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What we will learn today?

* Feature Tracking

e Simple KLT tracker

e 2D transformations
* |terative KLT tracker

Reading: [Szeliski] Chapters: 8.4, 8.5

[Fleet & Weiss, 2005]
http://www.cs.toronto.edu/pub/jepson/teaching/vision/2503/opticalFlow.pdf
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Problem statement

Image sequence

Slide credit: Yonsei Univ.
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Problem statement

Feature point detection

Slide credit: Yonsei Univ.
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Problem statement

Feature point tracking

Slide credit: Yonsei Univ.
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Single object tracking
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Multiple object tracking
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Tracking with a fixed camera
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Tracking with a moving camera
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Tracking with multiple cameras
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Challenges in Feature tracking

* Figure out which features can be tracked
— Efficiently track across frames

* Some points may change appearance over
time
— e.g., due to rotation, moving into shadows, etc.

* Drift: small errors can accumulate as
appearance model is updated

* Points may appear or disappear.
— need to be able to add/delete tracked points.

Stanford University Lecture 18 -12 30-Nov-17



What are good features to track?

* |ntuitively, we want to avoid smooth regions
and edges. But is there a more is principled
way to define good features?

 What kinds of image regions can we detect
easily and consistently? Think about what you

learnt earlier in the class.
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What are good features to track?

 Can measure “quality” of features from just a
single image.

* Hence: tracking Harris corners (or equivalent)
guarantees small error sensitivity!

‘ Source: Silvio Savarese

Stanford University Lecture 18 -14 28-Nov-17



Motion estimation techniques

* Optical flow

— Recover image motion at each pixel from spatio-temporal
image brightness variations (optical flow)

* Feature-tracking

— Extract visual features (corners, textured areas) and “track”
them over multiple frames
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Optical flow can help track features

Once we have the
features we want
to track, lucas-
kanade or other
optical flow
algorithsm can
help track those
features
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Feature-tracking

Courtesy of Jean-Yves Bouguet — Vision Lab, California Institute of Technology
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Feature-tracking
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Courtesy of Jean-Yves Bouguet — Vision Lab, California Institute of Technology
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What we will learn today?

e Simple KLT tracker

Reading: [Szeliski] Chapters: 8.4, 8.5

[Fleet & Weiss, 2005]
http://www.cs.toronto.edu/pub/jepson/teaching/vision/2503/opticalFlow.pdf
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Simple KLT tracker

1. Find a good point to track (harris corner)

2. For each Harris corner compute motion
(translation or affine) between consecutive
frames.

3. Link motion vectors in successive frames to get a
track for each Harris point

4. Introduce new Harris points by applying Harris
detector at every m (10 or 15) frames

5. Track new and old Harris points using steps 1-3
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KLT tracker for fish

Video credit: Kanade
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Tracking cars

Video credit: Kanade
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Tracking movement

Video credit: Kanade

Stanford University Lecture 18 -23 30-Nov-17



What we will learn today?

e 2D transformations

Reading: [Szeliski] Chapters: 8.4, 8.5

[Fleet & Weiss, 2005]
http://www.cs.toronto.edu/pub/jepson/teaching/vision/2503/opticalFlow.pdf
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Types of 2D transformations
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Depending on camera and objects,
choose the right transformations

) / similarity projective
translation
e 4
Y /
|

Euclidean

affine

\_; X

* Fixed overhead cameras will see only translation
transformations.

* Fixed cameras of a basketball game will see similarity
transformations.

* People in pedestrian detections can see affine
transformations.

* And moving cameras can see projective transformations.
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Translation

e Let the initial feature be

D/g(x',y') ocated by (x, y).

(xy) * In the next frame, it has
translated to (X, y’).

 We can write the
transformation as:
X' =x+b,
y' =y+b,
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Translation

* X' =x+b,
Q/wa y' =y +b,

 \We can write this as a matrix
transformation using
homogeneous coordinates:

) [x’] _ [1 0 b, ;C]
yl 10 1 bl
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Translation

N .[x'lzll 0 b,
Dﬁxﬂ) yl O 1 bz

e We will write the above
transformation:

1 0 b,
0 1 b,

%

=2

cw =

Stanford University Lecture 18 -29 30-Nov-17



Displacement Model for Translation

. ~_[1 0 by
Dﬁx”y’) W(x’ p) B [O 1 bZ
* There are only two parameters:
(x,y) _ [bll
p _ b2

 The derivative of the
transformation w.r.t. p:

W ey = [L 0
op P) = g 1

 This is called the Jacobian.
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Similarity motion

* Rigid motion includes scaling + translation.
e We can write the transformations as:

X' =ax+b,
y'=ay+b,
. _Ja 0 by
W= [O a bJ
*p=la b, bl

@ =], o 1
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Affine motion

* Affine motion includes scaling + rotation +
translation.

* X’ =a;x+a,y+bl
y’=a3x+a4y+b
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What we will learn today?

e |terative KLT tracker

Reading: [Szeliski] Chapters: 8.4, 8.5

[Fleet & Weiss, 2005]
http://www.cs.toronto.edu/pub/jepson/teaching/vision/2503/opticalFlow.pdf
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Problem formulation

e Given a video sequence, find all the features
and track them across the video.

e First, use Harris corner detection to find the
features.
* For each feature at location x = [x y]":

— Choose a descriptor create an initial template for
that feature: T(x).
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KLT objective

 Our aim is to minimize the difference between
the template T(x) and the description of the new
location of x after undergoing the transformation.

D LV (x;p) -T(x)]

X

* For all the features x In the Image 1,

— (I W(x; p)) is the estimate of where the features
move to in the next frame after the transformation

defined by W (x;p). Recall that p is our vector of
parameters.
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KLT objective

* |nstead of minimizing this function:

D LV (x;p) -T(x)]

X

* We will instead representp = p, + Ap

— Where p, is going to be fixed and we will solve for
Ap, which is a small value.

* We can initialize p, with our best guess of
what the motion is and initialize Ap as zero.
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A little bit of math: Taylor series

* Taylor series is defined as:

. f(x_|_ Ax) =f(x) +Axg—£+sza—f+...

dx*

* Assuming that Ax is small.

* We can apply this expansion to the KLT tracker
and only use the first two terms:
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Expanded KLT objective

D W (x;po+ 4p)) — T

2

~ x . aW
<> 1w pe) +vi 5 P~ T

X

It’s a good thing we have already calculated what

ow . : .
— would look like for affine, translations and other

ap
transformations!
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Expanded KLT objective

* So our aim is to find the Ap that minimizes the

following:
_ ow
argmlnz [I (W(x;py)) + VI—Ap — T(x)]
Ap ap

* WhereVI= [I, I]
. Differentiate wrt Ap and setting it to zero:

z [\71 ] ’I(W(x po)) + VI z;vpv Ap — T(x)] — 0

X
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Solving for Ap

* Solving for Ap in:

> [7155] [ovepo+ %

pAp T(x)]—O

* we get:

Ap = H! Z i Z—W]T [T () = (W (x; po))]

where H = Zx[VI ] [\71
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Interpreting the H matrix for
translation transformations

b [VIaW]T [Waw

- z op op
X

Recall that

1. Vi=[l, I]and

w10
2. for translation motlon,g(x'p)_[O 1
Therefore,

H=Z[U’“ L[! Q]IT[[zx 1l 9

_ z [Ixz Iny] That’s the Harris corner
- 2 detector we learnt in
L, 1,

class!!!
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Interpreting the H matrix for affine

transformations
L 11, x> yIl, xII, yII, |

11, I, xII, I, Ik VI
xI} yId, x’I7 yII, xyl 1, yIl,
yII, I xyI I, Y1}  xyl} Yl
xI 1, — xI > X’ .ol f x*1 f xyl f
vII, yl; wld, yI, I YL

S
I
[

Can you derive this yourself similarly to how we derived
the translation transformation?
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Overall KLT tracker algorithm

Given the features from Harris detector:

Compute Inverse Hessian H™1
Calculate the change in parameters Ap
10. Update parametersp = p, + Ap

1. Initialize pyand Ap .

2. Compute the initial templates T'(x) for each feature.
3. Transform the features in the image I with W (x; p,).
4. Measure the error: I[(W (x; py)) — T(x).

5. Compute the image gradients VI = [I, [,].

6. Evaluate the Jacobian %—‘Z

7. Compute steepest descent VI aa—]::

8.

0.

Stanford University Lecture 18 -43 30-Nov-17



Ilterative KLT

* Once you find a transformation for two
frames, you will repeat this process for every
couple of frames.

* Run Harris detector every 15-20 frames to find
new features.
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Challenges to consider

* Implementation issues

e Window size

— Small window more sensitive to noise and may miss
larger motions (without pyramid)

— Large window more likely to cross an occlusion
boundary (and it’s slower)

— 15x15 to 31x31 seems typical
* Weighting the window

— Common to apply weights so that center matters
more (e.g., with Gaussian)
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What we learnt today?

* Feature Tracking

e Simple KLT tracker

e 2D transformations
* |terative KLT tracker
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