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What we will learn today?

e Optical flow

* Lucas-Kanade method

* Horn-Schunk method

* Pyramids for large motion
e Common fate

* Applications

Reading: [Szeliski] Chapters: 8.4, 8.5

[Fleet & Weiss, 2005]
http://www.cs.toronto.edu/pub/jepson/teaching/vision/2503/opticalFlow.pdf
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What we will learn today?

e Optical flow

Reading: [Szeliski] Chapters: 8.4, 8.5

[Fleet & Weiss, 2005]
http://www.cs.toronto.edu/pub/jepson/teaching/vision/2503/opticalFlow.pdf
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From images to videos

 Avideo is a sequence of frames captured over time
 Now our image data is a function of space (x, y) and time (t)

— I(Xayat)
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Why is motion useful?

Stanford University Lecture 17 -5 28-Nov-17



Why is motion useful?
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Optical flow

e Definition: optical flow is the apparent motion of
brightness patterns in the image

* Note: apparent motion can be caused by lighting
changes without any actual motion

— Think of a uniform rotating sphere under fixed lighting
vs. a stationary sphere under moving illumination

GOAL: Recover image motion at each pixel from
optical flow

| Source: Silvio Savarese
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Optical flow

Vector field function of the
spatio-temporal image
brightness variations

Picture courtesy of Selim Temizer - Learning and Intelligent Systems (LIS) Group, MIT
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Estimating optical flow

e ) o °

N o
o— o z ° .
](xayat_l) I(XJJ)

e Given two subsequent frames, estimate the apparent motion field
u(x,y), v(x,y) between them

e Key assumptions

e Brightness constancy: projection of the same point looks the same in
every frame

e Small motion: points do not move very far
e Spatial coherence: points move like their neighbors

| Source: Silvio Savarese
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Key Assumptions: small motions

Assumption:
The image motion of a surface patch changes gradually over time.
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Key Assumptions: spatial coherence

S
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Image Plane

Assumption
* Neighboring points in the scene typically belong to the same
surface and hence typically have similar motions.
* Since they also project to nearby points in the image, we expect
spatial coherence in image flow.
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Key Assumptions: brightness Constancy

Assumption

Image measurements (e.g. brightness) in a small region remain
the same although their location may change.

I(x+u,y+v,t+1)=1(x,y,t)

(assumption)
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The brightness constancy constraint

(z,y)
O\dlsplacement = (u,v)

(2 + u.y+v)
](xayat_l) I(xayat)

* Brightness Constancy Equation:
I(x,y,t=1)=I(x+ux,y),y+v(x,y),t)

Linearizing the right side using Taylor expansion:

,....lmage derivative alongx ...
I(x+u,y+v,t)=I1(x,y,t- 1)+I u(x y)+1,-v(x, y)+I

I(x+u,y+v,t)-I(x,y,t-1)=1, u(xy)+[ v(xy)+I

| Source: Silvio Savarese

Hence, [ -u+I, -v+I,~0 — VI |u V] +1,=0
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Filters used to find the derivatives

B l—f ti -1t first image -1 -1 first i
irst image
11 g 11 B _J irst image
1 1] , —1 1] 11 .
second image second image second image
-1 1 11 11
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The brightness constancy constraint

Can we use this equation to recover image motion (u,v) at each

pixel? ,
VI-[u v] +1 =0

* How many equations and unknowns per pixel?
*One equation (this is a scalar equation!), two unknowns (u,v)

The component of the flow perpendicular to the gradient (i.e.,
parallel to the edge) cannot be measured gradient

(u,v)

If (u, v) satisfies the equation,
so does (u+u’, v+v’) if

I
—.

VI'[M' V']T —0 (u,lv,)\.~(u+u’,v+v’)

edge
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The aperture problem

\ Actual motion

| Source: Silvio Savarese
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The aperture problem

Perceived motion

| Source: Silvio Savarese
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The barber pole illusion

/,

http://en.wikipedia.org/wiki/Barberpole illusion

‘ Source: Silvio Savarese
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The barber pole illusion

http://en.wikipedia.org/wiki/Barberpole illusion

‘ Source: Silvio Savarese
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What we will learn today?

 Lucas-Kanade method

Reading: [Szeliski] Chapters: 8.4, 8.5

[Fleet & Weiss, 2005]
http://www.cs.toronto.edu/pub/jepson/teaching/vision/2503/opticalFlow.pdf
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Solving the ambiguity...

B. Lucas and T. Kanade. An iterative image registration technique with an application to stereo
vision. In Proceedings of the International Joint Conference on Artificial Intelligence, pp. 674—
679, 1981.

* How to get more equations for a pixel?
* Spatial coherence constraint:

«  Assume the pixel’s neighbors have the same (u,v)
— If we use a 5x5 window, that gives us 25 equations per pixel

0 = Ii(p;) + VI(p;) - [u v]

- Lo(p1)  Iy(p1) - li(p1) :
Le(p2)  Iy(p2) [ u } — | Ti(p2) :
_ Ix(1;25) fy(I.)25) _ _ It(I;25) _ 2
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Lucas-Kanade flow

* QOverconstrained linear system:

" L(p1) Iy(p1) ] - Ii(p1)
I(p2)  Iy(p2) { u ] _ | 1(p2) A d=b
: : v : 25x2 2x1 25x1
Ix(p2s) Iy(p2s) | Ii(p2s5) |

| Source: Silvio Savarese
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Lucas-Kanade flow

* Overconstrained linear system

" L(p1) Iy(p1) ] - Ii(p1)
I(p2)  Iy(p2) { u ] _ | 1(p2) A d=b
: : v : 25x2 2x1 25x1
Ix(p2s) Iy(p2s) | Ii(p2s5) |

Least squares solution for d given by (ATA) d= Alp

AT A ATb

[zmx zfxly] [u] _ [ zfxft]

The summations are over all pixels in the K x K window

| Source: Silvio Savarese
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Conditions for solvability

— Optimal (u, v) satisfies Lucas-Kanade equation

Sl SELIy | [u] _ [ S
// SLly, SLI || v ]|~ | S L

AT A Al

When is This Solvable?
e A'A should be invertible
e A'A should not be too small due to noise
— eigenvalues A, and A , of ATA should not be too small
e A'A should be well-conditioned
— A1/ X, should not be too large (. ; = larger eigenvalue)

\ Does this remind anything to you?

| Source: Silvio Savarese
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M = ATA is the second moment matrix |
(Harris corner detector...)

Lly Y Il I,
ATA = [%ley %Iy[z] =2 [ I, ] [l I,] = Y- vI(vD)"

e Eigenvectors and eigenvalues of ATA relate to edge
direction and magnitude

e The eigenvector associated with the larger eigenvalue points in
the direction of fastest intensity change

e The other eigenvector is orthogonal to it

| Source: Silvio Savarese
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Interpreting the eigenvalues

Classification of image points using eigenvalues of the
second moment matrix:

Ay

Source: Silvio Savarese
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S vivn?t
— gradients very large or very small
—large A, small A,

‘ Source: Silvio Savarese

Stanford University Lecture 17 -27 28-Nov-17




C_).
>

Low-texture reg

> vi(vn?'
— gradients have small magnitude
—small A, small A,

‘ Source: Silvio Savarese
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=

gh-texture region

S vi(vn?!
— gradients are different, large magnitudes
—large A, large A,

‘ Source: Silvio Savarese
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Errors in Lukas-Kanade

What are the potential causes of errors in this procedure?
— Suppose ATA is easily invertible
— Suppose there is not much noise in the image

 When our assumptions are violated
— Brightness constancy is not satisfied
— The motion is not small
— A point does not move like its neighbors
« window size is too large
* what is the ideal window size?

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003
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lmproving accuracy

e Recall our small motion assumption
O=1I(z+u,y+v)— I.(xy)

~ I(z,y) + Ipu+ Iyv — I (x,p)
 This is not exact
— To do better, we need to add higher order terms back in:

= I(z,y) + I.u+ Iyv =+ higher order terms — I, ;(x,py)

« This is a polynomial root finding problem

— Can solve using Newton’s method (out of scope for this
class)

— Lukas-Kanade method does one iteration of Newton’s method
» Better results are obtained via more iterations

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003
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Iterative Refinement

 |terative Lukas-Kanade Algorithm

1. Estimate velocity at each pixel by solving Lucas-
Kanade equations

2. Warp I(t-1) towards I(t) using the estimated flow field
- use image warping techniques

3. Repeat until convergence

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003
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When do the optical flow assumptions
fail?

In other words, in what situations does the displacement of

pixel patches
not represent physical movement of points in space?

1. Well, TV is based on illusory motion
— the set is stationary yet things seem to move

2. A uniform rotating sphere
— nothing seems to move, yet it is rotating

3. Changing directions or intensities of lighting can make things seem to move
— for example, if the specular highlight on a rotating sphere moves.

4. Muscle movement can make some spots on a cheetah move opposite direction of motion.
— And infinitely more break downs of optical flow.
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What we will learn today?

e Horn-Schunk method

Reading: [Szeliski] Chapters: 8.4, 8.5

[Fleet & Weiss, 2005]
http://www.cs.toronto.edu/pub/jepson/teaching/vision/2503/opticalFlow.pdf
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Horn-Schunk method for optical flow

* The flow is formulated as a global
energy function which is should be minimized:

E— /f (Lu+ Ly + L) +(|Val? + |Vo|?)] dedy
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Horn-Schunk method for optical flow

* The flow is formulated as a global
energy function which is should be minimized:

E- /f Lu+Lv+ LE + (| Vul? + [ Vo|?)] dzdy

* The first part of the function is the brightness
consistency.
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Horn-Schunk method for optical flow

* The flow is formulated as a global
energy function which is should be minimized:

E:/f (Low+ Ly + L) + o2 {|Vul? + | Vol 2]] dedy

* The second part is the smoothness constraint.
It’s trying to make sure that the changes
between frames are small.
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Horn-Schunk method for optical flow

* The flow is formulated as a global
energy function which is should be minimized:

E— / f (L + Ly + I)? Euvunz +[IVo|?)] dedy

* a is aregularization constant. Larger values of
a lead to smoother flow.
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Horn-Schunk method for optical flow

* The flow is formulated as a global
energy function which is should be minimized:

E— /f (Lu+ Ly + L) +(|Val? + |Vo|?)] dedy

* By taking the derivative with respect to u and
v, we get the following 2 equations:
L(Lu+Ly+ 1) —a®Au=0
L(Lu+ILyv+ L) —a’Av=0
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Horn-Schunk method for optical flow

* By taking the derivative with respect to u and
v, we get the following 2 equations:

L(Lu+ Ly+ 1) — a*Au=0
I,(Lu+Lv+IL)—a*Av =0
* Where a-= ;’; + :;2 ~is called the Lagrange
operator. In practice, it is measured using:

Au(m’ y) — ’l_l,(:l:,y) - u(a:,y)

* where u(z,y) is the weighted average of u measured at (x,y).
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Horn-Schunk method for optical flow

* Now we substitute Au(z,y) = u(z,y) — u(z,y)
. I (Lu+ILy+1I)— a?Au=0
L(Lu+ILy+ L) —a’Av =0
* To get:
(I2 +®)u+ L I,v=o’u— LI
LIu+ (I} + o®)v = o’v — I I

* Which is linear in u and v and can be solved
for each pixel individually.
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Iterative Horn-Schunk

e But since the solution depends on the
neighboring values of the flow field, it must be
repeated once the neighbors have been
updated.

e So instead, we can iteratively solve for u and v

using: ., L(Lu+ILv"+ 1)
U = Uu -—
o+ I; + I
—k _k
PR A s i)

o+ I; + I
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What does the smoothness regularization do
anyway?

e It’s a sum of squared terms (a Euclidian distance measure).
e We're putting it in the expression to be minimized.

e => |n texture free regions, there is no optical flow

e => 0On edges, points will flow to nearest points, solving the aperture problem.

—> Regularized flow

Optical flow

Slide credit: Sebastian Thurn
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Dense Optical Flow with Michael
Black’s method

* Michael Black took Horn-Schunk’s method one
step further. starting from the regularization

constant: ||vul|? + ||[Vv|?

* Which looks like a quadratic: v
* And replaced it with this: v

* Why does this regularization work better?
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What we will learn today?

* Pyramids for large motion
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Recap

e Key assumptions (Errors in Lucas-Kanade)

e Small motion: points do not move very far

e Brightness constancy: projection of the same point looks
the same in every frame

e Spatial coherence: points move like their neighbors

‘ Source: Silvio Savarese
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Revisiting the small motion assumption
-

£
l'fi"

:

* Is this motion small enough?

— Probably not—it’s much larger than one pixel (2" order terms dominate)
— How might we solve this problem?

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003
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Reduce the resolution!

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003
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u=1.25 pixels

u=2.5 pixels

\ u=>5 pixels

Gaussian pyramid of image 1 Gaussian pyramid of image 2

‘ Source: Silvio Savarese
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Coarse-to-fine optical flow estlmatlon

,)
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' ._, run iterative L-K

lwarp & upsample '

.‘—’ run |terat|ve L-K <,

l

Gaussian pyramid of image 1 (t) Gaussian pyramid of image 2 (t+1)

‘ Source: Silvio Savarese
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Optical Flow Results

[.ucas-Kanade
without pyramids

Fails in areas of large
moton

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003
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Optical Flow Results
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* http://www.ces.clemson.edu/~stb/klt/ I m5":—:;.;?_5-2
* OpenCV

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003
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What we will learn today?

e Common fate
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Recap

e Key assumptions (Errors in Lucas-Kanade)

e Small motion: points do not move very far

e Brightness constancy: projection of the same point looks
the same in every frame

e Spatial coherence: points move like their neighbors

‘ Source: Silvio Savarese
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Reminder: Gestalt — common fate

\ \ \ ‘. \ q‘ Common Fate
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Motion segmentation

* How do we represent the motion in this scene?

‘ Source: Silvio Savarese
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Motion segmentation

J. Wang and E. Adelson. Layered Representation for Motion Analysis. CVPR 1993.

* Break image sequence into “layers” each of which has a
coherent (affine) motion

‘ Source: Silvio Savarese
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Affine motion
u(x,y)=a, +a,x+a,y
v(x,y)=a, +ax+a.y

e Substituting into the brightness constancy
equation:

[, -ou+l,-v+1, =0

‘ Source: Silvio Savarese
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Affine motion
u(x,y)=a, +a,x+a,y
v(x,y)=a, +ax+a.y

e Substituting into the brightness constancy
equation:

[ (a,+a,x+ay)+1 (a,+asx+agy)+1, =0

e Each pixel provides 1 linear constraint in 6 unknowns

e |east squares minimization:

Err(c_i) — Z[]x(al —|—a2x+a3y)+]y(a4 +a5x+a6y)+]t] 2

Source: Silvio Savarese
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How do we estimate the layers?

1. Obtain a set of initial affine motion hypotheses

— Divide the image into blocks and estimate affine motion parameters in each block by
least squares

. Eliminate hypotheses with high residual error

e Map into motion parameter space
e Perform k-means clustering on affine motion parameters

—Merge clusters that are close and retain the largest clusters to obtain a smaller set of
hypotheses to describe all the motions in the scene

Stanford University 28-Nov-17

‘ Source: Silvio Savarese



How do we estimate the layers?

1. Obtain a set of initial affine motion hypotheses

— Divide the image into blocks and estimate affine motion parameters in each block by
least squares

. Eliminate hypotheses with high residual error

e Map into motion parameter space
e Perform k-means clustering on affine motion parameters

—Merge clusters that are close and retain the largest clusters to obtain a smaller set of
hypotheses to describe all the motions in the scene

ST
7Y A
\ ‘I' -

‘ Source: Silvio Savarese
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How do we estimate the layers?

1. Obtain a set of initial affine motion hypotheses

— Divide the image into blocks and estimate affine motion parameters in each block by
least squares

. Eliminate hypotheses with high residual error

e Map into motion parameter space
e Perform k-means clustering on affine motion parameters

—Merge clusters that are close and retain the largest clusters to obtain a smaller set of
hypotheses to describe all the motions in the scene

2. Iterate until convergence:
*Assign each pixel to best hypothesis

—Pixels with high residual error remain unassigned
ePerform region filtering to enforce spatial constraints
eRe-estimate affine motions in each region

‘ Source: Silvio Savarese
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Example result
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‘ Source

J. Wang and E. Adelson. Layered Representation for Motion Analysis. CVPR 1993.
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What we will learn today?

* Applications
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Uses of motion

* Tracking features
* Segmenting objects based on motion cues
* Learning dynamical models
* Improving video quality
— Motion stabilization
— Super resolution

* Tracking objects
* Recognizing events and activities
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Estimating 3D structure

Savarese

10

Silvi

‘ Source

Stanford University Lecture 17 -66 28-Nov-17




Segmenting objects based on motion cues

* Background subtraction
— A static camera is observing a scene
— Goal: separate the static background from the moving foreground

| Source: Silvio Savarese
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Segmenting objects based on motion cues

* Motion segmentation

— Segment the video into multiple coherently moving objects

e ) —=s \"
" ) _A%.‘ +I( F-;‘
A K /\\ B | o ! F
I’ ) 1 ! s
! —— | -

//,//;; |
' . 17\.‘—':.‘{ ‘2

e

_____

S. J. Pundlik and S. T. Birchfield, Motion Segmentation at Any Speed,
Proceedings of the British Machine Vision Conference (BMVC) 2006
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Tracking objects

-
A

\‘:; ",\
\.‘\ A\ ” . ¥ \
™\ Tl'agkmg\ |

ZYin and R.Collins, "On-the-fly Object Modeling while Tracking," IEEE Computer Vision and Pattern
Recognition (CVPR '07), Minneapolis, MN, June 2007.

| Source: Silvio Savarese
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Synthesizing dynamic textures

Copyright (c) UCLA, G. Doretto and S. Soatto, 2002

Original Synthesized
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Super-resolution

Example: A set of low
quality images

Stanford University
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Super-resolution

Each of these images looks  -MsL 4l Eher Eesl daka o
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bove-termperatnre: solde
Entvestizated (or some ¢
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| Source: Silvio Savarese
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Super-resolution

Most of the test data o
couple of exceptions.

low-temperature solde
investigated (or some c
manufacturing technol
nonwetting of 40In40Sr
microstructural coarse
mal cycling of 58Bi425

The recovery result:

| Source: Silvio Savarese
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Recognizing events and activities

D. Ramanan, D. Forsyth, and A. Zisserman. Tracking People by Learning their Appearance. PAMI 2007.

| Source: Silvio Savarese
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Recognizing events and activities

Juan Carlos Niebles, Hongcheng Wang and Li Fei-Fei, Unsupervised Learning of Human Action Categories Using
Spatial-Temporal Words, (BMVC), Edinburgh, 2006.
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Recognizing events and activities

Crossing — Talking — Queuing — Dancing — jogging

W. Choi & K. Shahid & S. Savarese WMC 2010

| Source: Silvio Savarese
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W. Choi, K. Shahid, S. Savarese, "What are they doing? : Collective Activity Classification Using Spatio-Temporal Relationship Among
People", 9th International Workshop on Visual Surveillance (VSWS09) in conjuction with ICCV 09
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Optical Tlow without motion!

b




What we have learned today?

e Optical flow

* Lucas-Kanade method

* Horn-Schunk method

* Pyramids for large motion
e Common fate

* Applications

Reading: [Szeliski] Chapters: 8.4, 8.5

[Fleet & Weiss, 2005]
http://www.cs.toronto.edu/pub/jepson/teaching/vision/2503/opticalFlow.pdf
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