Lecture: Motion

Juan Carlos Niebles and Ranjay Krishna Stanford Vision and Learning Lab

Stanford University **Lecture 17 -1**

What we will learn today?

- Optical flow
- Lucas-Kanade method
- Horn-Schunk method
- Pyramids for large motion
- Common fate
- Applications

Reading: [Szeliski] Chapters: 8.4, 8.5

[Fleet & Weiss, 2005] http://www.cs.toronto.edu/pub/jepson/teaching/vision/2503/opticalFlow.pdf

Stanford University **Lecture 17 -2**

What we will learn today?

• Optical flow

- Horn-Schunk method
- Lucas-Kanade method
- Pyramids for large motion
- Common fate
- Applications

Reading: [Szeliski] Chapters: 8.4, 8.5

[Fleet & Weiss, 2005] http://www.cs.toronto.edu/pub/jepson/teaching/vision/2503/opticalFlow.pdf

Stanford University **Lecture 17 -3**

From images to videos

- A video is a sequence of frames captured over time
- Now our image data is a function of space (x, y) and time (t)

Stanford University **Lecture 17 -4**

Why is motion useful?

Stanford University **Lecture 17 -5**

Why is motion useful?

Stanford University **Lecture 17 -6**

Optical flow

- Definition: optical flow is the *apparent* motion of brightness patterns in the image
- Note: apparent motion can be caused by lighting changes without any actual motion
	- $-$ Think of a uniform rotating sphere under fixed lighting vs. a stationary sphere under moving illumination

GOAL: Recover image motion at each pixel from optical flow

Stanford University **Lecture 17 -7**

Optical flow

Picture courtesy of Selim Temizer - Learning and Intelligent Systems (LIS) Group, MIT

Stanford University **Lecture 17 -8**

Estimating optical flow

- Given two subsequent frames, estimate the apparent motion field $u(x,y)$, $v(x,y)$ between them
- Key assumptions
	- **Brightness constancy:** projection of the same point looks the same in every frame
	- **Small motion:** points do not move very far
	- **Spatial coherence:** points move like their neighbors

Stanford University **Lecture 17 -9**

Key Assumptions: small motions

Assumption:

The image motion of a surface patch changes gradually over time.

Stanford University **Lecture 17 -10**

Key Assumptions: spatial coherence

Assumption

- * Neighboring points in the scene typically belong to the same surface and hence typically have similar motions.
- * Since they also project to nearby points in the image, we expect spatial coherence in image flow.

Stanford University **Lecture 17 -11**

* Slide from Michael Black, CS143 2003

Key Assumptions: brightness Constancy

Assumption

Image measurements (e.g. brightness) in a small region remain the same although their location may change.

$$
I(x+u, y+v, t+1) = I(x, y, t)
$$

(assumption)

Stanford University **Lecture 17 -12**

The brightness constancy constraint

$$
(x, y)
$$

displacement = (u, v)

$$
(x + u, y + v)
$$

$$
I(x, y, t-1)
$$

$$
I(x, y, t)
$$

• Brightness Constancy Equation:

$$
I(x, y, t-1) = I(x + u(x, y), y + v(x, y), t)
$$

Linearizing the right side using Taylor expansion:

$$
I(x+u, y+v, t) \approx I(x, y, t-1) + \begin{bmatrix} I_x \\ I_y \end{bmatrix} u(x, y) + I_y \cdot v(x, y) + \begin{bmatrix} I_t \\ I_t \end{bmatrix}
$$

\n
$$
I(x+u, y+v, t) - I(x, y, t-1) = I_x \cdot u(x, y) + I_y \cdot v(x, y) + I_t
$$

\nHence, $I_x \cdot u + I_y \cdot v + I_t \approx 0 \implies \nabla I \cdot [u \ v]^T + I_t = 0$

Stanford University **Lecture 17 -13**

Filters used to find the derivatives

Stanford University **Lecture 17 -14**

The brightness constancy constraint

Can we use this equation to recover image motion (u,v) at each pixel?

$$
\nabla I \cdot \left[u \ v \right]^T + I_t = 0
$$

How many equations and unknowns per pixel? •One equation (this is a scalar equation!), two unknowns (u,v)

The component of the flow perpendicular to the gradient (i.e., parallel to the edge) cannot be measured gradient

> If (*u*, *v*) satisfies the equation, so does (*u+u'* , *v+v'*) if $\nabla I \cdot \left[u' \ v' \right]^T = 0$

Stanford University **Lecture 17 -15**

The aperture problem

Stanford University **Lecture 17 -16**

The aperture problem

Perceived motion

Stanford University **Lecture 17 - 17**

The barber pole illusion

http://en.wikipedia.org/wiki/Barberpole_illusion

Stanford University **Lecture 17 -18**

The barber pole illusion

http://en.wikipedia.org/wiki/Barberpole_illusion

Stanford University **Lecture 17 -19**

What we will learn today?

- Optical flow
- Lucas-Kanade method
- Horn-Schunk method
- Pyramids for large motion
- Common fate
- Applications

Reading: [Szeliski] Chapters: 8.4, 8.5

[Fleet & Weiss, 2005] http://www.cs.toronto.edu/pub/jepson/teaching/vision/2503/opticalFlow.pdf

Stanford University Lecture 17 - 20

Solving the ambiguity...

B. Lucas and T. Kanade. An iterative image registration technique with an application to stereo vision. In *Proceedings of the International Joint Conference on Artificial Intelligence*, pp. 674– 679, 1981.

- How to get more equations for a pixel?
- **Spatial coherence constraint:**
- Assume the pixel's neighbors have the same (u,v)
	- $-$ If we use a 5x5 window, that gives us 25 equations per pixel

$$
0 = I_t(\mathbf{p_i}) + \nabla I(\mathbf{p_i}) \cdot [u \ v]
$$

$$
\begin{bmatrix}\nI_x(\mathbf{p}_1) & I_y(\mathbf{p}_1) \\
I_x(\mathbf{p}_2) & I_y(\mathbf{p}_2) \\
\vdots & \vdots \\
I_x(\mathbf{p}_{25}) & I_y(\mathbf{p}_{25})\n\end{bmatrix}\n\begin{bmatrix}\nu \\
v\n\end{bmatrix} = -\n\begin{bmatrix}\nI_t(\mathbf{p}_1) \\
I_t(\mathbf{p}_2) \\
\vdots \\
I_t(\mathbf{p}_{25})\n\end{bmatrix}
$$

Stanford University **Lecture 17 -21**

Lucas-Kanade flow

• Overconstrained linear system:

$$
\begin{bmatrix}\nI_x(\mathbf{p}_1) & I_y(\mathbf{p}_1) \\
I_x(\mathbf{p}_2) & I_y(\mathbf{p}_2) \\
\vdots & \vdots \\
I_x(\mathbf{p}_{25}) & I_y(\mathbf{p}_{25})\n\end{bmatrix}\n\begin{bmatrix}\nu \\
v\n\end{bmatrix} = -\n\begin{bmatrix}\nI_t(\mathbf{p}_1) \\
I_t(\mathbf{p}_2) \\
\vdots \\
I_t(\mathbf{p}_{25})\n\end{bmatrix}
$$

$$
\underset{25 \times 2}{A} \underset{2 \times 1}{d} = \underset{25 \times 1}{b}
$$

Stanford University **Lecture 17 -22**

Lucas-Kanade flow

• Overconstrained linear system

$$
\begin{bmatrix}\nI_x(\mathbf{p}_1) & I_y(\mathbf{p}_1) \\
I_x(\mathbf{p}_2) & I_y(\mathbf{p}_2) \\
\vdots & \vdots \\
I_x(\mathbf{p}_{25}) & I_y(\mathbf{p}_{25})\n\end{bmatrix}\n\begin{bmatrix}\nu \\
v\n\end{bmatrix} = -\n\begin{bmatrix}\nI_t(\mathbf{p}_1) \\
I_t(\mathbf{p}_2) \\
\vdots \\
I_t(\mathbf{p}_{25})\n\end{bmatrix}\n\begin{bmatrix}\nA & d = b \\
25 \times 2 & 2 \times 1 & 25 \times 1 \\
25 \times 2 & 2 \times 1 & 25 \times 1\n\end{bmatrix}
$$

Least squares solution for *d* given by $(A^T A)$ $d = A^T b$

$$
\begin{bmatrix} \sum I_x I_x & \sum I_x I_y \\ \sum I_x I_y & \sum I_y I_y \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = - \begin{bmatrix} \sum I_x I_t \\ \sum I_y I_t \end{bmatrix}
$$

$$
A^T A
$$

The summations are over all pixels in the $K \times K$ window

Stanford University **Lecture 17 -23**

23 28-Nov-17

Conditions for solvability

 $-$ Optimal (u, v) satisfies Lucas-Kanade equation $\left[\begin{array}{cc} \sum I_x I_x & \sum I_x I_y \\ \sum I_x I_y & \sum I_y I_y \end{array}\right] \left[\begin{array}{c} u \\ v \end{array}\right] = -\left[\begin{array}{c} \sum I_x I_t \\ \sum I_y I_t \end{array}\right]$

When is This Solvable?

• ATA should be invertible

 $A^T A$

- **A^TA** should not be too small due to noise
	- $-$ eigenvalues λ_1 and λ_2 of **A^TA** should not be too small
- **ATA** should be well-conditioned
	- λ Λ λ λ should not be too large (λ τ = larger eigenvalue)

Does this remind anything to you?

Stanford University **Lecture 17 -24**

 $A^T h$

 $M = A^TA$ is the *second moment matrix*! (Harris corner detector...)

$$
A^T A = \left[\begin{array}{cc} \sum I_x I_x & \sum I_x I_y \\ \sum I_x I_y & \sum I_y I_y \end{array} \right] = \sum \left[\begin{array}{c} I_x \\ I_y \end{array} \right] [I_x I_y] = \sum \nabla I (\nabla I)^T
$$

- Eigenvectors and eigenvalues of A^TA relate to edge direction and magnitude
	- The eigenvector associated with the larger eigenvalue points in the direction of fastest intensity change
	- The other eigenvector is orthogonal to it

Stanford University **Lecture 17 -25**

25 28-Nov-17

Interpreting the eigenvalues

Classification of image points using eigenvalues of the second moment matrix:

 λ_1

26 28-Nov-17

Stanford University **Lecture 17 -26**

Edge

-
- large λ_1 , small λ_2

Stanford University **Lecture 17 - 27**

Low-texture region

– small λ_1 , small λ_2

Stanford University **Lecture 17 - 28**

High-texture region

– large λ_1 , large λ_2

Stanford University **Lecture 17 - 29**

29 28-Nov-17

Errors in Lukas-Kanade

What are the potential causes of errors in this procedure?

- Suppose ATA is easily invertible
- $-$ Suppose there is not much noise in the image
- When our assumptions are violated
	- Brightness constancy is **not** satisfied
	- The motion is **not** small
	- A point does **not** move like its neighbors
		- window size is too large
		- what is the ideal window size?

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003

Improving accuracy

• Recall our small motion assumption

 $0 = I(x + u, y + v) - I_{t_1}(x, y)$

 $\approx I(x,y) + I_x u + I_y v - I_{t-1}(x,y)$

- This is not exact
	- To do better, we need to add higher order terms back in:

 $I(x,y) + I_x u + I_y v +$ higher order terms $-I_{t-1}(x,y)$

- This is a polynomial root finding problem
	- Can solve using **Newton's method (out of scope for this class)**
	- Lukas-Kanade method does one iteration of Newton's method
		- Better results are obtained via more iterations

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003

Stanford University **Lecture 17 -31**

Iterative Refinement

- Iterative Lukas-Kanade Algorithm
	- 1. Estimate velocity at each pixel by solving Lucas-Kanade equations
	- 2. Warp I(t-1) towards I(t) using the estimated flow field

- use image warping techniques

3. Repeat until convergence

When do the optical flow assumptions fail?

In other words, in what situations does the displacement of pixel patches

not represent physical movement of points in space?

- 1. Well, TV is based on illusory motion
	- the set is stationary yet things seem to move
- 2. A uniform rotating sphere
	- nothing seems to move, yet it is rotating
- 3. Changing directions or intensities of lighting can make things seem to move – for example, if the specular highlight on a rotating sphere moves.
- 4. Muscle movement can make some spots on a cheetah move opposite direction of motion. – And infinitely more break downs of optical flow.

Stanford University **Lecture 17 -33**

What we will learn today?

- Optical flow
- Lucas-Kanade method
- Horn-Schunk method
- Pyramids for large motion
- Common fate
- Applications

Reading: [Szeliski] Chapters: 8.4, 8.5

[Fleet & Weiss, 2005] http://www.cs.toronto.edu/pub/jepson/teaching/vision/2503/opticalFlow.pdf

Stanford University **Lecture 17 -34**

Horn-Schunk method for optical flow

• The flow is formulated as a global energy function which is should be minimized:

$$
E=\iint\left[(I_xu+I_yv+I_t)^2+\alpha^2(\|\nabla u\|^2+\|\nabla v\|^2)\right]\mathrm{d}x\mathrm{d}y
$$

Horn-Schunk method for optical flow

• The flow is formulated as a global energy function which is should be minimized:

$$
E=\iint \left[I_xu+I_yv+I_t\right]^2+\alpha^2(\|\nabla u\|^2+\|\nabla v\|^2)\right]\mathrm{d}x\mathrm{d}y
$$

• The first part of the function is the brightness consistency.
• The flow is formulated as a global energy function which is should be minimized:

$$
E=\iint\left[(I_xu+I_yv+I_t)^2+\alpha^2\sqrt{\|\nabla u\|^2+\|\nabla v\|^2}\right]\mathrm{d}x\mathrm{d}y
$$

• The second part is the smoothness constraint. It's trying to make sure that the changes between frames are small.

• The flow is formulated as a global energy function which is should be minimized:

$$
E=\iint\left[(I_xu+I_yv+I_t)^2\,\left[-\alpha^2\!\left(\|\nabla u\|^2+\|\nabla v\|^2\right)\right]\mathrm{d}x\mathrm{d}y\right.
$$

• α is a regularization constant. Larger values of α lead to smoother flow.

• The flow is formulated as a global energy function which is should be minimized:

$$
E=\iint\left[(I_xu+I_yv+I_t)^2+\alpha^2(\|\nabla u\|^2+\|\nabla v\|^2)\right]\mathrm{d}x\mathrm{d}y
$$

• By taking the derivative with respect to u and v, we get the following 2 equations:

$$
I_x(I_xu+I_yv+I_t)-\alpha^2\Delta u=0\\ I_y(I_xu+I_yv+I_t)-\alpha^2\Delta v=0
$$

• By taking the derivative with respect to u and v, we get the following 2 equations:

$$
I_x(I_xu+I_yv+I_t)-\alpha^2\Delta u=0\\ I_y(I_xu+I_yv+I_t)-\alpha^2\Delta v=0
$$

• Where $\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$ is called the Lagrange operator. In practice, it is measured using:

$$
\Delta u(x,y)=\overline{u}(x,y)-u(x,y)
$$

where $\overline{u}(x, y)$ is the weighted average of u measured at (x, y) .

- Now we substitute $\Delta u(x,y) = \overline{u}(x,y) u(x,y)$ in: $I_x(I_xu+I_vv+I_t)-\alpha^2\Delta u=0$ $I_y(I_xu+I_yv+I_t)-\alpha^2\Delta v=0$
- To get:

$$
(I_x^2+\alpha^2)u+I_xI_yv=\alpha^2\overline{u}-I_xI_t\\ I_xI_yu+(I_y^2+\alpha^2)v=\alpha^2\overline{v}-I_yI_t
$$

• Which is linear in u and y and can be solved for each pixel individually.

28-Nov-17

Stanford University **Lecture 17 -41**

Iterative Horn-Schunk

- But since the solution depends on the neighboring values of the flow field, it must be repeated once the neighbors have been updated.
- So instead, we can iteratively solve for u and v using: $u^{k+1} = \overline{u}^k - \frac{I_x (I_x \overline{u}^k + I_y \overline{v}^k + I_t)}{\alpha^2 + I_x^2 + I_y^2}$ $v^{k+1}=\overline{v}^k-\frac{I_y(I_x\overline{u}^k+I_y\overline{v}^k+I_t)}{\alpha^2+I_x^2+I_y^2}$

Stanford University **Lecture 17 -42**

What does the smoothness regularization do anyway?

- It's a sum of squared terms (a Euclidian distance measure).
- We're putting it in the expression to be minimized.
- => In texture free regions, *there is no optical flow*
- => On edges, points will flow to nearest points, solving the aperture problem.

Slide credit: Sebastian Thurn

Stanford University **Lecture 17 -43**

Dense Optical Flow with Michael Black's method

- Michael Black took Horn-Schunk's method one step further, starting from the regularization constant: $\|\nabla u\|^2 + \|\nabla v\|^2$
- Which looks like a quadratic: \setminus
- And replaced it with this:

• Why does this regularization work better?

What we will learn today?

- Optical flow
- Lucas-Kanade method
- Horn-Schunk method
- Pyramids for large motion
- Common fate
- Applications

• Key assumptions (Errors in Lucas-Kanade)

- **Small motion:** points do not move very far
- **Brightness constancy:** projection of the same point looks the same in every frame
- **Spatial coherence:** points move like their neighbors

Stanford University **Lecture 17 -46**

Revisiting the small motion assumption

- Is this motion small enough?
	- Probably not—it's much larger than one pixel ($2nd$ order terms dominate)
	- How might we solve this problem?

Stanford University **Lecture 17 -47**

Reduce the resolution!

28-Nov-17

Stanford University **Lecture 17 -48**

Coarse-to-fine optical flow estimation

Coarse-to-fine optical flow estimation

Optical Flow Results

Stanford University **Lecture 17 -51**

Optical Flow Results

• OpenCV

Stanford University **Lecture 17 -52**

What we will learn today?

- Optical flow
- Lucas-Kanade method
- Horn-Schunk method
- Pyramids for large motion
- Common fate
- Applications

• Key assumptions (Errors in Lucas-Kanade)

- **Small motion:** points do not move very far
- **Brightness constancy:** projection of the same point looks the same in every frame
- **Spatial coherence:** points move like their neighbors

Stanford University **Lecture 17 -54**

Reminder: Gestalt – common fate

Common Fate

Stanford University Entertainment of the Lecture 17 -55

Motion segmentation

• How do we represent the motion in this scene?

Stanford University **Lecture 17 -56**

Motion segmentation

J. Wang and E. Adelson. Layered Representation for Motion Analysis. *CVPR 1993*.

Break image sequence into "layers" each of which has a coherent (affine) motion

Stanford University **Lecture 17 - 57**

Affine motion

$$
u(x, y) = a_1 + a_2x + a_3y
$$

$$
v(x, y) = a_4 + a_5x + a_6y
$$

• Substituting into the brightness constancy equation:

$$
I_x \cdot u + I_y \cdot v + I_t \approx 0
$$

Stanford University **Lecture 17 -58**

Affine motion

$$
u(x, y) = a_1 + a_2x + a_3y
$$

$$
v(x, y) = a_4 + a_5x + a_6y
$$

• Substituting into the brightness constancy equation:

$$
I_{x}(a_{1} + a_{2}x + a_{3}y) + I_{y}(a_{4} + a_{5}x + a_{6}y) + I_{t} \approx 0
$$

- Each pixel provides 1 linear constraint in 6 unknowns
- Least squares minimization:

$$
Err(\vec{a}) = \sum \left[I_x(a_1 + a_2x + a_3y) + I_y(a_4 + a_5x + a_6y) + I_t \right]^2
$$

Source: Silvio Savarese

Stanford University **Lecture 17 -59**

How do we estimate the layers?

1. Obtain a set of initial affine motion hypotheses

- Divide the image into blocks and estimate affine motion parameters in each block by least squares
	- Eliminate hypotheses with high residual error
- Map into motion parameter space
- Perform k-means clustering on affine motion parameters

[–]Merge clusters that are close and retain the largest clusters to obtain a smaller set of hypotheses to describe all the motions in the scene

Stanford University **Lecture 17 -60**

28-Nov-17

How do we estimate the layers?

1. Obtain a set of initial affine motion hypotheses

- Divide the image into blocks and estimate affine motion parameters in each block by least squares
	- Eliminate hypotheses with high residual error
- Map into motion parameter space
- Perform k-means clustering on affine motion parameters

⁻Merge clusters that are close and retain the largest clusters to obtain a smaller set of hypotheses to describe all the motions in the scene

Stanford University **Lecture 17 -61**

How do we estimate the layers?

1. Obtain a set of initial affine motion hypotheses

- Divide the image into blocks and estimate affine motion parameters in each block by least squares
	- Eliminate hypotheses with high residual error
- Map into motion parameter space
- Perform k-means clustering on affine motion parameters

-Merge clusters that are close and retain the largest clusters to obtain a smaller set of hypotheses to describe all the motions in the scene

2. Iterate until convergence:

- Assign each pixel to best hypothesis
	- –Pixels with high residual error remain unassigned
- Perform region filtering to enforce spatial constraints
- Re-estimate affine motions in each region

Stanford University **Lecture 17 -62**

Example result

J. Wang and E. Adelson. Layered Representation for Motion Analysis. *CVPR 1993*.

Stanford University Lecture 17 -63

What we will learn today?

- Optical flow
- Lucas-Kanade method
- Horn-Schunk method
- Pyramids for large motion
- Common fate
- Applications

Uses of motion

- Tracking features
- Segmenting objects based on motion cues
- Learning dynamical models
- Improving video quality
	- Motion stabilization
	- Super resolution
- Tracking objects
- Recognizing events and activities

Estimating 3D structure

Stanford University **Lecture 17 -66**

Segmenting objects based on motion cues

- **Background subtraction**
	- $-$ A static camera is observing a scene
	- $-$ Goal: separate the static *background* from the moving *foreground*

Stanford University **Lecture 17 -67**

Segmenting objects based on motion cues

- Motion segmentation
	- $-$ Segment the video into multiple *coherently* moving objects

Stanford University **Lecture 17 -68**

Tracking objects

Z.Yin and R.Collins, "On-the-fly Object Modeling while Tracking," IEEE Computer Vision and Pattern *Recognition (CVPR '07), Minneapolis, MN, June 2007.*

Source: Silvio Savarese Source: Silvio Savarese

28-Nov-17

Stanford University **Lecture 17 -69**

Synthesizing dynamic textures

Copyright (c) UCLA, G. Doretto and S. Soatto, 2002

Original Synthesized

Stanford University **Lecture 17 - 70**

Super-resolution

Example: A set of low quality images

Stanford University **Lecture 17 -71**

Super-resolution

Each of these images looks like this:

Most of the test data of couple of exceptions. 1 low-temperature solder investigated (or some a manufacturing technol nonwetting of 40In40Se microstructural coarse mai cycling of 58Bi42S

Stanford University **Lecture 17 -72**
Super-resolution

The recovery result:

Most of the test data of couple of exceptions. T low-temperature solder investigated (or some of manufacturing technol nonwetting of 40In40Sr microstructural coarse mal cycling of 58Bi42Si

28-Nov-17

Stanford University **Lecture 17 -73**

Recognizing events and activities

D. Ramanan, D. Forsyth, and A. Zisserman. Tracking People by Learning their Appearance. PAMI 2007.

Stanford University **Lecture 17 - 74**

Recognizing events and activities

Juan Carlos Niebles, Hongcheng Wang and Li Fei-Fei, Unsupervised Learning of Human Action Categories Using **Spatial-Temporal Words, (***BMVC*), Edinburgh, 2006.

Stanford University **Lecture 17 - 75**

Recognizing events and activities

W. Choi & K. Shahid & S. Savarese WMC 2010

Source: Silvio Savarese Source: Silvio Savarese

Stanford University **Lecture 17 - 76**

W. Choi, K. Shahid, S. Savarese, "What are they doing? : Collective Activity Classification Using Spatio-Temporal Relationship Among People", 9th International Workshop on Visual Surveillance (VSWS09) in conjuction with ICCV 09

28-Nov-17

Stanford University **Lecture 17 - 77**

What we have learned today?

- Optical flow
- Lucas-Kanade method
- Horn-Schunk method
- Pyramids for large motion
- Common fate
- Applications

Reading: [Szeliski] Chapters: 8.4, 8.5

[Fleet & Weiss, 2005] http://www.cs.toronto.edu/pub/jepson/teaching/vision/2503/opticalFlow.pdf

Stanford University **Lecture 17 - 79**