Lecture: Face Recognition
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Let’s recap

e Asimple object recognition pipeline with kNN
 PCA
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Object recognition:
a classification framework

* Apply a prediction function to a feature representation of
the image to get the desired output:

f(E) = "apple”
f(Rl) = “tomato”
f() “COW”
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Dataset: ETH-80, by B. Leibe Slide credit: L. Lazebnik



A simple pipeline - Training
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Images

Y L
bbb 45 A 4o 'mage
et I Y B L Features

S TR R T Ll 9 .

M
QO
(@)
(¢
o
D
)
=t
=h
O
Q
=
©)
S5

o T 9 FE) v

a W - O
"‘:‘Krl‘)‘}"»)' / h /:”:

6T0C-AON-S0




A simple pipeline - Training
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A simple pipeline - Training

Training

Training Labels

Images
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A simple pipeline - Training
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A simple pipeline - Training

Training

Training Labels

Images
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A simple pipeline - Training

Training

Images \
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Image features

Input image

Shy dyeow

R0 L o TN R S TN

Color: Quantize RGB values

Invariance?

? Translation
? Scale

? Rotation

? Occlusion
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Image features

Input image

Color: Quantize RGB values Invariance?
! Translation

** Scale
S Rotat|0n (in-planar)
** Occlusion
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Image features

Input image

Color: Quantize RGB values Invariance?
! Translation

** Scale
S Rotat|0n (in-planar)
** Occlusion

Invariance?
? Translation
? Scale
? Rotation in-ptanan)
? Occlusion
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Image features

Input image
Color: Quantize RGB values Invariance?
! Translation
(X )
** Scale -
NS Rotation (in-planar) 8
** Occlusion ¥
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'* Scale
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Image features

Input image

Color: Quantize RGB values

Local shape: shape context | |nvariance?

? Translation

? Scale

'K ? Rotation (in-pianan)
? Occlusion

Invariance?
** Translation
** Scale
** Rotation
** Occlusion

Invariance?

** Translation
** Scale

! Rotation

** Occlusion
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Image features

Input image

Color: Quantize RGB values

Local shape: shape context | |nvariance?

L Translation

** Scale

L ! Rotation (in-planar)
** Occlusion

Invariance?
** Translation
 Scale
** Rotation
** Occlusion

Invariance?

** Translation
** Scale

! Rotation

** Occlusion
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Image features

Input image

Color: Quantize RGB values

i

Local shape: shape context | |nvariance? Texture: Filter banks
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Image features

Input image

Color: Quantize RGB values

i

Local shape: shape context | |nvariance? Texture: Filter banks
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** Scale
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A simple pipeline - Training

Training
Images
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Classifiers: Nearest neighbor
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Slide credit: L. Lazebnik




A simple pipeline - Training

Training
Images
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Classifiers: Nearest neighbor
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Slide credit: L. Lazebnik




Let’s recap

e Asimple object recognition pipeline with kNN
 PCA
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g

PCA compression: 144D -> 6D
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m—IQD Face identification 05-Nov-2019
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PCA compression: 144D ) 3D
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3 most important eigenvectors
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What we will learn today

* |Introduction to face recognition
* The Eigenfaces Algorithm
 Linear Discriminant Analysis (LDA)
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Turk and Pentland, Eigenfaces for Recognition, Journal of Cognitive Neuroscience 3 (1): 71-86.

P. Belhumeur, J. Hespanha, and D. Kriegman. "Eigenfaces vs. Fisherfaces: Recognition
Using Class Specific Linear Projection". IEEE Transactions on pattern analysis and machine
intelligence 19 (7): 711. 1997.




Face identification 05-Nov-2019

Courtesy of Johannes M. Zanker

“Faces” in the brain



“Faces” in the brain fusiform face area

2 BeainVoyager QX - [ 02_CF_081406_3D_SAG_ACPC.vmr ]

Stimulus
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Detection versus Recognition
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Detection finds the faces in images Recognition recognizes WHO the
person is




Face Recognition

* Digital photography
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Face Recognition

* Digital photography [ o
e Surveillance | |

Matching with Database

Name: Alireza,
Y Date: 25 My 2007 15:45
. Place: Main corridor

UOIEdIJ1IUSpP! 928

Name: Unknown
Date: 25 My 2007 15:45
Place: Main corridor

® Recording
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Face Recognition

* Digital photography
* Surveillance
e Album organization
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Face Recognition

Digital photography
Surveillance

Album organization
Person tracking/id.
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Face Recognition

Digital photography
Surveillance

Album organization
Person tracking/id.
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Emotions and expressions
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Face Recognition

Digital photography
Surveillance

Album organization
Person tracking/id.
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Emotions and expressions
Security/warfare
Tele-conferencing

Etc.
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The Space of Faces

* Animage is a point in a high
dimensional space

““llll....

— If represented in grayscale intensity,
an N x M image is a point in RN\M

— E.g. 100x100 image = 10,000 dim
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Slide credit: Chuck Dyer, Steve Seitz, Nishino




100x100 images can contain many things other than faces!
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Pixel value 2

\

The Space of Faces

* Animage is a point in a high
, d)l dimensional space

. @ o® ° ..0,. — If represented in grayscale intensity,
o0 PS .‘.’.' ° an N x M image is a point in RN\M
e®, @ .‘ A — E.g. 100x100 image = 10,000 dim
@ : :
..,{:‘ r o @ - However, relatively few high
S L .0. ® dimensional vectors correspond
7 . .
’ > to valid face images

Pixel value 1 * We want to effectively model the

subspace of face images
@ A face image P &

® A (non-face) image

Slide credit: Chuck Dyer, Steve Seitz, Nishino
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Where have we seen something like this before?
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Pixel value 2

\

Pixel value 1

@ A face image
® A (non-face) image
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Image space
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\\\\\\\\;;;;:;;;;;\,,,\
e Compute n-dim subspace such that the projection of the data points onto the
subspace has the largest variance among all n-dim subspaces.

e Maximize the scatter of the training images in face space




Key Idea

e So, compress them to a low-dimensional subspace that
captures key appearance characteristics of the visual DOFs.

e USE PCA for estimating the sub-space

(dimensionality reduction)

eCompare two faces by projecting the images into the subspace
and measuring the EUCLIDEAN distance between them.
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What we will learn today

* The Eigenfaces Algorithm
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Turk and Pentland, Eigenfaces for Recognition, Journal of Cognitive Neuroscience 3 (1): 71-86.




Eigenfaces: key idea

* Assume that most face images lie on a low-dimensional subspace determined by
the first k (k<<d) directions of maximum variance

* Use PCA to determine the vectors or “eigenfaces” that span that subspace
* Represent all face images in the dataset as linear combinations of eigenfaces
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M. Turk and A. Pentland, Face Recognition using Eigenfaces, CVPR 1991



http://www.cs.ucsb.edu/~mturk/Papers/mturk-CVPR91.pdf
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Face identification 05-Nov-2019

Training images: Xy, ...,Xy
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Face identification 05-Nov-2019

Dy, ..., Py

Mean: u

Top eigenvectors



Visualization of eigenfaces

Principal component (eigenvector) ¢«
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Eigenface algorithm

* Training

1. Align training images X4, X5, ..., Xy
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I . .
Note that each image is formulated into a long vector!

2. Compute average face U= izx
N l
3. Compute the difference image (the centered data matrix)

-

=X -pul” x-Lxir-x ]_lnr\
n n )
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Eigenface algorithm

4. Compute the covariance matrix

o
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5. Compute the eigenvectors of the covariance matrix 2
6. Compute each training image x; ‘s projections as

c c c _
xi%(xi ¢1’xi ¢2a°"’ A ¢K)=(a1’a2"“’a1()
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7. Visualize the estimated training face x;
X, =u+a,p+a,Q,+...+a,0,




Eigenface algorithm
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Reconstructed
training face

6. Compute each training image x; ‘s projections as

c c c _
xie('xi ¢1"xi Dyseees A ¢K)=(al’a2"“’a1{)
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7. Visualize the reconstructed training face x;

X; = U+ QG+ 0,0, +...+ APy




Eigenvalues (variance along eigenvectors)

x10°
3

250 o
(@)
(©)
=
D
21 =4
=3
=t
Q)
=
I (@)
15 S

1 ||
o
05+ o
=2
(@]
<
N
ok S
(o)

-0.5
0

| ! | ! | ! |
50 100 150 200 250 300 350 400




Reconstruction and Errors
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e Only selecting the top K eigenfaces = reduces the dimensionality.

e Fewer eigenfaces result in more information loss, and hence less
discrimination between faces.




Eigenface algorithm

* Testing
1. Take queryimaget
2. Project into eigenface space and compute projection

t—=> (=) @, (=) ey (= 10) P ) = (W), Wa s, Wy )

3. Compare projection w with all N training projections

. Simple comparison metric: Euclidean
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. Simple decision: K-Nearest Neighbor

(note: this “K” refers to the k-NN algorithm, is different from the previous K’s
referring to the # of principal components)
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Shortcomings

* Requires carefully controlled data:
— All faces centered in frame
—Same size
—Some sensitivity to angle

e Alternative:
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— “Learn” one set of PCA vectors for each angle
— Use the one with lowest error

 Method is completely knowledge free
— (sometimes this is good!)

6T0C-\ON-S0

—Doesn’t know that faces are wrapped around 3D objects (heads)
—Makes no effort to preserve class distinctions




Summary for Eigenface

Pros

e Non-iterative, globally optimal solution
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Limitations

e PCA projection is optimal for reconstruction from a low
dimensional basis, but may NOT be optimal for
discrimination... Is there a better dimensionality reduction?
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Besides face recognitions, we can also do
Facial expression recognition
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Happiness subspace (method A)

g
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mw—l—“D Face identification 05-Nov-2019

Disgust subspace (method A)



Facial Expression Recognition Movies (method A)

I

Surprise
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What we will learn today

 Linear Discriminant Analysis (LDA)
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P. Belhumeur, J. Hespanha, and D. Kriegman. "Eigenfaces vs. Fisherfaces: Recognition
Using Class Specific Linear Projection". IEEE Transactions on pattern analysis and machine
intelligence 19 (7): 711. 1997.




Which direction will is the first principle
component?
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Fischer’s Linear Discriminant Analysis

* Goal: find the best separation between two classes
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— bad projection
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/

good projection

Slide inspired by N. Vasconcelos




Difference between PCA and LDA

* PCA preserves maximum variance

* LDA preserves discrimination

— Find projection that maximizes scatter between classes and minimizes scatter within
classes
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lllustration of the Projection

* Using two classes as example:

X2 A

o

x1

Poor Projection

X2 A

AN

x1

Good

g
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Basic intuition: PCA vs. LDA
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LDA with 2 variables

 We want to learn a projection W such that the projection converts all the
points from x to a new space (For this example, assume m == 1):

m n
z=wlx zeR™ ze€R
e Let the per class means be:

EXIY[X Y =i]= H;
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* And the per class covariance matrices be:
l(X _.ui)(X _:ui)T 'Y =l_|=Zi

 We want a projection that maximizes:

6T0C-\ON-S0

between class scatter

J W =max . .
(W) within class scatter




Fischer’s Linear Discriminant Analysis
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— bad projection
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Slide inspired by N. Vasconcelos




LDA with 2 variables

The following objective function:

between class scatter

J %% =max . ]
(W) within class scatter

Can be written as

(EZIY[Zlyzl]_EZIY[ZlY:O])2

T =z 1Y =1 varZ 1Y =0]

g
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LDA with 2 variables

g

* We can write the between class scatter as:

(EZIY [Z 1Y = 1]_Ezu' [Z 'Y = O])2 = (WT [/”1 — Ho ])2

= WT[/ul _:UO][IUI _/JO]TW

* Also, the within class scatter becomes:

var[Z 1Y =i]=E, {z- E, [21Y =i]f 1Y =i

= EZIY{(WT :x_.ui])z 1Y = i}
= EZIY{WT[x—:ui][x—oui]TW|Y = i}

=w'Zw
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Slide inspired by N. Vasconcelos




LDA with 2 variables

 We can plug in these scatter values to our objective function:

J(w)=

w Swl |8,

/ between class scatter

w' S, w S,

= (e, =t Nty — 5]
=(2,+2,)

* And our objective becomes:

( ZIY [Z 1Y = 1] ZlY [Z 1Y = O])2
Var[Z 1Y = 1]+ Var[Z 'Y —O]

w (1 — st Nt — 1) W
w' (Zl + Zo)w

J(w)=

AN

within class scatter

Slide inspired by N. Vasconcelos
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LDA with 2 variables

 The scatter variables

] - between class scatter %
Sy :(:ul _IUO)(:UI _IUO)T >
Sw =2, +ZO)

within class scatter
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Slide inspired by N. Vasconcelos




Visualization

S, =S, +8S,

Within class scatter
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Linear Discriminant Analysis (LDA)

* Maximizing the ratio

T
J(w) = w'Sw

T
w' S, w

* |s equivalent to maximizing the numerator while keeping the
denominator constant, i.e.
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maxw'S,w subjectto w'S,w=K

* And can be accomplished using Lagrange multipliers, where
we define the Lagrangian as

L=w'S,w - /l(wTSWw—K)

6T0C-\ON-S0

* And maximize with respect to both w and A

Slide inspired by N. Vasconcelos



Linear Discriminant Analysis (LDA)
» Setting the gradient of
L=w"(S,- AS, w +AK

With respect to w to zeros we get

V,L=2(S,- A4S, )w =0
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or

S;w=AS,w

* This is a generalized eigenvalue problem
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* The solution is easy when S_l — (Z +2 )—l
— 1 0

w
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Linear Discriminant Analysis (LDA)

In this case

Sy S,w=Aw

And using the definition of S

Sw (2t = o Nty — 1y ) w=Aw
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Assuming that (u;-uy)'w=a is a scalar, this can be written as

_ A
Swl(lul —,u0)=;w
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and since we don’t care about the magnitude of w

w* =S (1 — 145) = (2, +2,) " (44, = 1)
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LDA with N variables and C classes
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Variables

« N Sample images:

e C classes:

* Average of each class:

* Average of all data:
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g

Scatter Matrices

« Scatter of class i: S, = (o, — Yo, — 1)

Xe €Y

« Within class scatter: v =;Si

-
o
o}
®
o
)
S
=2
=
o
Q)
=
o
5

C
 Between class scatter: =) > u—up@ - w)’

=1 j+i
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Mathematical Formulation

* Recall that we want to learn a projection W
such that the projection converts all the points
from x to a new space z:

z =wTlx zeR™ e R"
* After projection:
— Between class scatter Sz =W'S;W
o T
— Within class scatter  Sw =W " SyW
* S0, the objective becomes:
35| WS W]
= arg max -
WIS, WS, w
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W

opt

= arg max




Mathematical Formulation

WS W
WS, w

w,, =arg max
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* Solve generalized eigenvector problem:

]
\’P—-\
3
3

S,w, =48, w, i
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Mathematical Formulation

g

* Solution: Generalized Eigenvectors

Sgw; =48, w; i=1,...,m
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* Rank of W, is limited
— Rank(Sg) <= |C]-1
— Rank(Sy) <= N-C
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PCA vs. LDA

e Eigenfaces exploit the max scatter of the training images in
face space

e Fisherfaces attempt to maximise the between class scatter,
while minimising the within class scatter.
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Basic intuition: PCA vs. LDA

M
QO
(@)
(¢
o
D
)
=t
=h
O
Q
=
©)
S5

feature 2

6T0C-AON-S0

O class1 |
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Results: Eigenface vs. Fisherface

e |nput: 160 images of 16 people
e Train: 159 images
e Test: 1 image
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e Variation in Facial Expression, Eyewear, and Lighting

glasses  glasses conditions

6T0C-AON-S0




Eigenface vs. Fisherface

35 -
30 +
E
f25 1 P —— .
r . Eigenface
© 0 4
r n
“m :
R %2 ~a__ _—— ——® Eigenface wiofirst
a three components
t 10 F
€ @ e ——————— - ——— - —— - Fisherface (7.3%)
5
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0 | : |
0 50 100 150

Number of Principal Components
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What we have learned today

* |Introduction to face recognition
* The Eigenfaces Algorithm
 Linear Discriminant Analysis (LDA)
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