
Lecture #17: Motion

Kevin Chavez, Ben Cohen-Wang, Garrick Fernandez, Noah Jackson, Will Lauer
Department of Computer Science

Stanford University
Stanford, CA 94305

{kechavez, bencw, garrick, noahjax, wlauer}@cs.stanford.edu

1 Introduction

In this class so far we have learned a variety of tools that enable us to detect key points, recognize
objects, and use segmentation in images. However, in many cases we want to be able to perform
similar operations on video. Specifically, we are often interested not only in the location of certain
objects, but also the movement of these objects over time. This lecture focuses on how we can apply
previously covered techniques along with new methods to effectively track the motion of pixels across
many images, with applications in areas such as self-driving cars, robots, and security systems to
name a few.

2 Optical Flow and Key Assumptions

2.1 Optical Flow

Put simply, optical flow is the movement of pixels over time. The goal of optical flow is to generate a
motion vector for each pixel in an image between t0 and t1 by looking at two images I0 and I1. By
computing a motion vector field between each successive frame in a video, we can track the flow
of objects, or, more accurately, "brightness patterns" over extended periods of time. However, it is
important to note that while optical flow aims to represent the motion of image patterns, it is limited
to representing the apparent motion of these patterns. This nuanced difference is explained more in
depth in the Assumptions and Limitations section.

2.2 Assumptions and Limitations

2.2.1 Apparent Motion

Given a two dimensional image, optical flow can only represent the apparent motion of brightness
patterns, meaning that the movement vectors of optical flow can be the result of a variety of actions.
For instance, variable lighting can cause strong motion vectors on static objects, and movement into
or out of the frame cannot be captured by the 2D motion vectors of optical flow. One example of an
issue poorly dealt with by optical flow is the aperture problem.

Computer Vision: Foundations and Applications (CS 131, 2017), Stanford University.

Figure 1: In the aperture problem, the line appears to have moved to the right when only in the context
of the frame, but the true motion of the line was down and to the right. The aperture problem is a
result of optical flow being unable to represent motion along an edge–an issue that can lead to other
errors in motion estimation as well.

2.2.2 Brightness Consistency

As optical flow can only represent apparent motion, to correctly track the motion of points on an
image we must assume that these points remain at the same brightness between frames. The equation
for this brightness consistency equation is as follows

I(x, y, t− 1) = I(x+ u(x, y), y + v(x, y), t)

where u(x,y) represents the horizontal motion of a point and v(x,y) represents the vertical motion.

2.2.3 Small Motion

Optical flow assumes that points do not move very far between consecutive images. This is often a
safe assumption, as videos are typically comprised of 20+ frames per second, so motion between
individual frames is small. However, in cases where the object is very fast or close to the camera this
assumption can still prove to be untrue. To understand why this assumption is necessary, we must
consider the Brightness Consistency equation defined above. When trying to solve this equation, it
is useful to linearize the right side using a Taylor expansion. This yields

I(x+ u(x, y), y + v(x, y), t) ≈ I(x, y, t− 1) + Ix · u(x, y) + Iy · v(x, y) + It

Linearizing in this way allows us to solve for the u and v motion vectors we want, but in this case we
have only included the first order Taylor series terms. When motion is large between frames, these
terms do a poor job of capturing the entire motion, thus leading to inaccurate u,v. More information
about higher order derivative constraints can be found in references [1], page 12.

2.2.4 Spatial Coherence

Spatial coherence is the assumption that nearby pixels will move together, typically because they are
part of the same object. To see why this assumption is necessary, consider the equation for optical
flow as defined above

I(x+ u(x, y), y + v(x, y), t) ≈ I(x, y, t− 1) + Ix · u(x, y) + Iy · v(x, y) + It

I(x+ u(x, y), y + v(x, y), t)− I(x, y, t− 1) = Ix · u(x, y) + Iy · v(x, y) + It
Giving us

Ix · u+ Iy · v + It ≈ 0

5I · [u v]T + It = 0

Ignoring the meaning of this derivation for the moment, it is clear that we do not have enough
equations to find both u and v at every single pixel. Assuming that pixels move together allows us to
use many more equations with the same [u v], making it possible to solve for the motion of pixels in
this neighborhood.

2

3 Lucas-Kanade

Recovering image motion given by (u, v) in the above equation requires at least two equations per
pixel. To achieve this, the Lucas-Kanade [1] technique for image tracking relies on an additional
constraint — spatial coherence.

The spatial coherence constraint is applied to a pixel using a window of size k× k. The assumption is
that the neighboring pixels in this window will have the same (u, v). For example, in a 5x5 window
the following equations apply:

0 = It(pi) +∇I(pi) · [u v]


Ix(p1) Iy(p1)
Ix(p2) Iy(p2)

...
...

Ix(p25) Iy(p25)


This produces an overly-constrained system of linear equations of the form Ad = b. Using a least
squares method for solving over-constrained systems, we reduce the problem to solving for d in
(ATA)d = AT b. More explicitly the system to solve is reduced to[∑

IxIx
∑
IxIy∑

IyIx
∑
IyIy

] [
u
v

]
= −

[∑
IxIt∑
IyIt

]
ATA AT b

3.1 Condition for an Existing Solution

In order to solve the system following conditions should hold:

• ATA should be invertible

• ATA should not be too small due to noise.

Eigenvalues λ1 and λ2 of ATA should not be too small

• ATA should be well-conditioned

i.e λ1/λ2 should not be too large (for λ1 > λ2)

3.2 Geometric Interpretation

It should be evident that the least squares system of equations above produce a second moment matrix
M = ATA. In fact, this is the Harris matrix for corner detection.

ATA =

[∑
IxIx

∑
IxIy∑

IyIx
∑
IyIy

]
=
∑[

Ix
Iy

]
[Ix Iy] =

∑
∇I(∇I)T = M

We can relate the conditions above for solving the motion field [u v] to tracking corners detected
by the Harris matrix M . In particular, the eigenvectors and eigenvalues of M = ATA relate to the
direction and magnitude of a possible edge in a region.

Using this interpretation, it is apparent that an ideal region for Lucas-Kanade optical flow estimation
is a corner. Visually, if λ1 and λ2 are too small this means the region is too “flat”. If λ1 >> λ2, the
method suffers from the aperture problem, and may fail to solve for correct optical flow.

3

Figure 2: Conditions for a solvable matrix ATA may be interpreted as different edge regions
depending on the relation between λ1 and λ2. Corner regions produce more optimal conditions.

Figure 3: Example of regions with large λ1 and small λ2 (left), small λ1 and smallλ2 (center, low
texture region), large λ1 and large λ2 (right, high texure region)

3.3 Error in Lucas-Kanade

The Lucas-Kanade method is constrained under the assumptions of optical flow. Supposing that ATA
is easily invertible and that there is not much noise in the image, errors may still arise when:

• Brightness constancy is not satisfied, meaning that a pixel may change intensity from
different time steps.

• The motion is not small or and does not change gradually over time.

• Spatial coherence is not satisfied, meaning neighboring pixels do not move alike.
This may arise due to in an inappropriately sized window (choosing bad k).

3.4 Improving Accuracy

From the many assumptions made above, Lucas-Kanade can improve its accuracy by including the
higher order terms previously dropped in the Taylor expansion approximation for the brightness
constancy equation. This loosens the assumptions of small motion and more accurately reflects
optical flow. Now, the problem to be solved is:

4

I(x+ u, y + v) = I(x, y) + Ixu+ Iyv + higher order terms− It−1(x, y)

This is a polynomial root finding problem and can be solved with an iterative approach using Newton’s
method.

In summary, the refined Iterative Lucas-Kanade Algorithm may be applied as:

1. Estimate velocity at each pixel by solving Lucas-Kanade equations.
2. Warp I(t− 1) towards I(t) using the estimated flow field and image warping techniques.
3. Repeat until convergence.

4 Horn-Schunk

4.1 Horn-Schunk Method for Optical Flow

The Horn-Schunk method for computing optical flow formulates flow as the following global energy
function which should be minimized with respect to u(x, y) and v(x, y).

E =

∫ ∫
[(Ixu+ Iyv + It)

2 + α2(||∇u||2 + ||∇v||2)]dxdy

The first term of this energy function reflects the brightness constancy assumption, which states that
the brightness of each pixel remains the same between frames, though the location of the pixel may
change. According to this assumption, Ixu+ Iyv + It should be zero. The square of this value is
included in the energy function to ensure that this value is as close to zero as possible, and thus u and
v comply with the brightness constancy assumption.

The second term of this energy function reflects the small motion assumption, which states that
the points move by small amounts between frames. The squares of the magnitudes of u and v are
included in the energy function to encourage smoother flow with only small changes to the position
of each point. The regularization constant α is included to control smoothness, with larger values of
α leading to smoother flow.

To minimize the energy function, we take the derivative with respect to u and v and set to zero. This
yields the following two equations

Ix(Ixu+ Iyv + It)− α2∆u = 0

Iy(Ixu+ Iyv + It)− α2∆v = 0

where ∆ = ∂2

∂x2 + ∂2

∂y2 is called the Lagrange operator, which in practice is computed as

∆u(x, y) = ū(x, y)− u(x, y)

where ū(x, y) is the weighted average of u in a neighborhood around (x, y). Substituting this
expression for the Lagrangian in the two equations above yields

(I2x + α2)u+ IxIyv = α2ū− IxIt
IxIyu+ (I2y + α2)v = α2v̄ − IyIt

which is a linear equation in u and v for each pixel.

4.2 Iterative Horn-Schunk

Since the solution for u and v for each pixel (x, y) depends on the optical flow values in a neighbor-
hood around (x, y), to obtain accurate values for u and v we must recalculate u and v iteratively once
the neighbors have been updated. We can iteratively solve for u and v using

uk+1 = ūk − Ix(Ixū
k + Iy v̄

k + It)

α2 + I2x + I2y

vk+1 = v̄k − Iy(Ixū
k + Iy v̄

k + It)

α2 + I2x + I2y

where ūk and v̄k are the values for ū and v̄ calculated during the k’th iteration, and uk+1 and vk+1

are the updated values for u and v for the next iteration.

5

4.3 Smoothness Regularization

The smoothness regularization term ||∇u||2 + ||∇v||2 in the energy function encourages minimizing
change in optical flow between nearby points. With this regularization term, in texture free regions
there is no optical flow, and on edges, points will flow to the nearest points, solving the aperture
problem.

4.4 Dense Optical Flow with Michael Black’s Method

Michael Black extended the Horn-Schunk method by replacing the regularization term ||∇u||2 +
||∇v||2 which is a quadratic function of the magnitudes of the gradients of u and v

with the following function

5 Pyramids for Large Motion

Revisiting Lucas-Kanade, recall that one of our original assumptions was that there would be small
motion of points between consecutive frames. This assumption causes the algorithm to fall apart
when dealing with large motion:

6

Notice in the graphic above, Lucas-Kanade can’t find a consistent vector for the flow of the tree trunk.
In order to correct for this, we can apply a tactic where we apply Lucas-Kanade iteratively to a lower-
resolution version of the image, similar to how we created image pyramids for our sliding-window
feature detector.

Now, when we try to find the flow vector, the small motion condition is fulfilled, as the downsampled
pixels move less from frame to consecutive frame than pixels in the higher resolution image. Here is
another example from the slides using Lucas-Kanade with pyramids:

7

Notice how the flow vectors now point mostly in the same direction, indicating that the tree trunk is
moving in a consistent direction.

6 Common Fate

We can gain more information about an image by analyzing it through the the lens of common fate,
which in this context is the idea that each pixel in a given segment of the image will move in a similar
manner. Our goal is to identify the image segments, or "layers", that move together.

6.1 Identify Layers

We compute layers in an image by dividing the image into blocks and grouping based on the similarity
of their affine motion parameters. For each block, finding the vector a that minimizes

Err(a) =
∑

[Ix(a1 + a2x+ a3y) + Iy(a4 + a5x+ a6y) + It]
2

for all pixels (x, y) in each block.

The above equation is derived from two parts: (1) the brightness constancy equation, and (2) the
components of affine motion:

Ixu(x, y) + Iyv(x, y) + It ≈ 0

Ix, Iy, It are the gradients of the image with respect to the x direction, y direction, and time,
respectively. u(x, y) and v(x, y) are the components of affine motion in the horizontal and vertical
directions:

u(x, y) = a1 + a2x+ a3y

v(x, y) = a4 + a5x+ a6y

From there, we map our parameter vectors ai into motion parameter space and perform k-means
clustering on the affine motion parameter vectors.

8

The final centers of the k-means clustering are the parameters a1...a6 that minimize the above error
function, and the vectors ai in each grouping correspond to the original blocks that should be grouped
in a single layer. Intuitively, layers should be comprised of blocks that have similar parameters, as
that implies their affine motion is similar.

References
[1] Bruce D Lucas, Takeo Kanade, et al. An iterative image registration technique with an application to stereo

vision. 1981.

9

	Introduction
	Optical Flow and Key Assumptions
	Optical Flow
	Assumptions and Limitations
	Apparent Motion
	Brightness Consistency
	Small Motion
	Spatial Coherence

	Lucas-Kanade
	Condition for an Existing Solution
	Geometric Interpretation
	Error in Lucas-Kanade
	Improving Accuracy

	Horn-Schunk
	Horn-Schunk Method for Optical Flow
	Iterative Horn-Schunk
	Smoothness Regularization
	Dense Optical Flow with Michael Black's Method

	Pyramids for Large Motion
	Common Fate
	Identify Layers

