Lecture 14 Visual recognition

Announcements:

- Mid-term is released today at 12:15pm
- Due on Thursday at 11am

Lecture 14 -

Lecture 14 Visual recognition

- 2D object detection
 - Template based approaches
 - Part-based approaches

Lecture 14 -

25-Feb-14

Which object does this image contain? [where?]

- Recognition task
- Search strategy: Sliding Windows Viola, Jones 2001,
 - Simple
 - Computational complexity (x,y, S, θ , N of classes)
 - BSW by Lampert et al 08
 - Also, Alexe, et al 10

- Recognition task
- Search strategy: Sliding Windows Viola, Jones 2001,
 - Simple
 - Computational complexity (x,y, S, θ , N of classes)
 - BSW by Lampert et al 08
 - Also, Alexe, et al 10
 - Localization
 - Prone to false positive
 Non max suppression: Canny '86

Desai et al, 2009

Non-max suppression

- Recognition task
- Search strategy : Probabilistic "heat maps"
 - Fergus et al 03
 - Leibe et al 04

Lecture 14 Visual recognition

- 2D object detection
 - Template based approaches
 - Part-based approaches

Lecture 14 -

25-Feb-14

Template-based detection

- 1. Slide a window in image
 - E.g., choose position, scale orientation
- 2. Compare it with a template
 - Compute similarity to an example object or to a summary representation
- Compute a score for each comparison and compute non-max suppression to remove weak scores

Dalal-Triggs pedestrian detector

Represent an object as a collection of HoG templates

Navneet Dalal and Bill Triggs, Histograms of Oriented Gradients for Human Detection, CVPR05

HoG = Histogram of Oriented Gradients

- Like SIFT, but...
 - Sampled on a dense, regular grid around the object
 - Gradients are contrast normalized in overlapping blocks

Histogram of Oriented Gradients (HoG)

20x20 cells

[Dalal and Triggs, CVPR 2005]

Dalal-Triggs pedestrian detector

- 1. Extract fixed-sized window at each position and scale
- 2. Compute HOG (histogram of gradient) features within each window
- 3. Score the window with a linear SVM classifier
- 4. Perform non-maxima suppression to remove overlapping detections with lower scores

Dalal-Triggs pedestrian detector Results

Tricks of the trade

- Details in feature computation really matter
 - E.g., normalization in Dalal-Triggs significantly improves detection rate at fixed false positive rate
- Template size
 - Typical choice is size of smallest detectable object
- "Jittering" to create synthetic positive examples
 - Create slightly rotated, translated, scaled, mirrored versions as extra positive examples
- Bootstrapping to get hard negative examples
 - 1. Randomly sample negative examples
 - 2. Train detector
 - 3. Keep negative examples that score > T
 - 4. Repeat until all high-scoring negative examples fit in memory

Limitation of template based approaches

They work

- very well for faces
- *fairly well* for cars and pedestrians
- badly for cats and dogs
- Why are some classes easier than others?

Limitation of template based approaches

Strengths

- Works very well for non-deformable objects with canonical orientations: faces, cars, pedestrians
- Fast detection

Weaknesses

- Not so well for highly deformable objects or "stuff"
- Not robust to occlusion
- Requires lots of training data if view points need to be encoded

Classic template-based Detectors

- Sung-Poggio (1994, 1998) : ~2000 citations
 - Basic idea of statistical template detection, bootstrapping to get "face-like" negative examples, multiple whole-face prototypes (in 1994)
- Rowley-Baluja-Kanade (1996-1998) : ~3600
 - "Parts" at fixed position, non-maxima suppression, simple cascade, rotation, pretty good accuracy, fast
- Schneiderman-Kanade (1998-2000,2004) : ~1700
 - Careful feature engineering, excellent results, cascade
- Viola-Jones (2001, 2004) : ~11,000
 - Haar-like features, Adaboost as feature selection, hyper-cascade, very fast, easy to implement
- Dalal-Triggs (2005) : ~6500
 - Careful feature engineering, excellent results, HOG feature, online code

Lecture 14 Visual recognition

2D object detection
 Template based approaches

Part-based approaches

Silvio Savarese

Lecture 14 -

25-Feb-14

Part Based Representation

- Object as set of parts
- Model:
 - Relative locations
 between parts
 - Appearance of part

Figure from [Fischler & Elschlager 73]

History of Parts and Structure approaches

- Fischler & Elschlager 1973
- · Yuille '91
- Brunelli & Poggio '93
- Lades, v.d. Malsburg et al. '93
- Cootes, Lanitis, Taylor et al. '95
- Amit & Geman '95, '99
- Perona et al. '95, '96, '98, '00, '03, '04, '05
- Ullman et al. 02
- Felzenszwalb & Huttenlocher '00, '04
- Crandall & Huttenlocher '05, '06
- · Leibe & Schiele '03, '04
- Many papers since 2000

Deformations

Presence / Absence of Features

Background clutter

Sparse representation

Computationally tractable (10^5 pixels $\rightarrow 10^1 - 10^2$ parts) But throw away potentially useful image information

Discriminative

Parts need to be distinctive to separate from other classes

Hierarchical representations

• Pixels \rightarrow Pixel groupings \rightarrow Parts \rightarrow Object

Different connectivity structures

Different connectivity structures

from Sparse Flexible Models of Local Features Gustavo Carneiro and David Lowe, ECCV 2006

Star models by Latent SVM

Felzenszwalb, McAllester, Ramanan, 08 • Source code:

Deformable Part Models (DPM)

Our first innovation involves enriching the Dalal-Triggs model using a star-structured part-based model defined by a "root" filter (analogous to the Dalal-Triggs filter) plus a set of parts filters and associated deformation models.

Felzenszwalb, et al., Discriminatively Trained Deformable Part Models, http://people.cs.uchicago.edu/~pff/latent/

Latent SVMs

- Rather than training a single linear SVM separating positive examples...
- ... cluster positive examples into "components" and train a classifier for each (using all negative examples)

Two-component bicycle model

"side" component

"frontal" component

Six-component car model

side view

	111-88-5	
× for the test		
L. (174		보아는

frontal view

root filters (coarse)

part filters (fine)

deformation models

Different connectivity structures

Implicit shape models by generalized Hough voting

Object representation: Constellation of parts w.r.t object centroid

Object representation: How to capture constellation of parts? Using Hough Voting

Hough transform

P.V.C. Hough, *Machine Analysis of Bubble Chamber Pictures,* Proc. Int. Conf. High Energy Accelerators and Instrumentation, 1959

Given a set of points, find the curve or line that explains the data points best

Hough transform

P.V.C. Hough, *Machine Analysis of Bubble Chamber Pictures,* Proc. Int. Conf. High Energy Accelerators and Instrumentation, 1959

Given a set of points, find the curve or line that explains the data points best

Hough transform

P.V.C. Hough, *Machine Analysis of Bubble Chamber Pictures*, Proc. Int. Conf. High Energy Accelerators and Instrumentation, 1959

•Use a polar representation for the parameter space

Hough transform - experiments

Hough transform - experiments

IDEA: introduce a grid a count intersection points in each cell Issue: Grid size needs to be adjusted...

Generalized Hough Transform

- Parts in query image vote for a learnt model
- Significant aggregations of votes correspond to models
- Complexity : # parts * # votes
 - Significantly lower than brute force search (e.g., sliding window detectors)
- Popular for detecting parameterized shapes
 - Hough'59, Duda&Hart'72, Ballard'81,...

Generalized Hough Transform

 GOAL: detect arbitrary shapes defined by boundary points and a reference point

Learning a model:

At each boundary point, compute displacement vector: **r** = **a** – **p**_i.

For a given model shape: store these vectors in a table indexed by gradient orientation θ .

Example

θ	rx	ry
0	1	0
45	0.7	0.7
90	0	1
135	-0.7	0.7
270	0.7	-0.7

Generalized Hough Transform

Detecting the model shape in a new image:

- For each edge point
 - Index into table with its gradient orientation ϑ
 - Use retrieved r vectors to vote for position of reference point
- Peak in this Hough space is reference point with most supporting edges

Assuming translation is the only transformation here, i.e., orientation and scale are fixed.

Query

 $P1 \rightarrow \theta = 0 \quad \rightarrow R = [rx, ry] = [1, 0] \quad \rightarrow C1 = P1 + R$ $P2 \rightarrow \theta = 45 \quad \rightarrow R = [rx, ry] = [.7, .7] \quad \rightarrow C2 = P2 + R$ $Pk \rightarrow \theta = -180 \rightarrow R = [rx, ry] = [-1, 0] \rightarrow Ck = Pk + R$ \vdots

Conceptually similar to

Implicit shape models

- Instead of indexing displacements by gradient orientation, index by "visual codeword"
- → Visual codebook is used to index votes for object position [center] and scale

Implicit shape models

- Instead of indexing displacements by gradient orientation, index by "visual codeword"
- → Visual codebook is used to index votes for object position [center] and scale

CW	rx	ry
1	0.9	.1
3	?	?

Implicit shape models

- Instead of indexing displacements by gradient orientation, index by "visual codeword"
- → Visual codebook is used to index votes for object position [center] and scale

Implicit shape models: Training

1. Build codebook of patches around extracted interest points using clustering

Implicit shape models: Training

- 1. Build codebook of patches around extracted interest points using clustering
- 2. Map the patch around each interest point to closest codebook entry
- 3. For each codebook entry, store all positions relative to object center [center is given] and scale [bounding box is given]

Credit slide: S. Lazebnik

Implicit Shape Model - Recognition

Implicit Shape Model - Recognition

Probabilistic Hough Transform

Original image

Interest points

Matched patches

Prob. Votes

1st hypothesis

2nd hypothesis

3rd hypothesis

Example Results: Chairs

Dining room chairs

You Can Try It At Home...

- Linux binaries available
 - Including datasets & several pre-trained detectors
 - http://www.vision.ee.ethz.ch/bleibe/code

Conclusions

- Pros:
 - Works well for many different object categories
 - Both rigid and articulated objects
 - Flexible geometric model
 - Can recombine parts seen on different training examples
 - Learning from relatively few (50-100) training examples
 - Optimized for detection, good localization properties
- <u>Cons:</u>
 - Needs supervised training data
 - Object bounding boxes for detection
 - Segmentations for top-down segmentation
 - No discriminative learning

Influential Works in Detection

- Sung-Poggio (1994, 1998) : ~2000 citations
 - Basic idea of statistical template detection, bootstrapping to get "face-like" negative examples, multiple whole-face prototypes (in 1994)
- Rowley-Baluja-Kanade (1996-1998) : ~3600
 - "Parts" at fixed position, non-maxima suppression, simple cascade, rotation, pretty good accuracy, fast
- Schneiderman-Kanade (1998-2000,2004) : ~1700
 - Careful feature engineering, excellent results, cascade
- Viola-Jones (2001, 2004) : ~11,000
 - Haar-like features, Adaboost as feature selection, hyper-cascade, very fast, easy to implement
- Dalal-Triggs (2005) : ~6500
 - Careful feature engineering, excellent results, HOG feature, online code
- Felzenszwalb-Huttenlocher (2000): ~2100
 - Efficient way to solve part-based detectors
- Weber et al. (2000)
 - Part-based model learnt in a unsupervised fashion; generative
- Felzenszwalb-McAllester-Ramanan (2008): ~1300
 - Excellent template/parts-based blend
- Leibe et al. (2005)
 - Generative approach to detection using hough voting

Next lecture

• 3D Object Detection