Lecture 4

 Single View Metrology

Professor Silvio Savarese

Computational Vision and Geometry Lab

Lecture 4

Single View Metrology

- Review calibration
- Vanishing points and lines
- Estimating geometry from a single image
- Extensions

Reading:
[HZ] Chapter 2 "Projective Geometry and Transformation in 3D"
[HZ] Chapter 3 "Projective Geometry and Transformation in 3D"
[HZ] Chapter 8 "More Single View Geometry"
[Hoeim \& Savarese] Chapter 2

Calibration Problem

Calibration Problem

Once the camera is calibrated...

$$
\mathrm{M}=\mathrm{K}\left[\begin{array}{ll}
\mathrm{R} & \mathrm{~T}
\end{array}\right]
$$

-Internal parameters K are known

- R, T are known - but these can only relate C to the calibration rig

Can I estimate P from the measurement p from a single image?
No - in general $*[P$ can be anywhere along the line defined by C and $p]$

Recovering structure from a single view

Recovering structure from a single view

http://www.robots.ox.ac.uk/~vgg/projects/SingleView/models/hut/hutme.wrl

Transformation in 2D

-Isometries

-Similarities

-Affinity
-Projective

Transformation in 2D

Isometries:
[Euclideans]

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{cc}
R & t \\
0 & 1
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
1
\end{array}\right]=H_{e}\left[\begin{array}{c}
x \\
y \\
1
\end{array}\right]
$$

- Preserve distance (areas)
- 3 DOF
- Regulate motion of rigid object

Transformation in 2D

Similarities: $\quad\left[\begin{array}{l}x^{\prime} \\ y^{\prime} \\ 1\end{array}\right]=\left[\begin{array}{cc}s R & t \\ 0 & 1\end{array}\right]\left[\begin{array}{l}x \\ y \\ 1\end{array}\right]=H_{s}\left[\begin{array}{l}x \\ y \\ 1\end{array}\right]$

- Preserve
- ratio of lengths
- angles
-4 DOF

Transformation in 2D

Affinities: $\quad\left[\begin{array}{l}x^{\prime} \\ y^{\prime} \\ 1\end{array}\right]=\left[\begin{array}{cc}A & t \\ 0 & 1\end{array}\right]\left[\begin{array}{l}x \\ y \\ 1\end{array}\right]=H_{a}\left[\begin{array}{c}x \\ y \\ 1\end{array}\right]$

$$
\mathrm{A}=\left[\begin{array}{ll}
\mathrm{a}_{11} & \mathrm{a}_{12} \\
\mathrm{a}_{21} & \mathrm{a}_{22}
\end{array}\right]=\mathrm{R}(\boldsymbol{\theta}) \cdot \mathrm{R}(-\boldsymbol{\phi}) \cdot \mathrm{D} \cdot \mathrm{R}(\boldsymbol{\phi}) \quad \mathrm{D}=\left[\begin{array}{cc}
\mathrm{s}_{\mathrm{x}} & 0 \\
0 & \mathrm{~s}_{\mathrm{y}}
\end{array}\right]
$$

Transformation in 2D

Affinities: $\left[\begin{array}{c}x^{\prime} \\ y^{\prime} \\ 1\end{array}\right]=\left[\begin{array}{cc}A & t \\ 0 & 1\end{array}\right]\left[\begin{array}{c}x \\ y \\ 1\end{array}\right]=H_{a}\left[\begin{array}{c}x \\ y \\ 1\end{array}\right]$

$$
\mathrm{A}=\left[\begin{array}{ll}
\mathrm{a}_{11} & \mathrm{a}_{12} \\
\mathrm{a}_{21} & \mathrm{a}_{22}
\end{array}\right]=\mathrm{R}(\boldsymbol{\theta}) \cdot \mathrm{R}(-\boldsymbol{\phi}) \cdot \mathrm{D} \cdot \mathrm{R}(\boldsymbol{\phi}) \quad \mathrm{D}=\left[\begin{array}{cc}
\mathrm{s}_{\mathrm{x}} & 0 \\
0 & \mathrm{~s}_{\mathrm{y}}
\end{array}\right]
$$

-Preserve:

- Parallel lines
- Ratio of areas
- Ratio of lengths on collinear lines
- others...
-6 DOF

Transformation in 2D

Projective: $\left[\begin{array}{c}x^{\prime} \\ y^{\prime} \\ 1\end{array}\right]=\left[\begin{array}{cc}A & t \\ v & b\end{array}\right]\left[\begin{array}{l}x \\ y \\ 1\end{array}\right]=H_{p}\left[\begin{array}{c}x \\ y \\ 1\end{array}\right]$

- 8 DOF
- Preserve:
- cross ratio of 4 collinear points
- collinearity
- and a few others...

The cross ratio

The cross-ratio of 4 collinear points

$$
\frac{\left\|\mathbf{P}_{3}-\mathbf{P}_{1}\right\|\left\|\mathbf{P}_{4}-\mathbf{P}_{2}\right\|}{\left\|\mathbf{P}_{3}-\mathbf{P}_{2}\right\|\left\|\mathbf{P}_{4}-\mathbf{P}_{1}\right\|} \quad \quad \mathbf{P}_{i}=\left[\begin{array}{c}
X_{i} \\
Y_{i} \\
Z_{i} \\
1
\end{array}\right]
$$

Can permute the point ordering $\frac{\left\|\mathbf{P}_{1}-\mathbf{P}_{3}\right\|\left\|\mathbf{P}_{4}-\mathbf{P}_{2}\right\|}{\left\|\mathbf{P}_{1}-\mathbf{P}_{2}\right\|\left\|\mathbf{P}_{4}-\mathbf{P}_{3}\right\|}$

Lines in a 2D plane

$$
\begin{aligned}
& \mathrm{ax}+\mathrm{by}+\mathrm{c}=0 \\
& \mathrm{l}=\left[\begin{array}{c}
\mathrm{a} \\
\mathrm{~b} \\
\mathrm{c}
\end{array}\right] \\
& \text { If } \mathrm{x}=\left[\mathrm{x}_{1}, \mathrm{x}_{2}\right]^{\top} \in \mathrm{I} \quad\left[\begin{array}{c}
\mathrm{x}_{1} \\
\mathrm{x}_{2} \\
1
\end{array}\right]^{\mathrm{T}}\left[\begin{array}{l}
\mathrm{a} \\
\mathrm{~b} \\
\mathrm{c}
\end{array}\right]=0
\end{aligned}
$$

Lines in a 2D plane

Intersecting lines

$$
\mathrm{x}=1 \times \mathrm{l}^{\prime}
$$

Proof

$$
\begin{array}{lll}
1 \times l^{\prime} \perp 1 & \rightarrow\left(l \times l^{\prime}\right) \cdot 1=0 & \rightarrow x \in l \\
1 \times l^{\prime} \perp l^{\prime} & \rightarrow \underbrace{\left(l \times l^{\prime}\right.}_{\mathrm{x}}) \cdot l^{\prime}=0 & \rightarrow x \in l^{\prime}
\end{array}
$$

$\rightarrow \mathrm{x}$ is the intersecting point

2D Points at infinity (ideal points)

$$
\begin{gathered}
\mathrm{x}=\left[\begin{array}{l}
\mathrm{x}_{1} \\
\mathrm{x}_{2} \\
\mathrm{x}_{3}
\end{array}\right], \mathrm{x}_{3} \neq 0 \\
x_{\infty}=\left[\begin{array}{c}
x_{1}^{\prime} \\
x_{2}^{\prime} \\
0
\end{array}\right]
\end{gathered}
$$

$$
\begin{gathered}
1=\left[\begin{array}{l}
\mathrm{a} \\
\mathrm{~b} \\
\mathrm{c}
\end{array}\right] \\
l^{\prime}=\left[\begin{array}{l}
a^{\prime} \\
b^{\prime} \\
c^{\prime}
\end{array}\right]
\end{gathered}
$$

Let's intersect two parallel lines:

$$
\rightarrow l \times l^{\prime} \propto\left[\begin{array}{c}
b \\
-a \\
0
\end{array}\right]=x_{\infty}
$$

- In Euclidian coordinates this point is at infinity
- Agree with the general idea of two lines intersecting at infinity

2D Points at infinity (ideal points)

Note: the line $\mathrm{I}=[\mathrm{ab} \mathrm{c}]^{\top}$ pass trough the ideal point X_{∞}

$$
\begin{gathered}
l=\left[\begin{array}{l}
\mathrm{a} \\
\mathrm{~b} \\
\mathrm{c}
\end{array}\right] \\
l^{\prime}=\left[\begin{array}{l}
a^{\prime} \\
b^{\prime} \\
c^{\prime}
\end{array}\right]
\end{gathered}
$$

$$
1^{\mathrm{T}} x_{\infty}=\left[\begin{array}{lll}
a & b & c
\end{array}\right]\left[\begin{array}{c}
b \\
-a \\
0
\end{array}\right]=0
$$

So does the line l' since a b' = a' b

Lines infinity 1_{∞}

Set of ideal points lies on a line called the line at infinity How does it look like?

$$
1_{\infty}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

Indeed: $\left[\begin{array}{c}x_{1} \\ x_{2} \\ 0\end{array}\right]^{T}\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]=0$

A line at infinity can thought of the set of "directions" of lines in the plane

Projective transformation of a point at infinity

$$
\begin{aligned}
& H=\left[\begin{array}{ll}
A & t \\
v & b
\end{array}\right] \\
& p^{\prime}=H p \\
& \text { is it a point at infinity? } \\
& \boldsymbol{H} p_{\infty}=?=\left[\begin{array}{ll}
A & t \\
v & b
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
p_{x}^{\prime} \\
p_{y}^{\prime} \\
p_{z}^{\prime}
\end{array}\right] \\
& \text {...no! } \\
& H_{A} \quad p_{\infty}=?=\left[\begin{array}{cc}
A & t \\
0 & b
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
p_{x}^{\prime} \\
p^{\prime}{ }_{y} \\
0
\end{array}\right] \\
& \text { An affine } \\
& \text { transformation } \\
& \text { of a point } \\
& \text { at infinity is } \\
& \text { still a point at } \\
& \text { infinity }
\end{aligned}
$$

Projective transformation of a line (in 2D)

$$
\begin{gather*}
\mathrm{H}=\left[\begin{array}{ll}
\mathrm{A} & \mathrm{t} \\
\mathrm{v} & \mathrm{~b}
\end{array}\right] \\
\mathrm{l}^{\prime}=\mathrm{H}^{-\mathrm{T}} \mathrm{l} \\
\mathrm{H}^{-\mathrm{T}} \mathbf{1}_{\infty}=?=\left[\begin{array}{cc}
\mathrm{A} & \mathrm{t} \\
\mathrm{v} & \mathrm{~b}
\end{array}\right]^{-\mathrm{T}}\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{c}
\mathrm{t}_{\mathrm{x}} \\
\mathrm{t}_{\mathrm{y}} \\
\mathrm{~b}
\end{array}\right] \ldots \text { no! } \\
\mathrm{H}_{\mathrm{A}}^{-\mathrm{T}} 1_{\infty}=? \quad=\left[\begin{array}{ll}
A & t \\
0 & 1
\end{array}\right]^{-T}\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{cc}
A^{-T} & 0 \\
-t^{T} A^{-T} & 1
\end{array}\right]\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
\end{gather*}
$$

Points and planes in 3D

$$
\mathrm{x}=\left[\begin{array}{c}
\mathrm{x}_{1} \\
\mathrm{x}_{2} \\
\mathrm{x}_{3} \\
1
\end{array}\right]
$$

$\mathrm{x} \in \Pi \leftrightarrow \mathrm{x}^{\mathrm{T}} \Pi=0$
$a x+b y+c z+d=0$

How about lines in 3D?

- Lines have 4 degrees of freedom - hard to represent in 3D-space
- Can be defined as intersection of 2 planes

Vanishing points

In 3D, vanishing points are the equivalent of ideal points in 2D Points where parallel lines intersect in 3D

Vanishing points

In 3D, vanishing points are the equivalent of ideal points in 2D
Points where parallel lines intersect in 3D

The horizon line

The horizon line

Planes at infinity \& vanishing lines

- Parallel planes intersect the plane at infinity in a common line - the vanishing line (\rightarrow horizon)
- A set of vanishing lines defines the plane at infinity Π_{∞}
- 2 planes are parallel iff their intersections is a line that belongs to Π_{∞}

Vanishing points and their image

$$
\begin{gathered}
\mathbf{V}=\mathbf{K} \mathbf{d} \\
\mathbf{x}_{\infty}=\left[\begin{array}{l}
\mathbf{d} \\
a \\
b \\
c \\
0
\end{array}\right] \xrightarrow{\mathbf{M}} \mathbf{v}=\mathbf{X}_{\infty} \mathbf{M}=\mathbf{K}\left[\begin{array}{ll}
\mathbf{I} & \mathbf{0}
\end{array}\right]\left[\begin{array}{c}
a \\
b \\
c \\
0
\end{array}\right]=\mathbf{K}\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]
\end{gathered}
$$

Vanishing points - example

v1, v2: measurements $\mathrm{K}=$ known and constant

Can I compute R? No rotation around z

$$
\begin{aligned}
& \mathbf{d}_{1}=\frac{\mathrm{K}^{-1} \mathbf{v}_{1}}{\left\|\mathrm{~K}^{-1} \mathbf{v}_{1}\right\|} \\
& \mathbf{d}_{2}=\frac{\mathrm{K}^{-1} \mathbf{v}_{2}}{\left\|\mathrm{~K}^{-1} \mathbf{v}_{2}\right\|}
\end{aligned}
$$

$\mathrm{R} \mathbf{d}_{1}=\mathbf{d}_{2} \longrightarrow \mathrm{R}$

Vanishing lines and their images

Parallel planes intersect the plane at infinity in a common line - the vanishing line (horizon)

$$
\mathbf{n}=\mathrm{K}^{\mathrm{T}} \mathbf{l}_{\text {horiz }}
$$

Lecture 4

Single View Metrology

- Review calibration
- Vanishing points and line
- Estimating geometry from a single image
- Extensions

Reading:

[HZ] Chapter 2 "Projective Geometry and Transformation in 3D"
[HZ] Chapter 3 "Projective Geometry and Transformation in 3D"
[HZ] Chapter 8 "More Single View Geometry"
[Hoeim \& Savarese] Chapter 2

Estimating geometry \& calibrating the camera from a single image

Are these two lines parallel or not?

- Recognize the horizon line
- Measure if the 2 lines meet at the horizon
- if yes, these 2 lines are // in 3D
-Recognition helps reconstruction! -Humans have learnt this

Angle between 2 vanishing points

$$
\cos \boldsymbol{\theta}=\frac{\mathrm{v}_{1}^{\mathrm{T}} \omega \mathrm{v}_{2}}{\sqrt{\mathrm{v}_{1}^{\mathrm{T}} \omega \mathrm{v}_{1}} \sqrt{\mathrm{v}_{2}^{\mathrm{T}} \omega \mathrm{v}_{2}}} \quad \omega=\left(K K^{T}\right)^{-1}
$$

$$
\text { If } \boldsymbol{\theta}=90 \rightarrow \mathrm{~V}_{1}^{\mathrm{T}} \boldsymbol{\omega} \mathrm{~V}_{2}=0
$$

Projective transformation of Ω_{∞}

Absolute conic

$$
\boldsymbol{\omega}=P^{-T} \Omega_{\infty} P^{-1}=\left(K K^{T}\right)^{-1}
$$

$$
P=K\left[\begin{array}{ll}
R & T]
\end{array}\right.
$$

1. It is not function of R, T
2. $\omega=\left[\begin{array}{lll}\omega_{1} & \omega_{2} & \omega_{4} \\ \omega_{2} & \omega_{3} & \omega_{5} \\ \omega_{4} & \omega_{5} & \omega_{6}\end{array}\right]$
symmetric
3. $\omega_{2}=0$ zero-skew

$$
\omega_{2}=0
$$

$$
\text { 4. } \quad \omega_{1}=\omega_{3}
$$

Angle between 2 scene lines

Single view calibration - example

$$
\begin{cases}\mathrm{v}_{1}^{\mathrm{T}} \boldsymbol{\omega} \mathrm{v}_{2}=0 & \boldsymbol{\omega}_{2}=0 \\ \mathrm{v}_{1}^{\mathrm{T}} \boldsymbol{\omega} \mathrm{v}_{3}=0 & \boldsymbol{\omega}_{1}=\boldsymbol{\omega}_{3}\end{cases}
$$

$$
\rightarrow \text { Compute } \omega:
$$

Once ω is calculated, we get K :
$\omega=\binom{K}{K^{T}}^{-1} \longrightarrow \mathrm{~K}$
(Cholesky factorization; HZ pag 582)

Single view reconstruction - example

K known $\rightarrow \quad \mathbf{n}=\mathrm{K}^{\mathrm{T}} \mathbf{l}_{\text {horiz }} \quad \begin{aligned} & \text { = Scene plane orientation in } \\ & \text { the camera reference system }\end{aligned}$

Select orientation discontinuities

Single view reconstruction - example

Recover the structure within the camera reference system
Notice: the actual scale of the scene is NOT recovered
-Recognition helps reconstruction! -Humans have learnt this

Are these two lines parallel or not?

- Recognize the horizon line
- Measure if the 2 lines meet at the horizon
- if yes, these 2 lines are // in 3D

Lecture 4

Single View Metrology

- Review calibration
- Vanishing points and lines
- Estimating geometry from a single image
- Extensions

Reading:

[HZ] Chapter 2 "Projective Geometry and Transformation in 3D"
[HZ] Chapter 3 "Projective Geometry and Transformation in 3D"
[HZ] Chapter 8 "More Single View Geometry"
[Hoeim \& Savarese] Chapter 2

Criminisi \& Zisserman, 99

http://www.robots.ox.ac.uk/~vgg/projects/SingleView/models/merton/merton.wrl

Criminisi \& Zisserman, 99

http://www.robots.ox.ac.uk/~vgg/projects/SingleView/models/merton/merton.wrl

La Trinita'(1426)
Firenze, Santa Maria Novella; by Masaccio (1401~1428)

http://www.robots.ox.ac.uk/~vgg/projects/SingleView/models/hut/hutme.wrl

Single view reconstruction - drawbacks

Manually select:

- Vanishing points and lines;
- Planar surfaces;
- Occluding boundaries;
- Etc.

Automatic Photo Pop-up

Hoiem et al, 05

Automatic Photo Pop-up

Hoiem et al, 05...

Automatic Photo Pop-up

Hoiem et al, 05...

Software:
http://www.cs.uiuc.edu/homes/dhoiem/projects/software.html

Make3D

Saxena, Sun, Ng, 05...

Training

youtube

Prediction

Plane Parameter MRF $P(\alpha \mid X, \nu, y, R ; \theta)=\frac{1}{Z} \prod_{i} f_{1}\left(\alpha_{i} \mid X_{i}, \nu_{i}, R_{i} ; \theta\right)$

(b)

Co Planarity

Single Image Depth Reconstruction

Saxena, Sun, Ng, 05...

A software: Make3D
"Convert your image into 3d model" http://make3d.stanford.edu/
http:/ / make3d.stanford.edu/images/view3D/185
http://make3d.stanford.edu/images/view3D/931?noforward=true
http://make3d.stanford.edu/images/view3D/108

Coherent object detection and scene layout estimation from a single image

Y. Bao, M. Sun, S. Savarese, CVPR 2010, BMVC 2010

Next lecture:

Multi-view geometry (epipolar geometry)

