Lecture: Tracking

Juan Carlos Niebles and Ranjay Krishna Stanford Vision and Learning Lab

Stanford University

Lecture 18 -1

What we will learn today?

- Feature Tracking
- Simple KLT tracker
- 2D transformations
- Iterative KLT tracker

Reading: [Szeliski] Chapters: 8.4, 8.5

[Fleet & Weiss, 2005] http://www.cs.toronto.edu/pub/jepson/teaching/vision/2503/opticalFlow.pdf

Stanford University

Lecture 18 -2 30-Nov-17

What we will learn today?

- Feature Tracking
- Simple KLT tracker
- 2D transformations
- Iterative KLT tracker

Reading: [Szeliski] Chapters: 8.4, 8.5

[Fleet & Weiss, 2005] http://www.cs.toronto.edu/pub/jepson/teaching/vision/2503/opticalFlow.pdf

Stanford University

Lecture 18 -3 30-Nov-17

Problem statement

Image sequence

Slide credit: Yonsei Univ.

Stanford University

Lecture 18 -4

Problem statement

Feature point detection

Slide credit: Yonsei Univ.

Stanford University

Lecture 18 -5

Problem statement

Feature point tracking

Slide credit: Yonsei Univ.

Stanford University

Lecture 18 -6

Single object tracking

Stanford University

Lecture 18 -7

Multiple object tracking

Stanford University

Lecture 18 -8

Tracking with a fixed camera

Stanford University

Lecture 18 -9

. .

Tracking with a moving camera

Stanford University

Lecture 18 -10 30-Nov-17

Tracking with multiple cameras

Stanford University

Lecture 18 -11

Challenges in Feature tracking

- Figure out which features can be tracked
 Efficiently track across frames
- Some points may change appearance over time
 - e.g., due to rotation, moving into shadows, etc.
- Drift: small errors can accumulate as appearance model is updated
- Points may appear or disappear.
 - need to be able to add/delete tracked points.

What are good features to track?

 Intuitively, we want to avoid smooth regions and edges. But is there a more is principled way to define good features?

 What kinds of image regions can we detect easily and consistently? Think about what you learnt earlier in the class.

What are good features to track?

- Can measure "quality" of features from just a single image.
- Hence: tracking Harris corners (or equivalent) guarantees small error sensitivity!

Motion estimation techniques

Optical flow

 Recover image motion at each pixel from spatio-temporal image brightness variations (optical flow)

- Feature-tracking
 - Extract visual features (corners, textured areas) and "track" them over multiple frames

Lecture 18 -15 28-Nov-17

Optical flow can help track features

Once we have the features we want to track, lucaskanade or other optical flow algorithsm can help track those features

Lecture 18 -16 30-Nov-17

Feature-tracking

Courtesy of Jean-Yves Bouguet – Vision Lab, California Institute of Technology

Stanford University

Lecture 18 -17

Feature-tracking

Courtesy of Jean-Yves Bouguet – Vision Lab, California Institute of Technology

Stanford University

Lecture 18 -18

What we will learn today?

- Feature Tracking
- Simple KLT tracker
- 2D transformations
- Iterative KLT tracker

Reading: [Szeliski] Chapters: 8.4, 8.5

[Fleet & Weiss, 2005] http://www.cs.toronto.edu/pub/jepson/teaching/vision/2503/opticalFlow.pdf

Stanford University

Lecture 18 -19 30-Nov-17

Simple KLT tracker

- 1. Find a good point to track (harris corner)
- For each Harris corner compute motion (translation or affine) between consecutive frames.
- 3. Link motion vectors in successive frames to get a track for each Harris point
- 4. Introduce new Harris points by applying Harris detector at every m (10 or 15) frames
- 5. Track new and old Harris points using steps 1-3

KLT tracker for fish

Video credit: Kanade

Stanford University

Lecture 18 -21

Tracking cars

Video credit: Kanade

Stanford University

Lecture 18 -22

Tracking movement

Video credit: Kanade

Stanford University

Lecture 18 -23

What we will learn today?

- Feature Tracking
- Simple KLT tracker
- 2D transformations
- Iterative KLT tracker

Reading: [Szeliski] Chapters: 8.4, 8.5

[Fleet & Weiss, 2005] http://www.cs.toronto.edu/pub/jepson/teaching/vision/2503/opticalFlow.pdf

Stanford University

Lecture 18 -24 30-Nov-17

Types of 2D transformations

Stanford University

Lecture 18 -25 30-Nov-17

Depending on camera and objects, choose the right transformations

- Fixed overhead cameras will see only **translation** transformations.
- Fixed cameras of a basketball game will see **similarity** transformations.
- People in pedestrian detections can see **affine** transformations.
- And moving cameras can see **projective** transformations.

Stanford University

Lecture 18 -26 30-Nov-17

Translation

- Let the initial feature be located by (x, y).
- In the next frame, it has translated to (x', y').
- We can write the transformation as:
 x' = x + b₁
 y' = y + b₂

Stanford University

Lecture 18 -27 30-Nov-17

Translation

- $x' = x + b_1$ $y' = y + b_2$
- We can write this as a matrix transformation using homogeneous coordinates:

•
$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 1 & 0 & b_1 \\ 0 & 1 & b_2 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Stanford University

Lecture 18 -28

Translation

•
$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 1 & 0 & b_1 \\ 0 & 1 & b_2 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

• We will write the above transformation:

•
$$W = \begin{bmatrix} 1 & 0 & b_1 \\ 0 & 1 & b_2 \end{bmatrix}$$

Stanford University

Lecture 18 - 29 30-Nov-17

Displacement Model for Translation

- $W(\mathbf{x}; \mathbf{p}) = \begin{bmatrix} 1 & 0 & b_1 \\ 0 & 1 & b_2 \end{bmatrix}$ • There are only two parameters:
- There are only two parameters: $p = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$
- The derivative of the transformation w.r.t. p:

•
$$\frac{\partial W}{\partial p}(x;p) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

• This is called the Jacobian.

Similarity motion

- Rigid motion includes scaling + translation.
- We can write the transformations as:
 x' = ax + b₁
 y' = ay + b₂

•
$$W = \begin{bmatrix} a & 0 & b_1 \\ 0 & a & b_2 \end{bmatrix}$$

• $\boldsymbol{p} = \begin{bmatrix} a & b_1 & b_2 \end{bmatrix}^T$

•
$$\frac{\partial W}{\partial p}(x; p) = \begin{bmatrix} x & 1 & 0 \\ y & 0 & 1 \end{bmatrix}$$

Stanford University

Lecture 18 -31 30-Nov-17

Affine motion

• Affine motion includes scaling + rotation + translation.

•
$$\mathbf{x}' = \mathbf{a}_1 \mathbf{x} + \mathbf{a}_2 \mathbf{y} + \mathbf{b} \mathbf{1}$$

 $\mathbf{y}' = \mathbf{a}_3 \mathbf{x} + \mathbf{a}_4 \mathbf{y} + \mathbf{b}_2$
• $W = \begin{bmatrix} a_1 & a_2 & b_1 \\ a_3 & a_4 & b_2 \end{bmatrix}$
• $\mathbf{p} = \begin{bmatrix} a_1 & a_2 & b_1 & a_3 & a_4 & b_2 \end{bmatrix}^T$
• $\frac{\partial W}{\partial \mathbf{p}}(\mathbf{x}; \mathbf{p}) = \begin{bmatrix} x & y & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & x & y & 1 \end{bmatrix}$

Stanford University

Lecture 18 -32

What we will learn today?

- Feature Tracking
- Simple KLT tracker
- 2D transformations
- Iterative KLT tracker

Reading: [Szeliski] Chapters: 8.4, 8.5

[Fleet & Weiss, 2005] http://www.cs.toronto.edu/pub/jepson/teaching/vision/2503/opticalFlow.pdf

Stanford University

Lecture 18 -33 30-Nov-17

Problem formulation

- Given a video sequence, find all the features and track them across the video.
- First, use Harris corner detection to find the features.
- For each feature at location $\mathbf{x} = [\mathbf{x} \ \mathbf{y}]^T$:
 - Choose a descriptor create an initial template for that feature: *T(x)*.

KLT objective

 Our aim is to minimize the difference between the template T(x) and the description of the new location of x after undergoing the transformation.

$$\sum_{\mathbf{x}} [I(W(\mathbf{x};\mathbf{p})) - T(\mathbf{x})]^2$$

- For all the features *x* in the image *ι*,
 - (I W(x; p)) is the estimate of where the features move to in the next frame after the transformation defined by W(x; p). Recall that p is our vector of parameters.

Stanford University

Lecture 18 -35 30-Nov-17

KLT objective

• Instead of minimizing this function:

$$\sum_{\mathbf{x}} [I(W(\mathbf{x};\mathbf{p})) - T(\mathbf{x})]^2$$

- We will instead represent $oldsymbol{p} = oldsymbol{p}_0 + \,\Delta oldsymbol{p}$
 - Where p_0 is going to be fixed and we will solve for Δp , which is a small value.
- We can initialize p_0 with our best guess of what the motion is and initialize Δp as zero.

A little bit of math: Taylor series

• Taylor series is defined as:

•
$$f(x + \Delta x) = f(x) + \Delta x \frac{\partial f}{\partial x} + \Delta x^2 \frac{\partial^2 f}{\partial x^2} + \dots$$

- Assuming that Δx is small.
- We can apply this expansion to the KLT tracker and only use the first two terms:

Expanded KLT objective

$$\sum_{x} [I(W(x; \boldsymbol{p}_{0} + \Delta \boldsymbol{p})) - T(x)]^{2}$$

$$\approx \sum_{x} \left[I(W(x; \boldsymbol{p}_{0})) + \nabla I \frac{\partial W}{\partial \boldsymbol{p}} \Delta \boldsymbol{p} - T(x) \right]^{2}$$

It's a good thing we have already calculated what $\frac{\partial W}{\partial p}$ would look like for affine, translations and other transformations!

Expanded KLT objective

• So our aim is to find the Δp that minimizes the following:

$$\operatorname{argmin}_{\Delta p} \sum_{x} \left[I(W(x; p_0)) + \nabla I \frac{\partial W}{\partial p} \Delta p - T(x) \right]^2$$

- Where $\nabla I = \begin{bmatrix} I_x & I_y \end{bmatrix}$
- Differentiate wrt Δp and setting it to zero: $\sum_{x} \left[\nabla I \frac{\partial W}{\partial p} \right]^{T} \left[I(W(x; p_{0})) + \nabla I \frac{\partial W}{\partial p} \Delta p - T(x) \right] = 0$

Solving for Δp

- Solving for $\Delta \boldsymbol{p}$ in: $\sum_{x} \left[\nabla I \frac{\partial W}{\partial \boldsymbol{p}} \right]^{T} \left[I(W(\boldsymbol{x}; \boldsymbol{p}_{0})) + \nabla I \frac{\partial W}{\partial \boldsymbol{p}} \Delta \boldsymbol{p} - T(\boldsymbol{x}) \right] = 0$
- we get:

$$\Delta \boldsymbol{p} = H^{-1} \sum_{x} \left[\nabla I \frac{\partial W}{\partial \boldsymbol{p}} \right]^{T} \left[T(x) - I(W(\boldsymbol{x}; \boldsymbol{p}_{0})) \right]$$

where $H = \sum_{x} \left[\nabla I \frac{\partial W}{\partial \boldsymbol{p}} \right]^{T} \left[\nabla I \frac{\partial W}{\partial \boldsymbol{p}} \right]$

Stanford University

Lecture 18 -40 30-Nov-17

Interpreting the H matrix for translation transformations

$$H = \sum_{x} \left[\nabla I \frac{\partial W}{\partial \boldsymbol{p}} \right]^{T} \left[\nabla I \frac{\partial W}{\partial \boldsymbol{p}} \right]$$

Recall that

1.
$$\nabla I = \begin{bmatrix} I_x & I_y \end{bmatrix}$$
 and

2. for translation motion,
$$\frac{\partial W}{\partial p}(x; p) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Therefore,

$$H = \sum_{x} \begin{bmatrix} I_{x} & I_{y} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \end{bmatrix}^{T} \begin{bmatrix} I_{x} & I_{y} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
$$= \sum_{x} \begin{bmatrix} I_{x}^{2} & I_{x}I_{y} \\ I_{x}I_{y} & I_{y}^{2} \end{bmatrix}$$
That's the Harris corner detector we learnt in class!!!

Stanford University

Lecture 18 -41 30-Nov-17

Interpreting the H matrix for affine transformations

Can you derive this yourself similarly to how we derived the translation transformation?

Stanford University

Lecture 18 -42 30-Nov-17

Overall KLT tracker algorithm

Given the features from Harris detector:

- 1. Initialize $oldsymbol{p}_{0}$ and \Deltaoldsymbol{p} .
- 2. Compute the initial templates T(x) for each feature.
- 3. Transform the features in the image I with $W(x; p_0)$.
- 4. Measure the error: $I(W(x; p_0)) T(x)$.
- 5. Compute the image gradients $\nabla I = \begin{bmatrix} I_x & I_y \end{bmatrix}$.
- 6. Evaluate the Jacobian $\frac{\partial W}{\partial n}$.
- 7. Compute steepest descent $\nabla I \frac{\partial W}{\partial p}$.
- 8. Compute Inverse Hessian H^{-1}
- 9. Calculate the change in parameters Δp
- 10. Update parameters $p = p_0 + \Delta p$

Iterative KLT

- Once you find a transformation for two frames, you will repeat this process for every couple of frames.
- Run Harris detector every 15-20 frames to find new features.

Lecture 18 -44 30-Nov-17

Challenges to consider

- Implementation issues
- Window size
 - Small window more sensitive to noise and may miss larger motions (without pyramid)
 - Large window more likely to cross an occlusion boundary (and it's slower)
 - 15x15 to 31x31 seems typical
- Weighting the window
 - Common to apply weights so that center matters more (e.g., with Gaussian)

What we learnt today?

- Feature Tracking
- Simple KLT tracker
- 2D transformations
- Iterative KLT tracker

Reading: [Szeliski] Chapters: 8.4, 8.5

[Fleet & Weiss, 2005] http://www.cs.toronto.edu/pub/jepson/teaching/vision/2503/opticalFlow.pdf

Stanford University

Lecture 18 -46 30-Nov-17