Lecture 6 Stereo Systems Multi-view geometry

Professor Silvio Savarese Computational Vision and Geometry Lab

Lecture 6 -

5-Feb-14

Lecture 6 Stereo Systems Multi-view geometry

- Stereo systems
 - Rectification
 - Correspondence problem
- Multi-view geometry
 - The SFM problem
 - Affine SFM

 Reading: [AZ] Chapter: 4 "Estimation – 2D perspective transformations Chapter: 9 "Epipolar Geometry and the Fundamental Matrix T Chapter: 11 "Computation of the Fundamental Matrix F"
 [FP] Chapters: 10 "The geometry of multiple views"

Silvio Savarese

Lecture 5 -

5-Feb-14

- Epipolar Plane
- Baseline
- Epipolar Lines

- Epipoles e₁, e₂
 - = intersections of baseline with image planes
 - = projections of the other camera center

Epipolar Constraint

Epipolar Constraint

F = Fundamental Matrix (Faugeras and Luong, 1992)

Rectification: making two images "parallel"

For details on how to rectify two views see CS131A Lecture 9

Courtesy figure S. Lazebnik

Why are parallel images useful?

- Makes the correspondence problem easier
- Makes triangulation easy
- Enables schemes for image interpolation

Application: view morphing

S. M. Seitz and C. R. Dyer, Proc. SIGGRAPH 96, 1996, 21-30

Morphing without using geometry

Rectification

Why are parallel images useful?

- Makes the correspondence problem easier
- Makes triangulation easy
- Enables schemes for image interpolation

Point triangulation

Computing depth

Note: Disparity is inversely proportional to depth

Disparity maps

 $u - u' = \frac{B \cdot f}{z}$

Disparity map / depth map

Disparity map with occlusions

Why are parallel images useful?

- Makes the correspondence problem easier
- Makes triangulation easy
- Enables schemes for image interpolation

Correspondence problem

Given a point in 3d, discover corresponding observations in left and right images [also called binocular fusion problem]

Correspondence problem

Given a point in 3d, discover corresponding observations in left and right images [also called binocular fusion problem]

Correspondence problem

•A Cooperative Model (Marr and Poggio, 1976)

•Correlation Methods (1970--)

•Multi-Scale Edge Matching (Marr, Poggio and Grimson, 1979-81)

[FP] Chapters: 11

• Pick up a window around p(u,v)

- Pick up a window around p(u,v)
- Build vector w
- Slide the window along v line in image 2 and compute \boldsymbol{w}^{\prime}
- Keep sliding until w w' is maximized.

Normalized Correlation; minimize:

$$\frac{(\mathbf{w} - \overline{\mathbf{w}})(\mathbf{w}' - \overline{\mathbf{w}}')}{\left\| (\mathbf{w} - \overline{\mathbf{w}})(\mathbf{w}' - \overline{\mathbf{w}}') \right\|}$$

Correlation methods

Credit slide S. Lazebnik

Correlation methods

Window size = 3

Window size = 20

- Smaller window
 - More detail
 - More noise
- Larger window
 - Smoother disparity maps
 - Less prone to noise

•Fore shortening effect

- It is desirable to have small B/z ratio!
- Small error in measurements implies large error in estimating depth

•Homogeneous regions

Hard to match pixels in these regions

•Repetitive patterns

Correspondence problem is difficult!

- Occlusions
- Fore shortening
- Baseline trade-off
- Homogeneous regions
- Repetitive patterns

Apply non-local constraints to help enforce the correspondences

Results with window search

Data

Ground truth

Window-based matching

Credit slide S. Lazebnik

Lecture 6 Stereo Systems Multi-view geometry

- Stereo systems
 - Rectification
 - Correspondence problem
- Multi-view geometry
 - The SFM problem
 - Affine SFM

Structure from motion problem

Courtesy of Oxford Visual Geometry Group

Given *m* images of *n* fixed 3D points

•
$$\mathbf{x}_{ij} = \mathbf{M}_i \mathbf{X}_j$$
, $i = 1, \dots, m, j = 1, \dots, n$

From the mxn correspondences \mathbf{x}_{ii} , estimate:

•*m* projection matrices \mathbf{M}_{i} motion •*n* 3D points \mathbf{X}_i structure

Affine structure from motion (simpler problem)

From the mxn correspondences \mathbf{x}_{ij} , estimate: •*m* projection matrices \mathbf{M}_i (affine cameras) •*n* 3D points \mathbf{X}_i

Finite cameras

Question:

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} R & T \\ 0 & 1 \end{bmatrix} = ??$$

Finite cameras

Affine cameras R' R Q Ρ P' р q r

Transformation in 2D

Affine cameras

$$\mathbf{X} = \mathbf{K} \begin{bmatrix} \mathbf{R} & \mathbf{T} \end{bmatrix} \mathbf{X} \quad [\text{Homogeneous}]$$

$$K = \begin{bmatrix} \alpha_x & 0 & 0 \\ 0 & \alpha_y & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad \mathbf{M} = \mathbf{K} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{R} & \mathbf{T} \\ 0 & 1 \end{bmatrix}$$

$$M = \begin{bmatrix} 3 \times 3 \text{ affine} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 4 \times 4 \text{ affine} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} & b_1 \\ a_{21} & a_{22} & a_{23} & b_2 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \mathbf{A} & \mathbf{b} \\ \mathbf{0} & \mathbf{1} \end{bmatrix}$$

$$\mathbf{x} = \begin{pmatrix} x \\ y \end{pmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix} \begin{pmatrix} X \\ Y \\ Z \end{pmatrix} + \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} = \mathbf{A}\mathbf{X} + \mathbf{b} = M_{Euc} \begin{bmatrix} \mathbf{X} \\ 1 \end{bmatrix} = M_{Euc} \begin{bmatrix} \mathbf{P} \\ 1 \end{bmatrix};$$

$$M_{Euc} = \mathbf{M} = \begin{bmatrix} \mathbf{A} & \mathbf{b} \end{bmatrix} \quad [\text{non-homogeneous} \\ \text{image coordinates} \end{bmatrix}$$

Affine cameras

To recap:

from now on we define M as the camera matrix for the affine case

$$\mathbf{p} = \begin{pmatrix} u \\ v \end{pmatrix} = \mathbf{A}\mathbf{P} + \mathbf{b} = M \begin{bmatrix} \mathbf{P} \\ 1 \end{bmatrix}; \qquad \mathbf{M} = \begin{bmatrix} \mathbf{A} & \mathbf{b} \end{bmatrix}$$

The Affine Structure-from-Motion Problem

Given *m* images of *n* fixed points P_i (=X_i) we can write

$$\boldsymbol{p}_{ij} = \mathcal{M}_i \begin{pmatrix} \boldsymbol{P}_j \\ 1 \end{pmatrix} = \mathcal{A}_i \boldsymbol{P}_j + \boldsymbol{b}_i \quad \text{for} \quad i = 1, \dots, m \quad \text{and} \quad j = 1, \dots, n.$$

N of cameras N of points

Problem: estimate the m 2×4 matrices M_i and the n positions P_i from the m×n correspondences p_{ij} .

How many equations and how many unknown?

 $2m \times n$ equations in 8m+3n unknowns

Two approaches:

- Algebraic approach (affine epipolar geometry; estimate F; cameras; points)
- Factorization method

A factorization method – Tomasi & Kanade algorithm

C. Tomasi and T. Kanade. <u>Shape and motion from image streams under orthography: A factorization</u> <u>method.</u> *IJCV*, 9(2):137-154, November 1992.

- Centering the data
- Factorization

Next lecture

Multiple view geometry