \beta f + \gamma = 0 \longrightarrow f$$

Kruppa equations

[Faugeras et al. 92]

- Powerful if we want to self-calibrate 2 cameras with unknown focal length
- Limitations:
 - Work on a camera pair
 - Don't work if R=0

 $[e']_{\times}\omega^{-1}[e']_{\times} = F \omega^{-1}F^T$ becomes trivial Since: $F = [e']_{\times}$

Algebraic approach

Multi-view approach

Suppose we have a projective reconstruction $\{M_i, X_i\}$

Let H be a homography such that:

First perspective camera is canonical: $M_1 = \begin{bmatrix} I & 0 \end{bmatrix}$ ith perspective reconstruction of the camera (known): $M_i = \begin{bmatrix} A_i \end{bmatrix}$ a_i

$$\left(\boldsymbol{A}_{i} - \boldsymbol{a}_{i} \boldsymbol{p}^{\mathrm{T}} \right) \boldsymbol{K}_{1} \boldsymbol{K}_{1}^{\mathrm{T}} \left(\boldsymbol{A}_{i} - \boldsymbol{a}_{i} \boldsymbol{p}^{\mathrm{T}} \right)^{\!\!\mathrm{T}} = \boldsymbol{K}_{i} \boldsymbol{K}_{i}^{\mathrm{T}} \qquad \text{i=2...m}$$

How many unknowns?

•3 from *p* •5 x (m+1) from Ks

How many equations?

5 independent equations [per view]

 $K_i K_i^T$ is 3x3 symmetric and defined up scale

is an unknown 3x1 vector

Algebraic approach

Art of self-calibration:

use constraints on Ks to generate enough equations on the unknowns

Condition	N. Views
•Constant internal parameters	3
 Aspect ratio and skew known Focal length and offset vary 	4
 Aspect ratio and skew constant Focal length and offset vary 	5
 skew =0, all other parameters vary 	8

Issue: the larger is the number of view, the harder is the correspondence problem

Bundle adjustment helps!

Lecture 8 SFM & Volumetric stereo

SFM: Self-calibration

- Volumetric stereo:
 - Space carving
 - Shadow carving
 - Voxel carving

Reading:

[HZ] Chapters 19 "Auto-calibration"[Szelisky] Chapter 7 "Structure from motion"[Szelisky] Chapter 11 "Multi-view stereo"

Silvio Savarese

Lecture 7 -

30-Jan-14

"Traditional" Stereo

Goal: estimate the position of P given the observation of P from two view points

Assumptions: known camera parameters and position (K, R, T)

"Traditional" Stereo

Subgoals:

- 1. Solve the correspondence problem
- 2. Use corresponding observations to triangulate

Volumetric stereo

- 1. Hypothesis: pick up a point within the volume
- 2. Project this point into 2 (or more) images
- 3. Validation: are the observations consistent?

Assumptions: known camera parameters and position (K, R, T)

Consistency based on cues such as:

- Contours/silhouettes
- Shadows
- Colors

Volumetric Stereo

• Contours are a rich source of geometric information

Apparent Contour

[sato & cipolla]

• <u>DEFINITION</u>: projection of the locus of points on the surface which separate the visible and occluded parts on the surface

Silhouettes

Easy to detect

How can we use contours?

How to perform visual cones intersection?

 Decompose visual cone in polygonal surfaces (among others: Reed and Allen '99)

Space Carving

[Martin and Aggarwal (1983)]

Using contours/silhouettes in volumetric stereo, also called space carving

Space Carving has complexity ...

Complexity Reduction: Octrees

Complexity Reduction: Octrees

• Subdiving volume in voxels of progressive smaller size

Complexity Reduction: Octrees

52 voxels analyzed

Advantages of Space Carving

- Robust and simple
- No need to solve for correspondences

Limitations of Space Carving

• Accuracy function of number of views

Limitations of Space Carving

Limitations of Space Carving

Space Carving: A Classic Setup

Space Carving: A Classic Setup

Space Carving: Experiments

24 poses (15⁰)

voxel size = 2mm

Space Carving: Experiments

24 poses (15^o) voxel size = 1mm

Space Carving: Conclusions

- Robust
- Produce conservative estimates
- Concavities can be a problem
- Low-end commercial 3D scanners

Space Carving: Conclusions

• Analyzing changes in apparent contours

Picture from of Sato & Cipolla

- Giblin and Weiss (1987)
- Cipolla and Blake (1992)
- Vaillant and Faugeras (1992)
- Ponce ('92), Zheng('94)
- Furukawa et al. ('05...)

Lecture 8 SFM & Volumetric stereo

SFM: Self-calibration

- Volumetric stereo:
 - Space carving
 - Shadow carving
 - Voxel carving

Reading:

[HZ] Chapters 19 "Auto-calibration"[Szelisky] Chapter 7 "Structure from motion"[Szelisky] Chapter 11 "Multi-view stereo"

Silvio Savarese

Lecture 7 -

30-Jan-14

Shape from Shadows

Volumetric Stereo

- Definition
- Shape from Contours
- Shape from Shadows
- Voxel coloring

Shape from Shadows

• Self-shadows are visual cues for shape recovery

Shadow Carving

Object's upper bound

Image

Image

Complexity? O(2N³)

Simulating the System with 3D Studio Max

- 24 positions- 4 lights

72 positions8 lights

Simulating the System with 3D Studio Max

- 16 positions
- 4 lights

Simulating the System with 3D Studio Max

Shadow Carving: Summary

- Produces a conservative volume estimate
- Accuracy depending on view point and light source number
- Limitations with specular & low albedo regions

Lecture 8 SFM & Volumetric stereo

SFM: Self-calibration

- Volumetric stereo:
 - Space carving
 - Shadow carving
 - Voxel carving

Reading:

[HZ] Chapters 19 "Auto-calibration"[Szelisky] Chapter 7 "Structure from motion"[Szelisky] Chapter 11 "Multi-view stereo"

Silvio Savarese

Lecture 7 -

30-Jan-14

Voxel Coloring

[Seitz & Dyer ('97)] [R. Collins (Space Sweep, '96)]

- Color/photo-consistency
- Jointly model structure and appearance

Basic Idea

Basic Idea

Uniqueness

• Multiple consistent scenes

Uniqueness

• Multiple consistent scenes

How to fix this? Need to use a visibility constraint
The Algorithm

Algorithm Complexity

- Voxel coloring visits each N³ voxels only once
- Project each voxel into L images

 \rightarrow O(L N³)

NOTE: not function of the number of colors

Photoconsistency Test

If λ > Thresh \rightarrow voxel consistent

A Critical Assumption: Lambertian Surfaces

Non Lambertian Surfaces

Experimental Results

Dinosaur

72 k voxels colored7.6 M voxels tested7 min to compute on a 250MHz

Image source: http://www.cs.cmu.edu/~seitz/vcolor.html

Experimental Results

Flower

70 k voxels colored 7.6 M voxels tested 7 min to compute on a 250MHz

Experimental Results

Room + weird people

Image source: http://www.cs.cmu.edu/~seitz/vcolor.html

Voxel Coloring: Conclusions

- Good things
 - Model intrinsic scene colors and texture
 - No assumptions on scene topology
- Limitations:
 - Constrained camera positions
 - Lambertian assumption

Space Carving

Further Contributions

- A Theory of Space Carving [Kutulakos & Seitz '99]
 - Voxel coloring in more general framework
 - No restrictions on camera position
- Probabilistic Space Carving

[Broadhurst & Cipolla, ICCV 2001] [Bhotika, Kutulakos et. al, ECCV 2002]

Next lecture...

Fitting and Matching