Lecture: Edge Detection

Juan Carlos Niebles and Ranjay Krishna
Stanford Vision and Learning Lab
What we will learn today

- Edge detection
- Image Gradients
- A simple edge detector
- Sobel edge detector
- Canny edge detector
- Hough Transform

Some background reading:
Forsyth and Ponce, Computer Vision, Chapter 8
What we will learn today

• Edge detection
 • Image Gradients
• A simple edge detector
• Sobel edge detector
• Canny edge detector
• Hough Transform

Some background reading:
Forsyth and Ponce, Computer Vision, Chapter 8
(A) Cave painting at Chauvet, France, about 30,000 B.C.;
(B) Aerial photograph of the picture of a monkey as part of the Nazca Lines geoglyphs, Peru, about 700 – 200 B.C.;
(C) Shen Zhou (1427-1509 A.D.): Poet on a mountain top, ink on paper, China;
(D) Line drawing by 7-year old I. Lleras (2010 A.D.).
A Experimental setup

- Light bar stimulus projected on screen
- Recording from visual cortex

B Stimulus orientation
- Stimulus presented

Hubel & Wiesel, 1960s
We know edges are special from human (mammalian) vision studies

Hubel & Wiesel, 1960s
We know edges are special from human (mammalian) vision studies

Figure 4.14
Complementary-part images. From an original intact image (left column), two complement-
Walther, Chai, Caddigan, Beck & Fei-Fei, PNAS, 2011
Edge detection

• **Goal:** Identify sudden changes (discontinuities) in an image
 – Intuitively, most semantic and shape information from the image can be encoded in the edges
 – More compact than pixels

• **Ideal:** artist’s line drawing (but artist is also using object-level knowledge)

Source: D. Lowe
Why do we care about edges?

- Extract information, recognize objects
- Recover geometry and viewpoint

Source: J. Hayes
Origins of edges

- surface normal discontinuity
- depth discontinuity
- surface color discontinuity
- illumination discontinuity
Closeup of edges

Surface normal discontinuity
Closeup of edges

Depth discontinuity
Closeup of edges

Surface color discontinuity
What we will learn today

• Edge detection
• Image Gradients
• A simple edge detector
• Sobel edge detector
• Canny edge detector
• Hough Transform
Derivatives in 1D

\[
\frac{df}{dx} = \lim_{\Delta x \to 0} \frac{f(x) - f(x - \Delta x)}{\Delta x} = f'(x) = f_x
\]
Derivatives in 1D - example

\[y = x^2 + x^4 \]
\[\frac{dy}{dx} = 2x + 4x^3 \]
Derivatives in 1D - example

\[y = x^2 + x^4 \]
\[\frac{dy}{dx} = 2x + 4x^3 \]

\[y = \sin x + e^{-x} \]
\[\frac{dy}{dx} = \cos x + (-1)e^{-x} \]
Discrete Derivative in 1D

\[
\frac{df}{dx} = \lim_{\Delta x \to 0} \frac{f(x) - f(x - \Delta x)}{\Delta x} = f'(x)
\]

\[
\frac{df}{dx} = \frac{f(x) - f(x - 1)}{1} = f'(x)
\]

\[
\frac{df}{dx} = f(x) - f(x - 1) = f'(x)
\]
Types of Discrete derivative in 1D

Backward

$$\frac{df}{dx} = f(x) - f(x-1) = f'(x)$$

Forward

$$\frac{df}{dx} = f(x) - f(x+1) = f'(x)$$

Central

$$\frac{df}{dx} = f(x+1) - f(x-1) = f'(x)$$
1D discrete derivative filters

• Backward filter: \[[0 \ 1 \ -1] \]

\[f(x) - f(x-1) = f'(x) \]

• Forward: \[[-1 \ 1 \ 0] \]

\[f(x) - f(x+1) = f'(x) \]

• Central: \[[1 \ 0 \ -1] \]

\[f(x+1) - f(x-1) = f'(x) \]
1D discrete derivative filters

• Backward filter: \[[0 \ 1 \ -1]\]

\[f(x) - f(x-1) = f'(x)\]
1D discrete derivative filters

- Backward filter: $\begin{bmatrix} 0 & 1 & -1 \end{bmatrix}$

 $$f(x) - f(x-1) = f'(x)$$

- Forward: $\begin{bmatrix} -1 & 1 & 0 \end{bmatrix}$

 $$f(x) - f(x+1) = f'(x)$$
1D discrete derivative example

\[f(x) = 10 \ 15 \ 10 \ 10 \ 25 \ 20 \ 20 \ 20 \]

\[f'(x) = 0 \ 5 \ -5 \ 0 \ 15 \ -5 \ 0 \ 0 \]
Discrete derivative in 2D

\begin{align*}
\text{Given function} & \quad f(x, y) \\
\end{align*}
Discrete derivative in 2D

Given function

\[f(x, y) \]

Gradient vector

\[\nabla f(x, y) = \begin{bmatrix} \frac{\partial f(x, y)}{\partial x} \\ \frac{\partial f(x, y)}{\partial y} \end{bmatrix} = \begin{bmatrix} f_x \\ f_y \end{bmatrix} \]
Discrete derivative in 2D

Given function

\[f(x, y) \]

Gradient vector

\[\nabla f(x, y) = \begin{bmatrix} \frac{\partial f(x, y)}{\partial x} \\ \frac{\partial f(x, y)}{\partial y} \end{bmatrix} = \begin{bmatrix} f_x \\ f_y \end{bmatrix} \]

Gradient magnitude

\[|\nabla f(x, y)| = \sqrt{f_x^2 + f_y^2} \]

Gradient direction

\[\theta = \tan^{-1} \left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x} \right) \]
2D discrete derivative filters

What does this filter do?

\[
\begin{bmatrix}
-1 & 0 & 1 \\
-1 & 0 & 1 \\
-1 & 0 & 1
\end{bmatrix}
\]
2D discrete derivative filters

What about this filter?

\[
\frac{1}{3} \begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix}
\quad \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ -1 & -1 & -1 \end{bmatrix}
\]
2D discrete derivative - example

\[I = \begin{bmatrix}
10 & 10 & 20 & 20 & 20 \\
10 & 10 & 20 & 20 & 20 \\
10 & 10 & 20 & 20 & 20 \\
10 & 10 & 20 & 20 & 20 \\
10 & 10 & 20 & 20 & 20 \\
\end{bmatrix} \]
2D discrete derivative - example

What happens when we apply this filter?

\[
I = \begin{bmatrix}
10 & 10 & 20 & 20 & 20 \\
10 & 10 & 20 & 20 & 20 \\
10 & 10 & 20 & 20 & 20 \\
10 & 10 & 20 & 20 & 20 \\
10 & 10 & 20 & 20 & 20 \\
\end{bmatrix}
\]

\[
\frac{1}{3} \begin{bmatrix}
1 & 1 & 1 \\
0 & 0 & 0 \\
-1 & -1 & -1 \\
\end{bmatrix}
\]
2D discrete derivative - example

What happens when we apply this filter?
2D discrete derivative - example

Now let’s try the other filter!

\[
I = \begin{bmatrix}
10 & 10 & 20 & 20 & 20 \\
10 & 10 & 20 & 20 & 20 \\
10 & 10 & 20 & 20 & 20 \\
10 & 10 & 20 & 20 & 20 \\
10 & 10 & 20 & 20 & 20 \\
\end{bmatrix}
\]

\[
\frac{1}{3} \begin{bmatrix}
-1 & 0 & 1 \\
-1 & 0 & 1 \\
-1 & 0 & 1 \\
\end{bmatrix}
\]
2D discrete derivative - example

What happens when we apply this filter?

\[I = \begin{bmatrix} 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \\ 10 & 10 & 20 & 20 & 20 \end{bmatrix} \]

\[I_x = \begin{bmatrix} 0 & 10 & 10 & 0 & 0 \\ 0 & 10 & 10 & 0 & 0 \\ 0 & 10 & 10 & 0 & 0 \\ 0 & 10 & 10 & 0 & 0 \end{bmatrix} \]
3x3 image gradient filters

\[
\begin{bmatrix}
-1 & 0 & 1 \\
-1 & 0 & 1 \\
-1 & 0 & 1 \\
\end{bmatrix}
\]

\[
\frac{1}{3}
\begin{bmatrix}
1 & 1 & 1 \\
0 & 0 & 0 \\
-1 & -1 & -1 \\
\end{bmatrix}
\]
What we will learn today

• Edge detection
• Image Gradients
• A simple edge detector
• Sobel edge detector
• Canny edge detector
• Hough Transform
Characterizing edges

- An edge is a place of rapid change in the image intensity function.
Image gradient

• The gradient of an image: \(\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \end{bmatrix} \)

\[
\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, 0 \end{bmatrix}
\]

\[
\nabla f = \begin{bmatrix} 0, \frac{\partial f}{\partial y} \end{bmatrix}
\]

The gradient vector points in the direction of most rapid increase in intensity.

The gradient direction is given by \(\theta = \tan^{-1} \left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x} \right) \)

• how does this relate to the direction of the edge?

The edge strength is given by the gradient magnitude

\[
\|
\nabla f \|
= \sqrt{\left(\frac{\partial f}{\partial x} \right)^2 + \left(\frac{\partial f}{\partial y} \right)^2}
\]

Source: Steve Seitz
Finite differences: example

• Which one is the gradient in the x-direction? How about y-direction?
Intensity profile
Effects of noise
Effects of noise

• Consider a single row or column of the image
 – Plotting intensity as a function of position gives a signal

Where is the edge?

Source: S. Seitz
Effects of noise

• Finite difference filters respond strongly to noise
 – Image noise results in pixels that look very different from their neighbors
 – Generally, the larger the noise the stronger the response

• What is to be done?

Source: D. Forsyth
Effects of noise

• Finite difference filters respond strongly to noise
 – Image noise results in pixels that look very different from their neighbors
 – Generally, the larger the noise the stronger the response

• What is to be done?
 – Smoothing the image should help, by forcing pixels different to their neighbors (=noise pixels?) to look more like neighbors

Source: D. Forsyth
Smoothing with different filters

- Mean smoothing

\[
\begin{bmatrix}
1 \\
1 \\
1
\end{bmatrix}
\]

- Gaussian (smoothing * derivative)

\[
\begin{bmatrix}
1 \\
2 \\
1
\end{bmatrix} \times \begin{bmatrix}
1 & 1 & 1
\end{bmatrix}
\]

Slide credit: Steve Seitz
Smoothing with different filters
Solution: smooth first

- To find edges, look for peaks in \(\frac{d}{dx}(f \ast g) \)

Source: S. Seitz
Derivative theorem of convolution

• This theorem gives us a very useful property:

\[
\frac{d}{dx} (f * g) = f * \frac{d}{dx} g
\]

• This saves us one operation:

![Graphs showing signal, derivative of the kernel, and convolution](image)

Source: S. Seitz
Derivative of Gaussian filter

\[\begin{bmatrix} 1 & 0 & -1 \end{bmatrix} = x - \text{derivative} \]
Derivative of Gaussian filter

x-direction

y-direction
Derivative of Gaussian filter
Tradeoff between smoothing at different scales

- Smoothed derivative removes noise, but blurs edge. Also finds edges at different “scales”.

Source: D. Forsyth
Designing an edge detector

• Criteria for an “optimal” edge detector:
 – **Good detection**: the optimal detector must minimize the probability of false positives (detecting spurious edges caused by noise), as well as that of false negatives (missing real edges)
Designing an edge detector

• Criteria for an “optimal” edge detector:
 – **Good detection**: the optimal detector must minimize the probability of false positives (detecting spurious edges caused by noise), as well as that of false negatives (missing real edges)
 – **Good localization**: the edges detected must be as close as possible to the true edges
Designing an edge detector

• Criteria for an “optimal” edge detector:
 – **Good detection**: the optimal detector must minimize the probability of false positives (detecting spurious edges caused by noise), as well as that of false negatives (missing real edges)
 – **Good localization**: the edges detected must be as close as possible to the true edges
 – **Single response**: the detector must return one point only for each true edge point; that is, minimize the number of local maxima around the true edge
What we will learn today

• Edge detection
• Image Gradients
• A simple edge detector
• Sobel Edge detector
• Canny edge detector
• Hough transform
Sobel Operator

- uses two 3×3 kernels which are convolved with the original image to calculate approximations of the derivatives
- one for horizontal changes, and one for vertical

$$G_x = \begin{bmatrix} +1 & 0 & -1 \\ +2 & 0 & -2 \\ +1 & 0 & -1 \end{bmatrix} \quad G_y = \begin{bmatrix} +1 & +2 & +1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix}$$
Sobel Operation

- Smoothing + differentiation

\[
G_x = \begin{bmatrix} +1 & 0 & -1 \\ +2 & 0 & -2 \\ +1 & 0 & -1 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \begin{bmatrix} +1 & 0 & -1 \end{bmatrix}
\]

- Gaussian smoothing
- Differentiation
Sobel Operation

• Magnitude:

\[G = \sqrt{G_x^2 + G_y^2} \]

• Angle or direction of the gradient:

\[\Theta = \text{atan} \left(\frac{G_y}{G_x} \right) \]
Sobel Filter example
Sobel Filter Problems

- Poor Localization (Trigger response in multiple adjacent pixels)
- Thresholding value favors certain directions over others
 - Can miss oblique edges more than horizontal or vertical edges
 - False negatives
What we will learn today

• Edge detection
• Image Gradients
• A simple edge detector
• Sobel Edge detector
• Canny edge detector
• Hough Transform
Canny edge detector

- This is probably the most widely used edge detector in computer vision
- Theoretical model: step-edges corrupted by additive Gaussian noise
- Canny has shown that the first derivative of the Gaussian closely approximates the operator that optimizes the product of signal-to-noise ratio and localization

Canny edge detector

- Suppress Noise
- Compute gradient magnitude and direction
- Apply Non-Maximum Suppression
 - Assures minimal response
- Use hysteresis and connectivity analysis to detect edges
Example

• original image
Derivative of Gaussian filter

x-direction

y-direction

\[
\begin{bmatrix}
1 & 2 & 1 \\
0 & 0 & 0 \\
-1 & -2 & -1
\end{bmatrix}
\]
Compute gradients (DoG)

X-Derivative of Gaussian Y-Derivative of Gaussian Gradient Magnitude

Source: J. Hayes
Get orientation at each pixel

\[\theta = \tan^{-1}\left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x}\right) \]

Source: J. Hayes
Compute gradients (DoG)

\[\text{X - Derivative of Gaussian} \]
\[\text{Y - Derivative of Gaussian} \]
\[\text{Gradient Magnitude} \]
Canny edge detector

- Suppress Noise
- Compute gradient magnitude and direction
- Apply Non-Maximum Suppression
 - Assures minimal response
Non-maximum suppression

- Edge occurs where gradient reaches a maxima
- Suppress non-maxima gradient even if it passes threshold
- Only eight angle directions possible
 - Suppress all pixels in each direction which are not maxima
 - Do this in each marked pixel neighborhood
Remove spurious gradients

\[|\nabla G| (x, y) \] is the gradient at pixel \((x, y) \)

\[
M(x, y) = \begin{cases}
|\nabla G| (x, y) & \text{if } |\nabla G| (x, y) > |\nabla G| (x', y') \\
& \text{and } |\nabla G| (x, y) > |\nabla G| (x'', y'') \\
0 & \text{otherwise}
\end{cases}
\]

\(x' \) and \(x'' \) are the neighbors of \(x \) along normal direction to an edge

Alper Yilmaz, Mubarak Shah Fall 2012, UCF
Non-maximum suppression

• Edge occurs where gradient reaches a maxima
• Suppress non-maxima gradient even if it passes threshold
• Only eight angle directions possible
 – Suppress all pixels in each direction which are not maxima
 – Do this in each marked pixel neighborhood
Non-maximum suppression

At q, we have a maximum if the value is larger than those at both p and at r. Interpolate to get these values.

Source: D. Forsyth
Non-max Suppression

Before After
Canny edge detector

- Suppress Noise
- Compute gradient magnitude and direction
- Apply Non-Maximum Suppression
 - Assures minimal response
- Use hysteresis and connectivity analysis to detect edges
Hysteresis thresholding

• Avoid streaking near threshold value
• Define two thresholds: Low and High
 – If less than Low, not an edge
 – If greater than High, strong edge
 – If between Low and High, weak edge
Hysteresis thresholding

If the gradient at a pixel is
• above High, declare it as an ‘strong edge pixel’
• below Low, declare it as a “non-edge-pixel”
• between Low and High
 – Consider its neighbors iteratively then declare it an “edge pixel” if it is connected to an ‘strong edge pixel’ directly or via pixels between Low and High
Hysteresis thresholding

Source: S. Seitz
Final Canny Edges
Canny edge detector

1. Filter image with x, y derivatives of Gaussian
2. Find magnitude and orientation of gradient
3. Non-maximum suppression:
 - Thin multi-pixel wide “ridges” down to single pixel width
4. Thresholding and linking (hysteresis):
 - Define two thresholds: low and high
 - Use the high threshold to start edge curves and the low threshold to continue them
Effect of σ (Gaussian kernel spread/size)

The choice of σ depends on desired behavior

- large σ detects large scale edges
- small σ detects fine features

Source: S. Seitz
<table>
<thead>
<tr>
<th>Gradients (e.g. Canny)</th>
<th>Color</th>
<th>Texture</th>
<th>Combined</th>
<th>Human</th>
</tr>
</thead>
<tbody>
<tr>
<td>Image</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
45 years of boundary detection

Source: Arbelaez, Maire, Fowlkes, and Malik. TPAMI 2011 (pdf)
What we will learn today

• Edge detection
• Image Gradients
• A simple edge detector
• Sobel Edge detector
• Canny edge detector
• Hough Transform
Intro to Hough transform

• The Hough transform (HT) can be used to detect lines.
• It was introduced in 1962 (Hough 1962) and first used to find lines in images a decade later (Duda 1972).
• The goal is to find the location of lines in images.
• **Caveat**: Hough transform can detect lines, circles and other structures ONLY if their parametric equation is known.
• It can give robust detection under noise and partial occlusion
Prior to Hough transform

- Assume that we have performed some edge detection, and a thresholding of the edge magnitude image.
- Thus, we have some pixels that may partially describe the boundary of some objects.
Detecting lines using Hough transform

• We wish to find sets of pixels that make up straight lines.
• Consider a point of known coordinates \((x_i; y_i)\)
 – There are many lines passing through the point \((x_i, y_i)\).
• Straight lines that pass that point have the form \(y_i = a \times x_i + b\)
 – Common to them is that they satisfy the equation for some set of parameters \((a, b)\)
Detecting lines using Hough transform

• This equation can obviously be rewritten as follows:
 – $b = -a^*x_i + y_i$
 – We can now consider x and y as parameters
 – a and b as variables.

• This is a line in (a, b) space parameterized by x and y.
 – So: a single point in x_1, y_1-space gives a line in (a, b) space.
 – Another point (x_2, y_2) will give rise to another line (a, b) space.
Detecting lines using Hough transform
Detecting lines using Hough transform
Detecting lines using Hough transform

- Two points \((x_1, y_1)\) and \((x_2, y_2)\) define a line in the \((x, y)\) plane.
- These two points give rise to two different lines in \((a, b)\) space.
- In \((a, b)\) space these lines will intersect in a point \((a', b')\).
- All points on the line defined by \((x_1, y_1)\) and \((x_2, y_2)\) in \((x, y)\) space will parameterize lines that intersect in \((a', b')\) in \((a, b)\) space.
Algorithm for Hough transform

• Quantize the parameter space \((a, b)\) by dividing it into cells
• This quantized space is often referred to as the accumulator cells.
• Count the number of times a line intersects a given cell.
 – For each pair of points \((x_1, y_1)\) and \((x_2, y_2)\) detected as an edge, find the intersection \((a', b')\) in \((a, b)\) space.
 – Increase the value of a cell in the range \([a_{min}, a_{max}],[b_{min}, b_{max}]\) that \((a', b')\) belongs to.
 – Cells receiving more than a certain number of counts (also called ‘votes’) are assumed to correspond to lines in \((x, y)\) space.
Output of Hough transform

• Here are the top 20 most voted lines in the image:
Other Hough transformations

• We can represent lines as polar coordinates instead of $y = ax + b$

• Polar coordinate representation:
 $x \cos \theta + y \sin \theta = \rho$

• Can you figure out the relationship between
 (x, y) and (ρ, θ)?
Other Hough transformations

• Note that lines in (x y) space are not lines in (ρ θ) space, unlike (a b) space.

• A horizontal line will have θ=0 and ρ equal to the intercept with the y-axis.

• A vertical line will have θ=90 and ρ equal to the intercept with the x-axis.
Example video

• https://youtu.be/4zHbl-fEII?t=3m35s
Concluding remarks

• Advantages:
 – Conceptually simple.
 – Easy implementation
 – Handles missing and occluded data very gracefully.
 – Can be adapted to many types of forms, not just lines

• Disadvantages:
 – Computationally complex for objects with many parameters.
 – Looks for only one single type of object
 – Can be “fooled” by “apparent lines”.
 – The length and the position of a line segment cannot be determined.
 – Co-linear line segments cannot be separated.
What we will learn today

- Edge detection
- Image Gradients
- A simple edge detector
- Sobel Edge detector
- Canny edge detector
- Hough Transform