Lecture 7
 Multi-view geometry

- The SFM problem
- Affine SFM
- Perspective SFM
- Self-calibration

Reading:

[HZ] Chapters: 10 "3D reconstruction of cameras and structure",
18 " N -view computational methods",
19 "Auto-calibration"
[FP] Chapter 13: "projective structure from motion"13
[Szelisky] Chapter 7 "Structure from motion"

Structure from motion problem

Courtesy of Oxford Visual Geometry Group

Structure from motion problem

Given m images of n fixed 3D points

$$
\cdot \mathbf{x}_{i j}=\mathbf{M}_{i} \mathbf{X}_{j}, \quad i=1, \ldots, m, \quad j=1, \ldots, n
$$

Structure from motion problem

From the $m \times n$ correspondences $\mathbf{x}_{i j}$, estimate:

- m projection matrices \mathbf{M}_{i}
$\cdot n$ 3D points \mathbf{X}_{j}

Similarity Ambiguity

- The scene is determined by the images only up a similarity transformation (rotation, translation and scaling)
- This is called metric reconstruction

- The ambiguity exists even for (intrinsically) calibrated cameras
- For calibrated cameras, the similarity ambiguity is the only ambiguity

Similarity Ambiguity

- It is impossible based on the images alone to estimate the absolute scale of the scene (i.e. house height)

http://www.robots.ox.ac.uk/~vgg/projects/SingleView/models/hut/hutme.wrl

Structure from Motion Ambiguities

- In the general case (nothing is known) the ambiguity is expressed by an arbitrary affine or projective transformation

$$
\begin{aligned}
& \begin{array}{cl}
\mathrm{X}_{\mathrm{j}}=\mathrm{M}_{\mathrm{i}} & \mathrm{M}_{\mathrm{i}}=\mathrm{K}_{\mathrm{i}}\left[\begin{array}{ll}
\mathrm{R}_{\mathrm{i}} & \left.\mathrm{~T}_{\mathrm{i}}\right] \\
\mathrm{HX}_{\mathrm{i}} & \mathrm{M}_{\mathrm{j}} \mathrm{H}^{-1}
\end{array}\right.
\end{array} \\
& \mathrm{x}_{\mathrm{j}}=\mathrm{M}_{\mathrm{i}} \mathrm{X}_{\mathrm{j}}=\left(\mathrm{M}_{\mathrm{i}} \mathrm{H}^{-1}\right)\left(\mathrm{H} \mathrm{X}_{\mathrm{j}}\right)
\end{aligned}
$$

Projective Ambiguity

R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision, 2nd edition, 2003

Metric reconstruction (upgrade)

- The problem of recovering the metric reconstruction from the perspective one is called self-calibration
- Stratified reconstruction:
- from perspective to affine
- from affine to metric

Structure from motion problem

From the $m \times n$ correspondences $\mathbf{x}_{i j}$, estimate:

- m projection matrices \mathbf{M}_{i}
- n 3D points \mathbf{X}_{j}
- Upgrade to metric reconstruction (self-calibration)

Lecture 6
 Multi-view geometry

- The SFM problem
- Affine SFM
- Perspective SFM
- Self-calibration

Affine cameras

Camera matrix M for the affine case

$$
\mathbf{p}=\binom{u}{v}=\mathbf{A P}+\mathbf{b}=M\left[\begin{array}{l}
\mathbf{P} \\
1
\end{array}\right] ; \quad \mathbf{M}=\left[\begin{array}{ll}
\mathrm{A} & \mathrm{~b}
\end{array}\right]
$$

Affine structure from motion
 (simpler problem)

From the $m \times n$ correspondences $\mathbf{x}_{i j}$, estimate:

- m projection matrices \mathbf{M}_{i} (affine cameras)
- n 3D points \mathbf{X}_{j}
- Upgrade to metric reconstruction

Affine Ambiguity

$$
\mathbf{p}=\mathbf{M} \mathbf{P}=\left(\mathbf{M} \mathbf{Q}_{A}^{-1}\right)\left(\mathbf{Q}_{\mathbf{A}} \mathbf{P}\right)
$$

The Affine Structure-from-Motion Problem

Given m images of n fixed points $P_{j}\left(=\mathrm{X}_{\mathrm{i}}\right)$ we can write

$$
\mathbf{p}_{i j}=\mathbf{M}_{i}\left[\begin{array}{c}
\mathbf{P}_{j} \\
1
\end{array}\right]=\mathbf{A}_{i} \mathbf{P}_{j}+\mathbf{b}_{i} \quad \text { for } i=\underset{M \text { of cameras }}{1, \ldots \text { and } j=1, \ldots \underset{\text { Nof points }}{\ldots n .}}
$$

Problem: estimate the $m 2 \times 4$ matrices M_{i} and the n positions P_{j} from the $m \times n$ correspondences \mathbf{p}_{ij}.

How many equations and how many unknown?
$2 m \times n$ equations in ($8 m+3 n-8$) unknowns

Two approaches:

- Algebraic approach (affine epipolar geometry; estimate F; cameras; points)
- Factorization method

A factorization method Tomasi \& Kanade algorithm

C. Tomasi and T. Kanade. Shape and motion from image streams under orthography: A factorization method. IJCV, 9(2):137-154, November 1992.

- Centering the data
- Factorization

A factorization method - Centering the data

Centering: subtract the centroid of the image points

$$
\hat{\mathbf{x}}_{i j}=\mathbf{x}_{i j}-\frac{1}{n} \sum_{k=1}^{n} \mathbf{x}_{i k}-\overline{\mathbf{x}}_{\mathrm{i}}
$$

A factorization method - Centering the data

Centering: subtract the centroid of the image points

$$
\hat{\mathbf{x}}_{i j}=\mathbf{x}_{i j}-\frac{1}{n} \sum_{k=1}^{n} \mathbf{x}_{i k}=\mathbf{A}_{i} \mathbf{X}_{j}+\mathbf{b}_{i}-\frac{1}{n} \sum_{k=1}^{n}\left(\mathbf{A}_{i} \mathbf{X}_{k}+\mathbf{b}_{i}\right)
$$

A factorization method - Centering the data

Centering: subtract the centroid of the image points

A factorization method - Centering the data

Centering: subtract the centroid of the image points

$$
\begin{array}{r}
\hat{\mathbf{x}}_{i j}=\mathbf{x}_{i j}-\frac{1}{n} \sum_{k=1}^{n} \mathbf{x}_{i k}=\mathbf{A}_{i} \mathbf{X}_{j}+\mathbf{b}_{i}-\frac{1}{n} \sum_{k=1}^{n}\left(\mathbf{A}_{i} \mathbf{X}_{k}+\mathbf{b}_{i}\right) \\
=\mathbf{A}_{i}\left(\mathbf{X}_{j}-\frac{1}{n} \sum_{k=1}^{n} \mathbf{X}_{k}\right)=\mathbf{A}_{i} \hat{\mathbf{X}}_{j}
\end{array}
$$

After centering, each normalized point $\mathbf{x}_{i j}$ is related to the 3D point \mathbf{X}_{i} by

$$
\hat{\mathbf{x}}_{i j}=\mathbf{A}_{i} \hat{\mathbf{X}}_{j}
$$

A factorization method - Centering the data

Centroid of points in 3D = center of the world reference system

$$
\hat{\mathbf{x}}_{i j}=\mathbf{A}_{i} \hat{\mathbf{X}}_{j}=\mathbf{A}_{i} \mathbf{X}_{j}
$$

A factorization method - factorization

Let's create a $2 m \times n$ data (measurement) matrix:

$$
\left.\mathbf{D}=\left[\begin{array}{llll}
\hat{\mathbf{x}}_{11} & \hat{\mathbf{x}}_{12} & \cdots & \hat{\mathbf{x}}_{1 n} \\
\hat{\mathbf{x}}_{21} & \hat{\mathbf{x}}_{22} & \cdots & \hat{\mathbf{x}}_{2 n} \\
& & \ddots & \\
\hat{\mathbf{x}}_{m 1} & \hat{\mathbf{x}}_{m 2} & \cdots & \hat{\mathbf{x}}_{m n}
\end{array}\right] \right\rvert\, \begin{gathered}
\text { cameras } \\
(2 m)
\end{gathered}
$$

points (n)

A factorization method - factorization

Let's create a $2 \mathrm{~m} \times \mathrm{n}$ data (measurement) matrix:

The measurement matrix $\mathbf{D}=\mathbf{M} \mathbf{S}$ has rank 3 (it's a product of a $2 m x 3$ matrix and $3 x n$ matrix)

Factorizing the Measurement Matrix

Factorizing the Measurement Matrix

- Singular value decomposition of D :

Factorizing the Measurement Matrix

Since rank (D)=3, there are only 3 non-zero singular values

Factorizing the Measurement Matrix

$\mathrm{M}=$ Motion (cameras)

Factorizing the Measurement Matrix

What is the issue here? D has rank>3 because of:

- measurement noise
- affine approximation

Theorem: When \mathbf{D} has a rank greater than $p, \mathbf{U}_{p} \mathbf{W}_{p} \mathbf{V}_{p}^{T}$ is the best possible rank- p approximation of \mathbf{A} in the sense of the Frobenius norm.

$$
\mathbf{D}=\mathbf{U}_{3} \mathbf{W}_{3} \mathbf{V}_{3}^{T} \quad\left\{\begin{array}{l}
\mathbf{A}_{0}=\mathbf{U}_{3} \\
\mathbf{P}_{0}=\mathbf{W}_{3} \mathbf{V}_{3}^{T}
\end{array}\right.
$$

$$
\|A\|_{F}=\sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n}\left|a_{i j}\right|^{2}}=\sqrt{\sum_{i=1}^{\min (m, n)} \sigma_{i}^{2}}
$$

Affine Ambiguity

- The decomposition is not unique. We get the same \mathbf{D} by using any 3×3 matrix \mathbf{C} and applying the transformations:

$$
\begin{aligned}
& M \rightarrow M C \\
& S \rightarrow C^{-1} S
\end{aligned}
$$

- Additional constraints must be enforced to resolve this ambiguity

Reconstruction results

1

120

60

150

C. Tomasi and T. Kanade. Shape and motion from image streams under orthography: A factorization method. IJCV, 9(2):137-154, November 1992.

Lecture 6
 Multi-view geometry

- The SFM problem
- Affine SFM
- Perspective SFM
- Self-calibration

Structure from motion problem

From the $m \times n$ correspondences $\mathbf{x}_{i j}$, estimate:

- m projection matrices \mathbf{M}_{i}
- n 3D points \mathbf{X}_{j}
- Upgrade to metric reconstruction

Structure from motion problem

m cameras $\mathrm{M}_{1} \ldots \mathrm{M}_{\mathrm{m}}$

$$
M_{i}=\left[\begin{array}{llll}
a_{11} & a_{12} & a_{13} & b_{1} \\
a_{21} & a_{22} & a_{23} & b_{2} \\
a_{31} & a_{32} & a_{33} & 1
\end{array}\right]
$$

The Structure-from-Motion Problem

Given m images of n fixed points X_{j} we can write

$$
\mathbf{X}_{\mathrm{ij}}=\mathbf{M}_{\mathrm{i}} \mathbf{X}_{\mathrm{j}} \quad \text { for } \quad i=1, \ldots, m \text { and } j=1, \ldots, n
$$

Problem: estimate the $m 3 \times 4$ matrices M_{i} and the n positions X_{i} from the $m \times n$ correspondences $x_{i j}$.

- With no calibration info, cameras and points can only be recovered up to a 4×4 projective (16 parameters)
- Given two cameras, how many points are needed?
- How many equations and how many unknown?
$2 m \times n$ equations in $11 m+3 n-16$ unknowns

Structure-from-Motion Algorithms

- Algebraic approach (by fundamental matrix)
- Factorization method (by SVD)
- Bundle adjustment

Algebraic approach (2-view case)

1. Compute the fundamental matrix F from two views (eg. 8 point algorithm)
2. Use F to estimate projective cameras
3. Use these cameras to triangulate and estimate points in 3D

Algebraic approach (2-view case)

$$
\mathrm{X}_{\mathrm{ij}}=\mathrm{M}_{\mathrm{i}} \mathrm{X}_{\mathrm{j}}
$$

Apply a projective transformation H such that:

$$
\mathrm{M}_{1} \mathrm{H}^{-1}=\left[\begin{array}{ll}
\mathrm{I} & 0
\end{array}\right] \quad \mathrm{M}_{2} \mathrm{H}^{-1}=\left[\begin{array}{ll}
\mathrm{A} & \mathrm{~b}
\end{array}\right]
$$

Canonical perspective cameras

Algebraic approach (2-view case)

$$
\begin{aligned}
& \begin{cases}\mathrm{M}_{1} \mathrm{H}^{-1}=\left[\begin{array}{ll}
\mathrm{I} & 0
\end{array}\right] & \mathbf{x}=M_{1} H^{-1} H \mathbf{X}=[\mathbf{I} \mid \mathbf{0}] \tilde{\mathbf{X}} \\
\mathrm{M}_{2} \mathrm{H}^{-1}=\left[\begin{array}{ll}
\mathrm{A} & \mathrm{~b}
\end{array}\right] \\
\tilde{\mathbf{x}}=\mathrm{H} \mathbf{X} \\
\mathbf{x}^{\prime}=M_{2} H^{-1} H \mathbf{X}=[\mathbf{A} \mid \mathbf{b}] \tilde{\mathbf{X}}\end{cases} \\
& \left.\mathbf{x}^{\prime}=[\mathbf{A} \mid \mathbf{b}] \tilde{\mathbf{X}}=[\mathbf{A} \mid \mathbf{b}]\left[\begin{array}{c}
\tilde{\mathbf{X}}_{1} \\
\tilde{\mathrm{X}}_{2} \\
\tilde{\mathrm{X}}_{3} \\
1
\end{array}\right]=\mathbf{A}[\mathrm{I} \mid 0]\left[\begin{array}{c}
\tilde{\mathrm{X}}_{1} \\
\tilde{\mathrm{X}}_{2} \\
\tilde{\mathrm{X}}_{3} \\
1
\end{array}\right]+\mathbf{b}=\mathbf{A}[\mid] 0\right] \tilde{\mathbf{X}}^{[}+\mathrm{b}=\mathrm{A} \mathbf{x}+\mathrm{b}
\end{aligned}
$$

$\mathbf{x}^{\prime} \times \mathbf{b}=(\mathbf{A x}+\mathbf{b}) \times \mathbf{b}=\mathbf{A x} \times \mathbf{b}$
$\mathbf{x}^{\prime T} \cdot\left(\mathbf{x}^{\prime} \times \mathbf{b}\right)=\mathbf{x}^{\prime T} \cdot(\mathbf{A} \mathbf{x} \times \mathbf{b})=0$
$\mathbf{x}^{\prime T}(\mathbf{b} \times \mathbf{A x})=0$

Cross product as matrix multiplication

$$
\mathbf{a} \times \mathbf{b}=\left[\begin{array}{ccc}
0 & -a_{z} & a_{y} \\
a_{z} & 0 & -a_{x} \\
-a_{y} & a_{x} & 0
\end{array}\right]\left[\begin{array}{l}
b_{x} \\
b_{y} \\
b_{z}
\end{array}\right]=\left[\mathbf{a}_{\times}\right] \mathbf{b}
$$

Algebraic approach (2-view case)

$$
\begin{aligned}
& \mathbf{x}=M_{1} H^{-1} H \mathbf{X}=[\mathbf{I} \mid \mathbf{0}] \tilde{\mathbf{X}} \\
& \mathbf{x}^{\prime}=M_{2} H^{-1} H \mathbf{X}=[\mathbf{A} \mid \mathbf{b}] \tilde{\mathbf{X}} \\
& \left\{\begin{array}{l}
\mathrm{M}_{1} \mathrm{H}^{-1}=\left[\begin{array}{ll}
\mathrm{I} & 0
\end{array}\right] \\
\mathrm{M}_{2} \mathrm{H}^{-1}=\left[\begin{array}{ll}
\mathrm{A} & \mathrm{~b}
\end{array}\right] \\
\tilde{\mathbf{X}}=\mathrm{HX}
\end{array}\right. \\
& \mathbf{x}^{\prime}=[\mathbf{A} \mid \mathbf{b}] \tilde{\mathbf{X}}=[\mathbf{A} \mid \mathbf{b}]\left[\begin{array}{c}
\tilde{X}_{1} \\
\tilde{X}_{2} \\
\tilde{X}_{3} \\
1
\end{array}\right]=\mathbf{A}[I \mid 0]\left[\begin{array}{c}
\tilde{X}_{1} \\
\tilde{X}_{2} \\
\tilde{X}_{3} \\
1
\end{array}\right]+\mathbf{b}=\mathbf{A}[I \mid 0] \tilde{\mathbf{X}}^{\prime}+\mathbf{b}=\mathbf{A} \mathbf{x}+\mathrm{b} \\
& \mathbf{x}^{\prime} \times \mathbf{b}=(\mathbf{A x}+\mathbf{b}) \times \mathbf{b}=\mathbf{A x} \times \mathbf{b} \\
& \mathbf{x}^{\prime T} \cdot\left(\mathbf{x}^{\prime} \times \mathbf{b}\right)=\mathbf{x}^{\prime T} \cdot(\mathbf{A} \mathbf{x} \times \mathbf{b})=0 \\
& \mathbf{x}^{\prime T}(\mathbf{b} \times \mathbf{A x})=0 \\
& \left.\mathbf{x}^{\top}\left[\mathbf{b}_{\times}\right] \mathbf{A}\right] \mathbf{x}=0 \quad \text { is this familiar? } \\
& \mathbf{F}=\left[\mathbf{b}_{\times}\right] \mathbf{A}
\end{aligned}
$$

Compute cameras

$$
\mathbf{x}^{\prime \mathrm{T}} \mathrm{~F} \mathbf{x}=0 \quad \mathbf{F}=\left[\mathbf{b}_{\times}\right] \mathbf{A}
$$

Compute b:
$\mathbf{F} \cdot \mathbf{b}=\left[\mathbf{b}_{\times}\right] \mathbf{A} \cdot \mathbf{b}=\mathbf{b} \times \mathbf{A} \cdot \mathbf{b}=0 \rightarrow$

Compute A: $\quad \mathbf{A}=\mathbf{A}^{\prime}=-\left[\mathbf{b}_{x}\right] \mathbf{F}$
F is singular
Compute \mathbf{b} as least sq. solution of $\mathbf{F b}=0$, with $|\mathrm{b}|=1$ using SVD Indeed, let's verify that $\left[\mathbf{b}_{\mathrm{x}}\right] \mathbf{A}^{\prime}$ is still equal to \mathbf{F} Indeed: $\left[\mathbf{b}_{\times}\right] \mathbf{A}^{\prime}=-\left[\mathbf{b}_{\times}\right]\left[\mathbf{b}_{\times}\right] \mathbf{F}=\left(\mathbf{b} \mathbf{b}^{T}-|\mathbf{b}|^{2} \mathbf{I}\right) \mathbf{F}=\mathbf{b} \mathbf{b}^{T} \mathbf{F}+|\mathbf{b}|^{2} \mathbf{F}=0+1 \cdot \mathbf{F}=\mathbf{F}$

$$
\mathrm{M}_{1}^{\mathrm{p}}=\left[\begin{array}{ll}
\mathrm{I} & 0
\end{array}\right] \quad M_{2}^{p}=\left[-\left[\mathbf{b}_{x}\right] \mathbf{F} \quad \mathbf{b}\right]
$$

Algebraic approach (2-view case)

1. Compute the fundamental matrix F from two views (eg. 8 point algorithm)
2. Compute b and A from F
3. Use b and A to estimate projective cameras
4. Use these cameras to triangulate and estimate points in 3D

Interpretation of \mathbf{b}

$$
\mathbf{x}^{\prime \mathrm{T}} \mathrm{~F} \mathbf{x}=0 \quad \mathbf{F}=\left[\mathbf{b}_{\times}\right] \mathbf{A}
$$

$\mathbf{F} \cdot \mathbf{b}=0$
$\mathbf{A}=-\left[\mathbf{b}_{x}\right] \mathbf{F}$

What's b?

Epipolar Constraint [lecture e]

$F x_{2}$ is the epipolar line associated with $x_{2}\left(l_{1}=F x_{2}\right)$
$F^{\top} x_{1}$ is the epipolar line associated with $x_{1}\left(l_{2}=F^{\top} x_{1}\right)$
F is singular (rank two)
$\mathrm{Fe}_{2}=0$ and $\mathrm{F}^{\top} \mathrm{e}_{1}=0$
F is 3×3 matrix; 7 DOF

Interpretation of \mathbf{b}

$$
\mathbf{x}^{\prime \mathrm{T}} \mathrm{~F} \mathbf{x}=0 \quad \mathbf{F}=\left[\mathbf{b}_{\times}\right] \mathbf{A}
$$

$\mathbf{F} \cdot \mathbf{b}=0$
$\mathbf{A}=-\left[\mathbf{b}_{\mathrm{x}}\right] \mathbf{F}$
b is an epipole!

$$
\mathrm{M}_{1}^{\mathrm{p}}=\left[\begin{array}{ll}
\mathrm{I} & 0
\end{array}\right] \quad M_{2}^{p}=\left[\begin{array}{ll}
-\left[\mathbf{e}_{x}\right] \mathbf{F} & \mathbf{e}
\end{array}\right]
$$

Structure-from-Motion Algorithms

- Algebraic approach (by fundamental matrix)
- Factorization method (by SVD)
- Bundle adjustment

Limitations of the approaches seen so far

- Factorization methods assume all points are visible. This not true if:
- occlusions occur
- failure in establishing correspondences
- Algebraic methods work with 2 views

Bundle adjustment

Non-linear method for refining structure and motion Minimizing re-projection error

Bundle adjustment

Non-linear method for refining structure and motion
Minimizing re-projection error

$$
\mathrm{E}(\mathrm{M}, \mathbf{X})=\sum_{\mathrm{i}=1}^{\mathrm{m}} \sum_{\mathrm{j}=1}^{\mathrm{n}} \mathrm{D}\left(\mathbf{x}_{\mathrm{ij}}, \mathrm{M}_{\mathrm{i}} \mathbf{X}_{\mathrm{j}}\right)^{2}
$$

- Advantages
- Handle large number of views
- Handle missing data
- Limitations
- Large minimization problem (parameters grow with number of views)
- requires good initial condition
\rightarrow Used as the final step of SFM

Lecture 6
 Multi-view geometry

- The SFM problem
- Affine SFM
- Perspective SFM
- Self-calibration

Reading: [HZ] Chapters: 10,18,19 [FP] Chapter: 13

Recovering the metric reconstruction from the perspective (or affine) one is called self-calibration

SFM problem - summary

1. Estimate structure and motion up perspective transformation
2. Algebraic
3. factorization method
4. bundle adjustment
5. Convert from perspective to metric (self-calibration)
6. Bundle adjustment
** or **
7. Bundle adjustment with self-calibration constraints

Results and applications

Courtesy of Oxford Visual Geometry Group

Lucas \& Kanade, 81
Chen \& Medioni, 92 Debevec et al., 96
Levoy \& Hanrahan, 96
Fitzgibbon \& Zisserman, 98
Triggs et al., 99
Pollefeys et al., 99
Kutulakos \& Seitz, 99

Levoy et al., 00
Hartley \& Zisserman, 00
Dellaert et al., 00
Rusinkiewic et al., 02
Nistér, 04
Brown \& Lowe, 04
Schindler et al, 04
Lourakis \& Argyros, 04
Colombo et al. 05

Golparvar-Fard, et al. JAEI 10
Pandey et al. IFAC , 2010
Pandey et al. ICRA 2011
Microsoft's PhotoSynth
Snavely et al., 06-08
Schindler et al., 08
Agarwal et al., 09
Frahm et al., 10

Results and applications

M. Pollefeys et al 98---

Results and applications

Incremental reconstruction of construction sites

Initial pair - 2168 \& Complete Set 62,323 points, 160 images

Reconstructed scene + Site photos

ㅍ. D4AR System | Visualization of Construction Progress | University of Illinois, Urbana-Champaign

\qquad

Reconstructed scene + Site photos

Next lecture

Self-calibration
Volumetric stereo

