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Lecture: k-means & mean-shift clustering

Juan Carlos Niebles and Ranjay Krishna
Stanford Vision and Learning Lab
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Recap: Image Segmentation

S

* Goal: identify groups of pixels that go together
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Recap: Gestalt Theory

e Gestalt: whole or group
— Whole is greater than sum of its parts
— Relationships among parts can yield new properties/features
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* Psychologists identified series of factors that predispose set of
elements to be grouped (by human visual system)

“l stand at the window and see a house, trees, sky.
Theoretically | might say there were 327 brightnesses

and nuances of colour. Do | have “327"? No. | have sky, house,
and trees.”

Max Wertheimer
(1880-1943)
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Untersuchungen zur Lehre von der Gestalt,
Psychologische Forschung, Vol. 4, pp. 301-350, 1923



http://psy.ed.asu.edu/~classics/Wertheimer/Forms/forms.htm

Recap: Gestalt Factors

o ® ® o o ® | Not grouped > ) 2 P_ 5 5
(L = Parallelism
PRGN
® o o © ® @ | Proximity
O O ® o O O | Similarity )

Buliaisn|)

(3( > Symmetry
® D ‘ . @ @ Similarity /

\ .\ \ \ \ q‘ Common Fate 5@ ot
ontinuity
« T OG>

Common Region

* These factors make intuitive sense, but are very difficult to translate into algorithms.
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What will we learn today?

* K-means clustering
* Mean-shift clustering
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Reading: [FP] Chapters: 14.2, 14.4

D. Comaniciu and P. Meer, Mgan ShiftL A Robust Approach toward Eeature
skace Analyvsis, PAMI 2002.



http://www.caip.rutgers.edu/~comanici/Papers/MsRobustApproach.pdf

What will we learn today?

e K-means clustering
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Reading: [FP] Chapters: 14.2, 14.4

D. Comaniciu and P. Meer, Mgaan ShiftL A Robust Agoroach toward Eegture Space Anglvsis, PAMI 2002.



http://www.caip.rutgers.edu/~comanici/Papers/MsRobustApproach.pdf

Image Segmentation: Toy Example

white
pixels

3 black pixels k
25| gray
2 v/ v

input image L o J

intensity

* These intensities define the three groups.

* We could label every pixel in the image according to which of these primary
intensities it is.
—i.e., segment the image based on the intensity feature.

* What if the image isn’t quite so simple?

Slide credit: Kristen Grauman
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* Now how to determine the three main intensities that define
our groups?
 We need to cluster.
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Slide credit: Kristen Grauman
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* Goal: choose three “centers” as the representative intensities,
and label every pixel according to which of these centers it is
nearest to.

* Best cluster centers are those that minimize Sum of Square
Distance (SSD) between all points and their nearest cluster

center c:
SSD = E E (x—cl.)2

clusteri xEclusteri
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Slide credit: Kristen Grauman




Clustering for Summarization

Goal: cluster to minimize variance in data given clusters

— Preserve information
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Cluster center Data

c,d = argcglinﬁigd

l
thether xj is assigned to C;
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Clustering

* With this objective, it is a “chicken and egg” problem:

—If we knew the cluster centers, we could allocate points to
groups by assigning each to its closest center.

ﬁo'oﬁ:c € 16010 €€ «Commum]p

== -—-_—’
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—If we knew the group memberships, we could get the
centers by computing the mean per group.

ﬁo'oﬁu € 1 €010 e € 1 Commum]p

== ~.—-_—’
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Slide credit: Kristen Grauman




K-means clustering

1. |Initialize (¢ = 0): cluster centers c,,...,c,

t . .
2. Compute O': assign each point to the closest center
— 0' denotes the set of assighment for each X ;to cluster ¢; atiterationt

t : 1 C X t=1f t-1 2
0 =arg§mnﬁgz(5ij (cl.—xj)

1. Computer ¢": update cluster centers as the mean of the points

c —argmm—zzé (c —x)

1. Update ;- 741, Repeat Step 2-3 till stopped
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K-means clustering

1. |Initialize (¢ = 0): cluster centers c,,...,c,
e Commonly used: random initialization
e Or greedily choose K to minimize residual

2. Compute &': assign each point to the closest center

o
 Typical distance measure: @
/ T 1 8
* Euclidean sim(x,x)=xXx 3.
* Cosine sim(x,x’)=xTx'/( x') =
* Others

1. Computer ¢": update cluster centers as the mean of the points

c —argmm—EEé (c —x)

2. Update ;—;4+1, Repeat Step 2-3 till stopped
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t
e (C doesn’t change anymore.




K-means clustering
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* Java demo: ¥
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http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/AppletKM.html

K-means clustering

e Converges to a local minimum solution

— Initialize multiple runs

" 4 . 3 $ $ + » g
- a
|
’ ,’ . + ’ 3 .‘. (3
. . k-Mgans Clusters Irl.s Species
* Better fit for spherical data -
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* Need to pick K (# of clusters)




Segmentation as Clustering
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K-Means++

e Can we prevent arbitrarily bad local minima?

1.Randomly choose first center.
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2.Pick new center with prob. proportional to (x-c,)’
— (Contribution of x to total error)

3.Repeat until K centers.
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* Expected error = O(log Kj" optimal

Slide credit: Steve Seitz

\rthur & Vassilvitskii 2007



http://theory.stanford.edu/~sergei/slides/BATS-Means.pdf

Feature Space

* Depending on what we choose as the feature space, we can
group pixels in different ways.

e Grouping pixels based on
intensity similarity
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e Feature space: intensity value (1D)

Slide credit: Kristen Grauman




Feature Space

 Depending on what we choose as the feature space, we can group
pixels in different ways.

* Grouping pixels based
on color similarity

Buliaisn|)
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* Feature space: color value (3D)

Slide credit: Kristen Grauman




Feature Space

 Depending on what we choose as the feature space, we can group
pixels in different ways.

* Grouping pixels based
on texture similarity
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* Feature space: filter bank responses (e.g., 24D)

Slide credit: Kristen Grauman




Smoothing Out Cluster Assignments

e Assigning a cluster label per pixel may vyield outliers:

Original Labeled by cluster center’s intensity

* How can we ensure they
are spatially smooth?

Slide credit: Kristen Grauman
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Segmentation as Clustering

* Depending on what we choose as the feature space, we can group pixels
in different ways.

e Grouping pixels based on
intensity+position similarity
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Intensity
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—> Way to encode both similarity and proximity.

Slide credit: Kristen Grauman




K-Means Clustering Results

* K-means clustering based on intensity or color is essentially
vector quantization of the image attributes

—Clusters don’t have to be spatially coherent

Buliaisn|)

Image Intensity-based clusters Color-based clusters
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Image source: Forsyth & Ponce




K-Means Clustering Results

* K-means clustering based on intensity or color is essentially
vector quantization of the image attributes
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—Clusters don’t have to be spatially coherent

* Clustering based on (r,g,b,x,y) values enforces more spatial
coherence
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Image source: Forsyth & Ponce




How to evaluate clusters?

* Generative

— How well are points reconstructed from the clusters?
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* Discriminative
— How well do the clusters correspond to labels?

e Can we correctly classify which pixels belong to the panda?
— Note: unsupervised clustering does not aim to be discriminative as we don’t have the
labels.
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How to choose the number of clusters?

Try different numbers of clusters in a validation set and look at performance.

We can plot the objective function values for k equals 1 to 6...

The abrupt change at k = 2, is highly suggestive of two clusters
in the data. This technique for determining the number of
clusters is known as “knee finding™ or “elbow finding™.
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K-Means pros and cons

Pros

Finds cluster centers that minimize conditional
variance (good representation of data)

Simple and fast, Easy to implement

Cons

Need to choose K
Sensitive to outliers
Prone to local minima

All clusters have the same parameters (e.g., distance
measure is non-adaptive)

*Can be slow: each iteration is O(KNd) for N d-
dimensional points

Usage

Unsupervised clustering

Rarely used for pixel segmentation

outher

e

(A): Two natural clusters

(B): &-means clusters

outher
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What will we learn today?

* Mean-shift clustering
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Reading: [FP] Chapters: 14.2, 14.4

D. Comaniciu and P. Meer, Mgaan ShiftL A Robust Agoroach toward Eegture Space Anglvsis, PAMI 2002.



http://www.caip.rutgers.edu/~comanici/Papers/MsRobustApproach.pdf

Mean-Shift Segmentation

* An advanced and versatile technique for clustering-
based segmentation

Segmented "landscape 1" Segmented "landscape 2"
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D. Comaniciu and P. Meer, Mean ShifL A RoQUSt Approach toward Eeatire Space Analvsis, PAMI 2002.

Slide credit: Svetlana Lazebnik


http://www.caip.rutgers.edu/~comanici/MSPAMI/msPamiResults.html
http://www.caip.rutgers.edu/~comanici/Papers/MsRobustApproach.pdf

Mean-Shift Algorithm
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3. Shift the search window to the mean

N
3 &
-4 0 2 4 6 8 g 8
* Iterative Mode Search s S
.o (0]
1. Initialize random seed, and window W Z v H(x) =
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4. Repeat Step 2 until convergence




Mean-Shift
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Slide by Y. Ukrainitz & B. Sarel




Mean-Shift
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Mean-Shift
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A.M:“D Clustering 25-0ct-2018
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Real Modality Analysis
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The blue data points were traversed by the windows towards the mode.




Mean-Shift Clustering

* Cluster: all data points in the attraction basin of a
mode

 Attraction basin: the region for which all trajectories
lead to the same mode
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Slide by Y. Ukrainitz & B. Sarel



Mean-Shift Clustering/Segmentation

 Find features (color, gradients, texture, etc)
* Initialize windows at individual pixel locations

*  Perform mean shift for each window until convergence
 Merge windows that end up near the same “peak” or mode
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Slide credit: Svetlana Lazebnik



Mean-Shift Segmentation Results
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Slide credit: Svetlana Lazebnik



http://www.caip.rutgers.edu/~comanici/MSPAMI/msPamiResults.html
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n/MF\.hH'W Clustering 25-0ct-2018

More Results



Problem: Computational Complexity
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* Need to shift many windows...
* Many computations will be redundant.

Slide credit: Bastian Leibe




Speedups: Basin of Attraction
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1. Assign all points within radius r of end point to the mode.

Slide credit: Bastian Leibe




Speedups
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2. Assign all points within radius r/c of the search path to the mode -> reduce the
number of data points to search.
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Technical Details

Given n data points x; € R? the multivariate kernel density estimate using a
radially symmetric kernel® (e.g., Epanechnikov and Gaussian kernels), K(x), is given

by,
A 1 — X — X;
=—E K 1

where h (termed the bandwidth parameter) defines the radius of kernel. The radially
symmetric kernel is defined as,
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K (x) = cxk([[x|), (2)
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where ¢, represents a normalization constant.

Comaniciu & Meer, 2002




Other Kernels

A kernel is a function that satisfies the following requirements :

1. lh olx) =1
2. olx) >0

Some examples of kernels include :
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1l a<x<bh

1. Rectangular o) =
0 else

)

2. Gaussian ¢(x) = e 22
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3(1—2?) if |z <1

3. Epanechnikov @) =
0 el se



https://saravananthirumuruganathan.wordpress.com/2010/04/01/introduction-to-mean-shift-algorithm/

Technical Details

| . : 1l - (xx
Taking the derivative of: fK—m;K( )

z X—X; 2
d | x —x; |2 7;Elxlg(” D “)
Vf(x) hd+2 Zg h n e 112 - )
G EE U L1 2g (1)
term 1 < =l - -~
term 2
where g(z) = —k'(z) denotes the derivative of the selected kernel profile.

(3)

* Terml: this is proportional to the density estimate at x (similar to equation 1

from two slides ago).

« Term?2: this is the mean-shift vector that points towards the direction of

maximum density.

Comaniciu & Meer, 2002
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Technical Details

Finally, the mean shift procedure from a given point xt is:
1. Computer the mean shift vector m:

> ([152]°)
| Zo =)

Buliaisn|)

— X

2. Translate the density window:

X" =X+ m(x]).
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3. lterate steps 1 and 2 until convergence.

Vf(xz) =0

Comaniciu & Meer, 2002




Summary Mean-Shift

* Bros
— General, application-independent tool

— Model-free, does not assume any prior shape (spherical, elliptical, etc.) on
data clusters

— Just a single parameter (window size h)
* h has a physical meaning (unlike k-means)

— Finds variable number of modes
— Robust to outliers

© Long
— Output depends on window size
— Window size (bandwidth) selection is not trivial
— Computationally (relatively) expensive (~2s/image)
— Does not scale well with dimension of feature space
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Slide credit: Svetlana Lazebnik



What will we have learned today

* K-means clustering
* Mean-shift clustering
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Reading: [FP] Chapters: 14.2, 14.4

D. Comaniciu and P. Meer, Mgaan ShiftL A Robust Agoroach toward Eegture Space Anglvsis, PAMI 2002.



http://www.caip.rutgers.edu/~comanici/Papers/MsRobustApproach.pdf

