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• Stereo systems
• Rectification
• Correspondence problem

• Multi-view geometry
• The SFM problem
• Affine SFM

Reading: [AZ] Chapter: 4 “Estimation – 2D perspective transformations
Chapter: 9  “Epipolar Geometry and the Fundamental Matrix Transformation”
Chapter: 11 “Computation of the Fundamental Matrix F”

[FP] Chapters: 10 “The geometry of multiple views”

Lecture 6
Stereo Systems
Multi-view geometry



• Epipolar Plane • Epipoles e1, e2

• Epipolar Lines

• Baseline

Epipolar geometry
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= intersections of baseline with image planes 

= projections of the other camera center

For details see CS131A

Lecture 9
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Epipolar Constraint
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E = Essential Matrix
(Longuet-Higgins, 1981)
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Epipolar Constraint

0pFp
T



F = Fundamental Matrix
(Faugeras and Luong, 1992)
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Example: Parallel image planes
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• Epipolar lines are horizontal

• Epipoles go to infinity

• y-coordinates are equal 
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Rectification: making two images “parallel” 

H

Courtesy figure S. Lazebnik

For details on how to 
rectify two views see 
CS131A Lecture 9



Why are parallel images useful?

• Makes the correspondence problem easier
• Makes triangulation easy
• Enables schemes for image interpolation



Application: view morphing
S. M. Seitz and C. R. Dyer, Proc. SIGGRAPH 96, 1996, 21-30 



Morphing without using geometry



Rectification
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From its reflection!
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Why are parallel images useful?

• Makes the correspondence problem easier
• Makes triangulation easy
• Enables schemes for image interpolation



Point triangulation
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Note: Disparity is inversely proportional to depth

Computing depth

= disparity



Disparity maps

http://vision.middlebury.edu/stereo/

Stereo pair

Disparity map / depth map Disparity map  with occlusions
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Why are parallel images useful?

• Makes the correspondence problem easier
• Makes triangulation easy
• Enables schemes for image interpolation



Correspondence problem
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Given a point in 3d, discover corresponding observations 

in left and right images [also called binocular fusion problem]



Correspondence problem
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Given a point in 3d, discover corresponding observations 

in left and right images [also called binocular fusion problem]



•A Cooperative Model  (Marr and Poggio, 1976)

•Correlation Methods (1970--)

•Multi-Scale Edge Matching (Marr, Poggio and Grimson, 1979-81)

Correspondence problem

[FP] Chapters: 11



Correlation Methods (1970--)
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Correlation Methods (1970--)

• Pick up a window around p(u,v)

p



Correlation Methods (1970--)

• Pick up a window around p(u,v)

• Build vector w

• Slide the window along v line in image 2 and compute w’

• Keep sliding until w∙w’ is maximized.



Correlation Methods (1970--)

Normalized Correlation; minimize:
)ww)(ww(

)ww)(ww(







Left Right

scanline

Correlation methods

Norm. corr
Credit slide S. Lazebnik



– Smaller window

- More detail

- More noise

– Larger window

- Smoother disparity maps

- Less prone to noise

Window size = 3 Window size = 20

Correlation methods

Credit slide S. Lazebnik



Issues

•Fore shortening effect

•Occlusions
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Issues

• Small error in 

measurements  

implies large error 

in estimating 

depth

• It is desirable 

to have small 

B/z ratio!



•Homogeneous regions 

Issues

Hard to match pixels in these regions



•Repetitive patterns 

Issues



Correspondence problem is difficult!

- Occlusions

- Fore shortening

- Baseline trade-off

- Homogeneous regions

- Repetitive patterns

Apply non-local constraints to help enforce the correspondences



Results with window search

Data

Ground truth

Credit slide S. Lazebnik

Window-based matching
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• Stereo systems
• Rectification
• Correspondence problem

• Multi-view geometry
• The SFM problem
• Affine SFM

Lecture 6
Stereo Systems
Multi-view geometry



Courtesy of Oxford Visual Geometry Group

Structure from motion problem



Structure from motion problem

x1j
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xmj

Xj
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Given m images of n fixed 3D points 

•xij = Mi Xj , i = 1, … , m,    j = 1, … , n  



From the mxn correspondences xij, estimate: 

•m projection matrices Mi

•n 3D points Xj

x1j
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xmj

Xj

motion

structure
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Mm

Structure from motion problem



Affine structure from motion
(simpler problem)

Image
World

Image

From the mxn correspondences xij, estimate: 

•m projection matrices Mi (affine cameras)

•n 3D points Xj 



Finite cameras
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Finite cameras
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Canonical perspective projection matrix

Affine homography 

(in 3D)

Affine 

Homography 

(in 2D)
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Affine cameras
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Canonical affine projection matrix 

(points at infinity are mapped as points at infinity)
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What’s the main difference???



Transformation in 2D

Affinities:
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Affine cameras

 XTRKx 
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Affine cameras

M = camera matrix

To recap: 
from now on we define M as the camera matrix for the affine case



The Affine Structure-from-Motion Problem

Given m images of n fixed points Pj (=Xi) we can write

Problem: estimate the m 24 matrices Mi and

the n positions Pj from the mn correspondences pij .

2m  n equations in 8m+3n unknowns

Two approaches:
- Algebraic approach (affine epipolar geometry; estimate F; cameras; points)

- Factorization method

How many equations and how many unknown?

N of cameras N of points



A factorization method –
Tomasi & Kanade algorithm

C. Tomasi and T. Kanade. Shape and motion from image streams under orthography:  A factorization 

method. IJCV, 9(2):137-154, November 1992. 

• Centering the data

• Factorization 

http://www.eecs.berkeley.edu/~yang/courses/cs294-6/papers/TomasiC_Shape and motion from image streams under orthography.pdf


Next lecture

Multiple view geometry


