Lecture: Face Recognition

Juan Carlos Niebles and Ranjay Krishna
Stanford Vision and Learning Lab
What we will learn today

• Introduction to face recognition
• The Eigenfaces Algorithm
• Linear Discriminant Analysis (LDA)

“Faces” in the brain

Courtesy of Johannes M. Zanker
“Faces” in the brain fusiform **face area**

Kanwisher, et al. 1997
Detection versus Recognition

Detection finds the faces in images

Recognition recognizes WHO the person is
Face Recognition

- Digital photography
Face Recognition

- Digital photography
- Surveillance
Face Recognition

• Digital photography
• Surveillance
• Album organization
Face Recognition

- Digital photography
- Surveillance
- Album organization
- Person tracking/id.
Face Recognition

- Digital photography
- Surveillance
- Album organization
- Person tracking/id.
- Emotions and expressions
Face Recognition

- Digital photography
- Surveillance
- Album organization
- Person tracking/id.
- Emotions and expressions
- Security/warfare
- Tele-conferencing
- Etc.
The Space of Faces

- An image is a point in a high dimensional space
 - If represented in grayscale intensity, an N x M image is a point in \mathbb{R}^{NM}
 - E.g. 100x100 image = 10,000 dim
100x100 images can contain many things other than faces!
The Space of Faces

- An image is a point in a high dimensional space
 - If represented in grayscale intensity, an N x M image is a point in \mathbb{R}^{NM}
 - E.g. 100x100 image = 10,000 dim
- However, relatively few high dimensional vectors correspond to valid face images
- We want to effectively model the subspace of face images

Slide credit: Chuck Dyer, Steve Seitz, Nishino
Where have we seen something like this before?
Compute n-dim subspace such that the projection of the data points onto the subspace has the largest variance among all n-dim subspaces.
Maximize the scatter of the training images in face space.
Key Idea

• So, compress them to a low-dimensional subspace that captures key appearance characteristics of the visual DOFs.

• **USE PCA for estimating the sub-space**
 (dimensionality reduction)

• Compare two faces by projecting the images into the subspace and measuring the EUCLIDEAN distance between them.
What we will learn today

• Introduction to face recognition
• The Eigenfaces Algorithm
• Linear Discriminant Analysis (LDA)

Eigenfaces: key idea

• Assume that most face images lie on a low-dimensional subspace determined by the first k ($k<<d$) directions of maximum variance
• Use PCA to determine the vectors or “eigenfaces” that span that subspace
• Represent all face images in the dataset as linear combinations of eigenfaces

Training images: $\mathbf{x}_1, \ldots, \mathbf{x}_N$
Top eigenvectors: ϕ_1, \ldots, ϕ_k

Mean: μ
Visualization of eigenfaces

Principal component (eigenvector) ϕ_k

$\mu + 3\sigma_k \phi_k$

$\mu - 3\sigma_k \phi_k$
Eigenface algorithm

• Training
 1. Align training images x_1, x_2, \ldots, x_N
 2. Compute average face $\mu = \frac{1}{N} \sum x_i$
 3. Compute the difference image (the centered data matrix)

\[X_c = \begin{bmatrix} x_1 & \cdots & x_n \end{bmatrix} - \begin{bmatrix} \mu & \cdots & \mu \end{bmatrix} \]

\[= X - \mu 1^T = X - \frac{1}{n} X 1 1^T = X \left(I - \frac{1}{n} 1 1^T \right) \]
Eigenface algorithm

4. Compute the covariance matrix

\[\Sigma = \frac{1}{n} \begin{bmatrix} x_1^c & \cdots & x_n^c \\ x_1^c & \cdots & x_n^c \\ \vdots & \ddots & \vdots \\ x_1^c & \cdots & x_n^c \end{bmatrix} - x_1^c \quad - x_n^c \quad - = \frac{1}{n} X_c X_c^T \]

5. Compute the eigenvectors of the covariance matrix \(\Sigma \)

6. Compute each training image \(x_i \)’s projections as

\[x_i \mapsto (x_i^c \cdot \phi_1, x_i^c \cdot \phi_2, \ldots, x_i^c \cdot \phi_K) \equiv (a_1, a_2, \ldots, a_K) \]

7. Visualize the estimated training face \(x_i \)

\[x_i \approx \mu + a_1 \phi_1 + a_2 \phi_2 + \ldots + a_K \phi_K \]
Eigenface algorithm

6. Compute each training image x_i 's projections as

$$x_i \mapsto \left(x_i^c \cdot \phi_1, x_i^c \cdot \phi_2, \ldots, x_i^c \cdot \phi_K \right) \equiv (a_1, a_2, \ldots, a_K)$$

7. Visualize the reconstructed training face x_i

$$x_i \approx \mu + a_1 \phi_1 + a_2 \phi_2 + \ldots + a_K \phi_K$$
Eigenvalues (variance along eigenvectors)
Reconstruction and Errors

- Only selecting the top K eigenfaces \rightarrow reduces the dimensionality.
- Fewer eigenfaces result in more information loss, and hence less discrimination between faces.
Eigenface algorithm

• Testing
 1. Take query image \(t \)
 2. Project into eigenface space and compute projection

\[
t \rightarrow ((t - \mu) \cdot \phi_1, (t - \mu) \cdot \phi_2, \ldots, (t - \mu) \cdot \phi_K) \equiv (w_1, w_2, \ldots, w_K)
\]

 3. Compare projection \(w \) with all \(N \) training projections
 • Simple comparison metric: Euclidean
 • Simple decision: K-Nearest Neighbor
 (note: this “K” refers to the k-NN algorithm, is different from the previous K’s referring to the # of principal components)
Shortcomings

• Requires carefully controlled data:
 – All faces centered in frame
 – Same size
 – Some sensitivity to angle

• Alternative:
 – “Learn” one set of PCA vectors for each angle
 – Use the one with lowest error

• Method is completely knowledge free
 – (sometimes this is good!)
 – Doesn’t know that faces are wrapped around 3D objects (heads)
 – Makes no effort to preserve class distinctions
Summary for Eigenface

Pros

• Non-iterative, globally optimal solution

Limitations

• PCA projection is optimal for reconstruction from a low dimensional basis, but may NOT be optimal for discrimination...
Besides face recognitions, we can also do Facial expression recognition
Happiness subspace (method A)
Disgust subspace (method A)
Facial Expression Recognition Movies (method A)
What we will learn today

• Introduction to face recognition
• The Eigenfaces Algorithm
• Linear Discriminant Analysis (LDA)

Which direction will is the first principle component?
Fischer’s Linear Discriminant Analysis

- Goal: find the best separation between two classes

Slide inspired by N. Vasconcelos
Difference between PCA and LDA

• PCA preserves maximum variance

• LDA preserves discrimination
 – Find projection that maximizes scatter between classes and minimizes scatter within classes
Illustration of the Projection

- Using two classes as example:
Basic intuition: PCA vs. LDA
LDA with 2 variables

- We want to learn a projection \(W \) such that the projection converts all the points from \(x \) to a new space (For this example, assume \(m = 1 \)):

\[
z = w^T x \quad z \in \mathbb{R}^m \quad x \in \mathbb{R}^n
\]

- Let the **per class** means be:

\[
E_{X|Y}[X | Y = i] = \mu_i
\]

- And the **per class** covariance matrices be:

\[
E_{X|Y}[(X - \mu_i)(X - \mu_i)^T | Y = i] = \Sigma_i
\]

- We want a projection that maximizes:

\[
J(w) = \max \quad \frac{\text{between class scatter}}{\text{within class scatter}}
\]
Fischer’s Linear Discriminant Analysis

Slide inspired by N. Vasconcelos
LDA with 2 variables

The following objective function:

\[J(w) = \max \frac{\text{between class scatter}}{\text{within class scatter}} \]

Can be written as

\[J(w) = \frac{(E_{Z|Y}[Z|Y=1] - E_{Z|Y}[Z|Y=0])^2}{\text{var}[Z|Y=1] + \text{var}[Z|Y=0]} \]
LDA with 2 variables

• We can write the between class scatter as:

\[
\left(E_{Z|Y=1} [Z | Y = 1] - E_{Z|Y} [Z | Y = 0] \right)^2 = (w^T [\mu_1 - \mu_0])^2 = w^T [\mu_1 - \mu_0] [\mu_1 - \mu_0]^T w
\]

• Also, the within class scatter becomes:

\[
\text{var}[Z | Y = i] = E_{Z|Y} \left\{ (z - E_{Z|Y} [Z | Y = i])^2 | Y = i \right\} = E_{Z|Y} \left\{ (w^T [x - \mu_i])^2 | Y = i \right\} = E_{Z|Y} \left\{ w^T [x - \mu_i][x - \mu_i]^T w | Y = i \right\} = w^T \Sigma_i w
\]

Slide inspired by N. Vasconcelos
LDA with 2 variables

- We can plug in these scatter values to our objective function:

\[J(w) = \frac{w^T S_B w}{w^T S_W w} \]

\[S_B = (\mu_1 - \mu_0)(\mu_1 - \mu_0)^T \]

\[S_W = (\Sigma_1 + \Sigma_0) \]

- And our objective becomes:

\[J(w) = \frac{\left(E_{z|y}[Z|Y=1] - E_{z|y}[Z|Y=0]\right)^2}{\text{var}[Z|Y=1] + \text{var}[Z|Y=0]} \]

\[J(w) = \frac{w^T (\mu_1 - \mu_0)(\mu_1 - \mu_0)^T w}{w^T (\Sigma_1 + \Sigma_0) w} \]
LDA with 2 variables

- The scatter variables

\[S_B = (\mu_1 - \mu_0)(\mu_1 - \mu_0)^T \]
\[S_W = (\Sigma_1 + \Sigma_0) \]

between class scatter

within class scatter

Slide inspired by N. Vasconcelos
Visualization

\[S_W = S_1 + S_2 \]

Within class scatter

Between class scatter
Linear Discriminant Analysis (LDA)

• Maximizing the ratio

\[J(w) = \frac{w^T S_B w}{w^T S_W w} \]

• Is equivalent to maximizing the numerator while keeping the denominator constant, i.e.

\[\max_w w^T S_B w \text{ subject to } w^T S_W w = K \]

• And can be accomplished using Lagrange multipliers, where we define the Lagrangian as

\[L = w^T S_B w - \lambda (w^T S_W w - K) \]

• And maximize with respect to both \(w \) and \(\lambda \)
Linear Discriminant Analysis (LDA)

• Setting the gradient of

\[L = w^T (S_B - \lambda S_W)w + \lambda K \]

With respect to \(w \) to zeros we get

\[\nabla_w L = 2(S_B - \lambda S_W)w = 0 \]

or

\[S_B w = \lambda S_W w \]

• This is a generalized eigenvalue problem

• The solution is easy when

\[S_w^{-1} = (\Sigma_1 + \Sigma_0)^{-1} \]
Linear Discriminant Analysis (LDA)

• In this case

\[S_W^{-1} S_B w = \lambda w \]

• And using the definition of \(S_B \)

\[S_W^{-1} (\mu_1 - \mu_0)(\mu_1 - \mu_0)^T w = \lambda w \]

• Noting that \((\mu_1 - \mu_0)^Tw = \alpha\) is a scalar this can be written as

\[S_W^{-1} (\mu_1 - \mu_0) = \frac{\lambda}{\alpha} w \]

• and since we don’t care about the magnitude of \(w \)

\[w^* = S_W^{-1} (\mu_1 - \mu_0) = (\Sigma_1 + \Sigma_0)^{-1} (\mu_1 - \mu_0) \]

Slide inspired by N. Vasconcelos
LDA with N variables and C classes
Variables

- N Sample images: \(\{x_1, \ldots, x_N\} \)

- C classes: \(\{Y_1, Y_2, \ldots, Y_c\} \)

- Average of each class: \(\mu_i = \frac{1}{N_i} \sum_{x_k \in Y_i} x_k \)

- Average of all data: \(\mu = \frac{1}{N} \sum_{k=1}^{N} x_k \)
Scatter Matrices

• Scatter of class i:

$$S_i = \sum_{x_k \in Y_i} (x_k - \mu_i)(x_k - \mu_i)^T$$

• Within class scatter:

$$S_W = \sum_{i=1}^{c} S_i$$

• Between class scatter:

$$S_B = \sum_{i=1}^{c} N_i (\mu_i - \mu)(\mu_i - \mu)^T$$
Mathematical Formulation

• Recall that we want to learn a projection W such that the projection converts all the points from x to a new space z:

$$z = w^T x \quad z \in \mathbb{R}^m \quad x \in \mathbb{R}^n$$

• After projection:
 – Between class scatter $\tilde{S}_B = W^T S_B W$
 – Within class scatter $\tilde{S}_W = W^T S_W W$

• So, the objective becomes:

$$W_{opt} = \arg \max_w \left| \frac{\tilde{S}_B}{\tilde{S}_W} \right| = \arg \max_w \left| \frac{W^T S_B W}{W^T S_W W} \right|$$
Mathematical Formulation

\[W_{opt} = \arg \max_{W} \frac{|W^T S_B W|}{|W^T S_W W|} \]

- Solve generalized eigenvector problem:

\[S_B w_i = \lambda_i S_W w_i \quad i = 1, \ldots, m \]
Mathematical Formulation

• Solution: Generalized Eigenvectors

\[S_B w_i = \lambda_i S_W w_i \quad i = 1, \ldots, m \]

• Rank of \(W_{opt} \) is limited
 – \(\text{Rank}(S_B) \leq |C|-1 \)
 – \(\text{Rank}(S_W) \leq N-C \)
PCA vs. LDA

- Eigenfaces exploit the max scatter of the training images in face space
- Fisherfaces attempt to maximise the **between class scatter**, while minimising the **within class scatter**.
Basic intuition: PCA vs. LDA
Results: Eigenface vs. Fisherface

- Input: 160 images of 16 people
- Train: 159 images
- Test: 1 image

- Variation in Facial Expression, Eyewear, and Lighting

![Images showing variations with and without glasses, under different lighting conditions and with various expressions.](image-url)
Eigenface vs. Fisherface

The graph compares the error rates of Eigenface and Fisherface algorithms as a function of the number of principal components. The x-axis represents the number of principal components, while the y-axis shows the error rate in percentage. The graph shows that as the number of principal components increases, the error rate decreases for both algorithms. However, Fisherface achieves a lower error rate with fewer components compared to Eigenface.
What we have learned today

• Introduction to face recognition
• The Eigenfaces Algorithm
• Linear Discriminant Analysis (LDA)
