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P = [x,y,z]

From the 3D to 2D & vice versa

Image

3D world
p = [x,y]

•Let’s now focus on 2D



How to represent images?



Feature 

Detection

Feature 

Description

• Estimation

• Matching

• Indexing

• Detection

e.g. DoG

e.g. SIFT

The big picture…



Courtesy of TKK Automation Technology Laboratory
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Estimation



Image 1 Image 2

Matching
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Matching
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Object modeling and detection
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Edge detection



What causes an edge?

• Depth discontinuity

• Surface orientation 

discontinuity

• Reflectance 

discontinuity (i.e., 

change in surface 

material properties)

• Illumination 

discontinuity (e.g., 

highlights; shadows)

Identifies sudden changes in an image



Edge Detection

– Good detection accuracy: 

• minimize the probability of false positives (detecting spurious 

edges caused by noise), 

• false negatives (missing real edges)

– Good localization: 

• edges must be detected as close as possible to the true edges.

– Single response constraint: 

• minimize the number of local maxima around the true edge

(i.e. detector must return single point for each true edge point)

• Criteria for optimal edge detection (Canny 86):



Edge Detection
• Examples:

True 

edge Poor

localization

Too many

responses

Poor robustness 

to noise



Designing an edge detector

• Two ingredients:

• Use derivatives (in x and y direction) to define 

a location with high gradient .

• Need smoothing to reduce noise prior to 

taking derivative
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Source: S. Seitz
= (d g/ d x) * f  = “derivative of Gaussian” filter

Designing an edge detector



• Smoothing
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•Derivative

 yx SS = gradient vector

Edge detector in 2D



– Most widely used edge detector in computer vision.

Canny Edge Detection (Canny 86):

See CS131A for details

Canny with Canny with original 

• The choice of  depends on desired behavior
– large  detects large scale edges

– small  detects fine features



Other edge detectors:

- Sobel

- Canny-Deriche

- Differential



Corner/blob detectors



• Repeatability

– The same feature can be found in several 
images despite geometric and photometric 
transformations 

• Saliency

– Each feature is found at an “interesting” 
region of the image

• Locality

– A feature occupies a “relatively small” area 
of the image; 



Repeatability

Scale 

invariance

Pose invariance
•Rotation

•Affine

Illumination 

invariance



• Saliency 



•Locality






Corners detectors



Harris corner detector

C.Harris and M.Stephens. "A Combined Corner and Edge Detector.“ Proceedings of the 
4th Alvey Vision Conference: pages 147--151.

See CS131A for details

http://www.csse.uwa.edu.au/~pk/research/matlabfns/Spatial/Docs/Harris/A_Combined_Corner_and_Edge_Detector.pdf


Harris Detector: Basic Idea

“flat” region:

no change in 

all directions

“edge”:

no change 

along the edge 

direction

“corner”:

significant 

change in all 

directions

Explore intensity changes within a window 

as the window changes location



Results



Blob detectors
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Source: S. Seitz

Edge detection
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f * g

= “second derivative of Gaussian” filter = Laplacian of the gaussian

Edge detection
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Edge detection as zero crossing

g
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Edge

Second derivative

of Gaussian 

(Laplacian)

Edge = zero crossing

of second derivative

Source: S. Seitz



Edge detection as zero crossing

edge edge

*

=



From edges to blobs

Magnitude of the Laplacian response achieves a maximum at the center of the blob, 

provided the scale of the Laplacian is “matched” to the scale of the blob

maximum

• Blob = superposition of nearby edges

*
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*

=

*

=



From edges to blobs

maximum

• Blob = superposition of nearby edges

*

=

*

=

*

=

What if the blob is slightly thicker or slimmer?  



Scale selection
Convolve signal with Laplacians at several sizes and looking 

for the maximum response

increasing σ

g
g
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d
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Scale normalization

• To keep the energy of the response the 

same, must multiply Gaussian derivative 

by σ

• Laplacian is the second Gaussian 

derivative, so it must be multiplied by σ2



Characteristic scale

Original 

signal

Maximum 

Scale-normalized Laplacian response

We define the characteristic scale as the scale that produces peak of 

Laplacian response

σ = 1 σ = 2 σ = 4 σ = 8 σ = 16



Blob detection in 2D

• Laplacian of Gaussian: Circularly symmetric 

operator for blob detection in 2D
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Characteristic scale

• We define the characteristic scale as the scale 

that produces peak of Laplacian response

characteristic scale

T. Lindeberg (1998). "Feature detection with automatic scale selection." International 

Journal of Computer Vision 30 (2): pp 77--116. 

http://www.nada.kth.se/cvap/abstracts/cvap198.html


Scale-space blob detector

1. Convolve image with scale-normalized 

Laplacian at several scales

2. Find maxima of squared Laplacian response in 

scale-space

3. This indicate if a blob has

been detected

4. And what’s its 

intrinsic scale



Scale-space blob detector: 

Example



Scale-space blob detector: Example



Scale-space blob detector: 

Example



• Approximating the Laplacian with a difference of 

Gaussians:

 2 ( , , ) ( , , )xx yyL G x y G x y   

( , , ) ( , , )DoG G x y k G x y  

(Laplacian)

(Difference of Gaussians)

***or***

Difference of gaussian blurred 

images at scales k  and 

Difference of Gaussians (DoG)
David G. Lowe. "Distinctive image features from scale-invariant keypoints.” IJCV 60 (2), 04

L

http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf


Detector Illumination Rotation Scale View 

point

Harris corner Yes Yes No No

Lowe ’99 

(DoG)

Yes Yes Yes No

Mikolajczyk & 

Schmid ’01, 

‘02

Yes Yes Yes Yes

Tuytelaars, 

‘00

Yes Yes No  (Yes ’04 ) Yes

Kadir & 

Brady, 01

Yes Yes Yes no

Matas, ’02 Yes Yes Yes no
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Feature 

Detection

Feature 

Description

• Estimation

• Matching

• Indexing

• Detection

e.g. DoG

e.g. SIFT

The big picture…



Properties

• Invariant w.r.t:
•Illumination

•Pose

•Scale 

•Intraclass variability

• Highly distinctive (allows a single feature to find its correct match 

with good probability in a large database of features)

Depending on the application a descriptor must 

incorporate information that is: 



w= [                                                                  ]

The simplest descriptor

…

1 x NM vector of pixel intensities

N

M

)ww(

)ww(
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 Makes the descriptor invariant with respect to affine 

transformation of the illumination condition



Illumination normalization

• Affine intensity change:

I  I + b 

I

x (image coordinate)

•Make each patch zero mean:

•Then make unit variance:

 a I + b



Why can’t we just use this?

• Sensitive to small variation of:

• location

• Pose

• Scale

• intra-class variability

• Poorly distinctive



Sensitive to pose variations

Normalized Correlation:
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Norm. corr



Descriptor Illumination Pose Intra-class 

variab.

PATCH Good Poor Poor



filter responses

Bank of filters

…

image

descriptor

filter bank 

More robust but still quite

sensitive to pose variations



Descriptor Illumination Pose Intra-class 

variab.

PATCH Good Poor Poor

FILTERS Good Medium Medium



SIFT descriptor

• Alternative representation for image patches

• Location and characteristic scale s given by DoG 

detector

David G. Lowe. "Distinctive image features from scale-invariant keypoints.” IJCV 60 (2), 04

s

http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf


SIFT descriptor

• Alternative representation for image patches

• Location and characteristic scale s given by DoG 

detector

•Compute gradient at each pixel

1 1 M

• N x N spatial bins

• Compute an histogram of M 

orientations for each bean

s



SIFT descriptor

• Alternative representation for image patches

• Location and characteristic scale s given by DoG 

detector

•Compute gradient at each pixel

1 1 M

• N x N spatial bins

• Compute an histogram of M 

orientations for each bean

• Gaussian center-weighting



SIFT descriptor

• Alternative representation for image patches

• Location and characteristic scale s given by DoG 

detector

•Compute gradient at each pixel

• N x N spatial bins

• Compute an histogram of M 

orientations for each bean

• Gaussian center-weighting

Typically M = 8; N= 4

1 x 128 descriptor

• Normalized unit norm



SIFT descriptor

• Robust w.r.t. small variation in:

• Illumination (thanks to gradient & normalization) 

• Pose (small affine variation thanks to orientation histogram )

• Scale (scale is fixed by DOG)

• Intra-class variability (small variations thanks to histograms)



• Find dominant orientation by building a 

orientation histogram

• Rotate all orientations by the dominant 

orientation

0 2 

This makes the SIFT descriptor rotational invariant

Rotational invariance



View 1

View 2

Pose normalization

Scale, rotation 

& sheer



Descriptor Illumination Pose Intra-class 

variab.

PATCH Good Poor Poor

FILTERS Good Medium Medium

SIFT Good Good Medium



Shape context descriptor
Belongie et al. 2002

1    2    3     4     5     10   11   12  13   14   ….

3

1

Histogram (occurrences within each bin)

Bin #

13th

00

//



Shape context descriptor



Other detectors/descriptors

• ORB: an efficient alternative to SIFT or SURF

• Fast Retina Key- point (FREAK)
A. Alahi, R. Ortiz, and P. Vandergheynst. FREAK: Fast Retina Keypoint. In IEEE Conference on Computer Vision and Pattern Recognition, 
2012. CVPR 2012 Open Source Award Winner.

Ethan Rublee, Vincent Rabaud, Kurt Konolige, Gary R. Bradski: ORB: An efficient alternative to SIFT or SURF. ICCV 2011

Rosten. Machine Learning for High-speed Corner Detection, 2006.

• FAST (corner detector)

Herbert Bay, Andreas Ess, Tinne Tuytelaars, Luc Van Gool, "SURF: Speeded Up Robust Features", Computer Vision and Image 
Understanding (CVIU), Vol. 110, No. 3, pp. 346--359, 2008

• SURF: Speeded Up Robust Features

• HOG: Histogram of oriented gradients
Dalal & Triggs, 2005



Next lecture: 

Image Classification by Deep 

Networks 


