Lecture 7 Multi-view geometry

- The SFM problem
- Affine SFM
- Perspective SFM
- Self-calibration

Reading:

- [HZ] Chapters: 10 "3D reconstruction of cameras and structure",
- 18 "N-view computational methods",
- 19 "Auto-calibration"
- [FP] Chapter 13: "projective structure from motion"13
- [Szelisky] Chapter 7 "Structure from motion"

Silvio Savarese

Lecture 7 -

28-Jan-14

Structure from motion problem

Courtesy of Oxford Visual Geometry Group

Given *m* images of *n* fixed 3D points

•
$$\mathbf{x}_{ij} = \mathbf{M}_i \mathbf{X}_j$$
, $i = 1, \dots, m$, $j = 1, \dots, n$

From the mxn correspondences \mathbf{x}_{ii} , estimate:

•*m* projection matrices \mathbf{M}_{i} motion •*n* 3D points \mathbf{X}_i structure

Similarity Ambiguity

- The scene is determined by the images only up a similarity transformation (rotation, translation and scaling)
- This is called **metric reconstruction**

- The ambiguity exists even for (intrinsically) calibrated cameras
- For calibrated cameras, the similarity ambiguity is the only ambiguity

[Longuet-Higgins '81]

Similarity Ambiguity

• It is impossible based on the images alone to estimate the absolute scale of the scene (i.e. house height)

http://www.robots.ox.ac.uk/~vgg/projects/SingleView/models/hut/hutme.wrl

Structure from Motion Ambiguities

 In the general case (nothing is known) the ambiguity is expressed by an arbitrary affine or projective transformation

Projective Ambiguity

R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision, 2nd edition, 2003

Metric reconstruction (upgrade)

- The problem of recovering the metric reconstruction from the perspective one is called **self-calibration**
- Stratified reconstruction:
 - from perspective to affine
 - from affine to metric

From the mxn correspondences \mathbf{x}_{ii} , estimate:

- *m* projection matrices **M**_{*i*}
- *n* 3D points **X**_{*i*}
- Upgrade to metric reconstruction (self-calibration)

Lecture 6 Multi-view geometry

- The SFM problem
- Affine SFM
- Perspective SFM
- Self-calibration

Silvio Savarese

Lecture 7 -

28-Jan-14

Affine cameras

Camera matrix M for the affine case

$$\mathbf{p} = \begin{pmatrix} u \\ v \end{pmatrix} = \mathbf{A}\mathbf{P} + \mathbf{b} = M \begin{bmatrix} \mathbf{P} \\ 1 \end{bmatrix}; \qquad \mathbf{M} = \begin{bmatrix} \mathbf{A} & \mathbf{b} \end{bmatrix}$$

Affine structure from motion (simpler problem)

From the mxn correspondences \mathbf{x}_{ij} , estimate:

- *m* projection matrices **M**_{*i*} (affine cameras)
- *n* 3D points **X**_{*i*}
- Upgrade to metric reconstruction

Affine Ambiguity

 $\mathbf{p} = \mathbf{M} \mathbf{P} = \left(\mathbf{M} \mathbf{Q}_{\mathbf{A}}^{-1} \right) \left(\mathbf{Q}_{\mathbf{A}} \mathbf{P} \right)$

The Affine Structure-from-Motion Problem

Given *m* images of *n* fixed points P_i (=X_i) we can write

$$\mathbf{p}_{ij} = \mathbf{M}_i \begin{bmatrix} \mathbf{P}_j \\ 1 \end{bmatrix} = \mathbf{A}_i \mathbf{P}_j + \mathbf{b}_i \text{ for } i = 1, \dots, m \text{ and } j = 1, \dots, n.$$

M of cameras N of points

Problem: estimate the m 2×4 matrices $M_i^{}$ and the n positions $P_j^{}$ from the m×n correspondences $\bm{p}_{ij}^{}$.

How many equations and how many unknown?

2m × n equations in (8m+3n-8) unknowns

Two approaches:

- Algebraic approach (affine epipolar geometry; estimate F; cameras; points)
- Factorization method

A factorization method – Tomasi & Kanade algorithm

C. Tomasi and T. Kanade. <u>Shape and motion from image streams under orthography: A factorization</u> <u>method.</u> *IJCV*, 9(2):137-154, November 1992.

- Centering the data
- Factorization

Centering: subtract the centroid of the image points

$$\hat{\mathbf{x}}_{ij} = \mathbf{x}_{ij} - \frac{1}{n} \sum_{k=1}^{n} \mathbf{x}_{ik}$$
 $\bar{\mathbf{x}}_{i}$

Centering: subtract the centroid of the image points

$$\hat{\mathbf{x}}_{ij} = \mathbf{x}_{ij} - \frac{1}{n} \sum_{k=1}^{n} \mathbf{x}_{ik} = \mathbf{A}_{i} \mathbf{X}_{j} + \mathbf{b}_{i} - \frac{1}{n} \sum_{k=1}^{n} \left(\mathbf{A}_{i} \mathbf{X}_{k} + \mathbf{b}_{i} \right)$$

Centering: subtract the centroid of the image points

Centering: subtract the centroid of the image points

$$\hat{\mathbf{x}}_{ij} = \mathbf{x}_{ij} - \frac{1}{n} \sum_{k=1}^{n} \mathbf{x}_{ik} = \mathbf{A}_i \mathbf{X}_j + \mathbf{b}_i - \frac{1}{n} \sum_{k=1}^{n} (\mathbf{A}_i \mathbf{X}_k + \mathbf{b}_i)$$
$$= \mathbf{A}_i \left(\mathbf{X}_j - \frac{1}{n} \sum_{k=1}^{n} \mathbf{X}_k \right) = \mathbf{A}_i \hat{\mathbf{X}}_j$$

After centering, each normalized point \mathbf{x}_{ij} is related to the 3D point \mathbf{X}_i by

$$\hat{\mathbf{X}}_{ij} = \mathbf{A}_i \hat{\mathbf{X}}_j$$

Centroid of points in 3D = center of the world reference system

$$\hat{\mathbf{X}}_{ij} = \mathbf{A}_i \hat{\mathbf{X}}_j = \mathbf{A}_i \mathbf{X}_j$$

A factorization method - factorization

Let's create a 2m × n data (measurement) matrix:

A factorization method - factorization

Let's create a 2m × n data (measurement) matrix:

The measurement matrix **D** = **M S** has rank 3 (it's a product of a 2mx3 matrix and 3xn matrix)

• Singular value decomposition of D:

Since rank (D)=3, there are only 3 non-zero singular values

M = Motion (cameras)

What is the issue here? D has rank>3 because of:

- measurement noise
- affine approximation

Theorem: When **D** has a rank greater than p, $\mathbf{U}_{p}\mathbf{W}_{p}\mathbf{V}_{p}^{T}$ is the best possible rank- p approximation of **A** in the sense of the Frobenius norm.

$$\mathbf{D} = \mathbf{U}_3 \mathbf{W}_3 \mathbf{V}_3^T \qquad \begin{cases} \mathbf{A}_0 = \mathbf{U}_3 \\ \mathbf{P}_0 = \mathbf{W}_3 \mathbf{V}_3^T \end{cases}$$

$$||A||_F = \sqrt{\sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^2} = \sqrt{\sum_{i=1}^{\min\{m,n\}} \sigma_i^2}$$

Affine Ambiguity

• The decomposition is not unique. We get the same **D** by using any 3×3 matrix **C** and applying the transformations:

$M \rightarrow MC$ $S \rightarrow C^{-1}S$

• Additional constraints must be enforced to resolve this ambiguity

Reconstruction results

C. Tomasi and T. Kanade. <u>Shape and motion from image streams under orthography:</u> <u>A factorization method.</u> *IJCV*, 9(2):137-154, November 1992.

Lecture 6 Multi-view geometry

- The SFM problem
- Affine SFM
- Perspective SFM
- Self-calibration

Structure from motion problem

From the mxn correspondences \mathbf{x}_{ii} , estimate:

- *m* projection matrices **M**_{*i*}
- *n* 3D points **X**_{*i*}
- Upgrade to metric reconstruction

Structure from motion problem

m cameras M₁... M_m

$$\mathbf{M}_{i} = \begin{bmatrix} a_{11} & a_{12} & a_{13} & b_{1} \\ a_{21} & a_{22} & a_{23} & b_{2} \\ a_{31} & a_{32} & a_{33} & 1 \end{bmatrix}$$

The Structure-from-Motion Problem

Given *m* images of *n* fixed points X_i we can write

$$\mathbf{X}_{ij} = \mathbf{M}_i \mathbf{X}_j$$
 for $i = 1, \dots, m$ and $j = 1, \dots, n$.

Problem: estimate the m 3×4 matrices M_i and the n positions X_i from the m×n correspondences x_{ii} .

- With no calibration info, cameras and points can only be recovered up to a 4x4 projective (16 parameters)
- Given two cameras, how many points are needed?
- How many equations and how many unknown?
 2m × n equations in 11m+3n 16 unknowns

Structure-from-Motion Algorithms

- Algebraic approach (by fundamental matrix)
- Factorization method (by SVD)
- Bundle adjustment

Algebraic approach (2-view case)

- Compute the fundamental matrix F from two views (eg. 8 point algorithm)
- 2. Use F to estimate projective cameras
- 3. Use these cameras to triangulate and estimate points in 3D

Algebraic approach (2-view case)

Apply a projective transformation H such that:

$$\mathbf{M}_1 \mathbf{H}^{-1} = \begin{bmatrix} \mathbf{I} & \mathbf{0} \end{bmatrix} \qquad \qquad \mathbf{M}_2 \mathbf{H}^{-1} = \begin{bmatrix} \mathbf{A} & \mathbf{b} \end{bmatrix}$$

Canonical perspective cameras

Algebraic approach (2-view case)

 $\begin{cases} M_1 H^{-1} = \begin{bmatrix} I & 0 \end{bmatrix} & \mathbf{x} = M_1 H^{-1} H \mathbf{X} = \begin{bmatrix} \mathbf{I} \mid \mathbf{0} \end{bmatrix} \mathbf{\widetilde{X}} \\ M_2 H^{-1} = \begin{bmatrix} A & b \end{bmatrix} & \mathbf{x}' = M_2 H^{-1} H \mathbf{X} = \begin{bmatrix} \mathbf{A} \mid \mathbf{b} \end{bmatrix} \mathbf{\widetilde{X}} \\ \mathbf{\widetilde{X}} = H \mathbf{X} & \end{cases}$

$$\mathbf{x}' = [\mathbf{A} \mid \mathbf{b}] \widetilde{\mathbf{X}} = [\mathbf{A} \mid \mathbf{b}] \begin{bmatrix} \widetilde{\mathbf{X}}_1 \\ \widetilde{\mathbf{X}}_2 \\ \widetilde{\mathbf{X}}_3 \\ 1 \end{bmatrix} = \mathbf{A} [\mathbf{I} \mid \mathbf{0}] \begin{bmatrix} \widetilde{\mathbf{X}}_1 \\ \widetilde{\mathbf{X}}_2 \\ \widetilde{\mathbf{X}}_3 \\ 1 \end{bmatrix} + \mathbf{b} = \mathbf{A} [\mathbf{I} \mid \mathbf{0}] \widetilde{\mathbf{X}} + \mathbf{b} = \mathbf{A} \mathbf{x} + \mathbf{b}$$

 $\mathbf{x}' \times \mathbf{b} = (\mathbf{A}\mathbf{x} + \mathbf{b}) \times \mathbf{b} = \mathbf{A}\mathbf{x} \times \mathbf{b}$ $\mathbf{x}'^{T} \cdot (\mathbf{x}' \times \mathbf{b}) = \mathbf{x}'^{T} \cdot (\mathbf{A}\mathbf{x} \times \mathbf{b}) = 0$ $\mathbf{x}'^{T} (\mathbf{b} \times \mathbf{A}\mathbf{x}) = 0$

Cross product as matrix multiplication

$$\mathbf{a} \times \mathbf{b} = \begin{bmatrix} 0 & -a_z & a_y \\ a_z & 0 & -a_x \\ -a_y & a_x & 0 \end{bmatrix} \begin{bmatrix} b_x \\ b_y \\ b_z \end{bmatrix} = [\mathbf{a}_{\times}]\mathbf{b}$$

Algebraic approach (2-view case) $\begin{cases} \mathbf{M}_{1} \mathbf{H}^{-1} = \begin{bmatrix} \mathbf{I} & \mathbf{0} \end{bmatrix} \\ \mathbf{M}_{2} \mathbf{H}^{-1} = \begin{bmatrix} \mathbf{A} & \mathbf{b} \end{bmatrix} \\ \mathbf{\tilde{X}} = \mathbf{H} \mathbf{X} \end{cases}$ $\mathbf{x} = M_1 H^{-1} H \mathbf{X} = [\mathbf{I} \mid \mathbf{0}] \widetilde{\mathbf{X}}$

 $\mathbf{x}' = \boldsymbol{M}_2 \ \boldsymbol{H}^{-1} \ \boldsymbol{H} \ \mathbf{X} = [\mathbf{A} \mid \mathbf{b}] \widetilde{\mathbf{X}}$

$$\mathbf{x}' = [\mathbf{A} \mid \mathbf{b}] \widetilde{\mathbf{X}} = [\mathbf{A} \mid \mathbf{b}] \begin{bmatrix} \widetilde{\mathbf{X}}_1 \\ \widetilde{\mathbf{X}}_2 \\ \widetilde{\mathbf{X}}_3 \\ 1 \end{bmatrix} = \mathbf{A} [\mathbf{I} \mid 0] \begin{bmatrix} \widetilde{\mathbf{X}}_1 \\ \widetilde{\mathbf{X}}_2 \\ \widetilde{\mathbf{X}}_3 \\ 1 \end{bmatrix} + \mathbf{b} = \mathbf{A} \begin{bmatrix} \mathbf{I} \mid 0 \end{bmatrix} \widetilde{\mathbf{X}} + \mathbf{b} = \mathbf{A} \mathbf{x} + \mathbf{b}$$

 $\mathbf{x'} \times \mathbf{b} = (\mathbf{A}\mathbf{x} + \mathbf{b}) \times \mathbf{b} = \mathbf{A}\mathbf{x} \times \mathbf{b}$ $\mathbf{x}'^T \cdot (\mathbf{x}' \times \mathbf{b}) = \mathbf{x}'^T \cdot (\mathbf{A}\mathbf{x} \times \mathbf{b}) = 0$ $\mathbf{x}^{T}(\mathbf{b} \times \mathbf{A}\mathbf{x}) = 0$ $\mathbf{x}'^{\mathrm{T}}\mathbf{F}\mathbf{x}=\mathbf{0}$ $\mathbf{F} = [\mathbf{b}_{\star}]\mathbf{A}$ is this familiar? $\mathbf{x}^{\prime \mathbf{1}}[\mathbf{b}_{\times}]\mathbf{A} \mathbf{x} = \mathbf{0}$

$$\begin{array}{l} \text{Compute cameras} \\ \mathbf{x'}^{\mathrm{T}} \mathbf{F} \ \mathbf{x} = \mathbf{0} \qquad \mathbf{F} = [\mathbf{b}_{\times}] \mathbf{A} \\ \text{Compute } \mathbf{b}: \\ \mathbf{F} \cdot \mathbf{b} = [\mathbf{b}_{\times}] \mathbf{A} \cdot \mathbf{b} = \mathbf{b} \times \mathbf{A} \cdot \mathbf{b} = \mathbf{0} \xrightarrow{} \begin{cases} \mathbf{F} \text{ is singular} \\ \text{Compute } \mathbf{b} \text{ as least sq.} \\ \text{solution of } \mathbf{F} \mathbf{b} = \mathbf{0}, \text{ with} \\ |\mathbf{b}| = 1 \text{ using SVD} \end{cases} \\ \end{array}$$

Indeed, let's verify that $[\mathbf{b}_{\times}]\mathbf{A}'$ is still equal to \mathbf{F}

Indeed: $[\mathbf{b}_{\times}]\mathbf{A}' = -[\mathbf{b}_{\times}][\mathbf{b}_{\times}]\mathbf{F} = (\mathbf{b} \mathbf{b}^{T} - |\mathbf{b}|^{2}\mathbf{I})\mathbf{F} = \mathbf{b} \mathbf{b}^{T}\mathbf{F} + |\mathbf{b}|^{2}\mathbf{F} = 0 + 1 \cdot \mathbf{F} = \mathbf{F}$

$$\mathbf{M}_{1}^{p} = \begin{bmatrix} \mathbf{I} & \mathbf{0} \end{bmatrix} \qquad \qquad M_{2}^{p} = \begin{bmatrix} -\begin{bmatrix} \mathbf{b}_{x} \end{bmatrix} \mathbf{F} & \mathbf{b} \end{bmatrix}$$

Algebraic approach (2-view case)

- Compute the fundamental matrix F from two views (eg. 8 point algorithm)
- 2. Compute b and A from F
- 3. Use b and A to estimate projective cameras
- 4. Use these cameras to triangulate and estimate points in 3D

Interpretation of **b**

$$\mathbf{x'}^{\mathrm{T}}\mathbf{F}\mathbf{x} = \mathbf{0}$$
 $\mathbf{F} = [\mathbf{b}_{\times}]\mathbf{A}$

 $\mathbf{F} \cdot \mathbf{b} = 0$

 $\mathbf{A} = -[\mathbf{b}_{\star}] \mathbf{F}$

What's **b**??

Epipolar Constraint [lecture 6]

F x_2 is the epipolar line associated with x_2 ($I_1 = F x_2$) F^T x_1 is the epipolar line associated with x_1 ($I_2 = F^T x_1$) F is singular (rank two)

 $Fe_2 = 0$ and $F^Te_1 = 0$

F is 3x3 matrix; 7 DOF

Interpretation of **b**

$$\mathbf{x'}^{\mathrm{T}}\mathbf{F}\mathbf{x} = \mathbf{0}$$
 $\mathbf{F} = [\mathbf{b}_{\times}]\mathbf{A}$

HZ, page 254 PF, page 288

Structure-from-Motion Algorithms

- Algebraic approach (by fundamental matrix)
- Factorization method (by SVD)
- Bundle adjustment

Limitations of the approaches seen so far

- Factorization methods assume all points are visible.
 This not true if:
 - occlusions occur
 - failure in establishing correspondences
- Algebraic methods work with 2 views

Bundle adjustment

Non-linear method for refining structure and motion Minimizing re-projection error

Bundle adjustment

Non-linear method for refining structure and motion Minimizing re-projection error

$$E(\mathbf{M}, \mathbf{X}) = \sum_{i=1}^{m} \sum_{j=1}^{n} D(\mathbf{x}_{ij}, \mathbf{M}_{i} \mathbf{X}_{j})^{2}$$

Advantages

- Handle large number of views
- Handle missing data

Limitations

- Large minimization problem (parameters grow with number of views)
- requires good initial condition

 \rightarrow Used as the final step of SFM

Lecture 6 Multi-view geometry

- The SFM problem
- Affine SFM
- Perspective SFM
- Self-calibration

Reading: [HZ] Chapters: 10,18,19 [FP] Chapter: 13

28-Jan-14

Recovering the metric reconstruction from the perspective (or affine) one is called self-calibration

SFM problem - summary

- 1. Estimate structure and motion up perspective transformation
 - 1. Algebraic
 - 2. factorization method
 - 3. bundle adjustment
- 2. Convert from perspective to metric (self-calibration)
- 3. Bundle adjustment

** or **

1. Bundle adjustment with self-calibration constraints

Results and applications

Courtesy of Oxford Visual Geometry Group

Lucas & Kanade, 81 Chen & Medioni, 92 Debevec et al., 96 Levoy & Hanrahan, 96 Fitzgibbon & Zisserman, 98 Triggs et al., 99 Pollefeys et al., 99 Kutulakos & Seitz, 99 Levoy et al., 00 Hartley & Zisserman, 00 Dellaert et al., 00 Rusinkiewic et al., 02 Nistér, 04 Brown & Lowe, 04 Schindler et al, 04 Lourakis & Argyros, 04 Colombo et al. 05

Golparvar-Fard, et al. JAEI 10 Pandey et al. IFAC , 2010 Pandey et al. ICRA 2011 Microsoft's PhotoSynth Snavely et al., 06-08 Schindler et al., 08 Agarwal et al., 09 Frahm et al., 10

Results and applications

M. Pollefeys et al 98----

Results and applications

Noah Snavely, Steven M. Seitz, Richard Szeliski, "<u>Photo tourism: Exploring photo collections in 3D</u>," ACM Transactions on Graphics (SIGGRAPH Proceedings),2006,

Incremental reconstruction of construction sites

Initial pair – 2168 & Complete Set 62,323 points, 160 images

Reconstructed scene + Site photos

Reconstructed scene + Site photos

Next lecture

Self-calibration Volumetric stereo