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What	we	will	learn	today?

• Optical	flow
• Lucas-Kanade method
• Horn-Schunk method
• Pyramids	for	large	motion
• Common	fate
• Applications

28-Nov-172

Reading:	[Szeliski]	Chapters:	8.4,	8.5
[Fleet	&	Weiss,	2005]
http://www.cs.toronto.edu/pub/jepson/teaching/vision/2503/opticalFlow.pdf
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From	images	to	videos
• A	video	is	a	sequence	of	frames	captured	over	time
• Now	our	image	data	is	a	function	of	space	(x,	y)	and	time	(t)

28-Nov-174



Lecture 17 -Stanford University

Why	is	motion	useful?
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Why	is	motion	useful?
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Optical	flow
• Definition:	optical	flow	is	the	apparentmotion	of	
brightness	patterns	in	the	image

• Note:	apparent	motion	can	be	caused	by	lighting	
changes	without	any	actual	motion
– Think	of	a	uniform	rotating	sphere	under	fixed	lighting	
vs.	a	stationary	sphere	under	moving	illumination

GOAL: Recover	image	motion	at	each	pixel	from	
optical	flow

So
ur
ce
:	S
ilv
io
	S
av
ar
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Picture	courtesy	of	Selim Temizer - Learning	and	Intelligent	Systems	(LIS)	Group,	MIT	

Optical	flow

Vector	field	function	of	the	
spatio-temporal	image	
brightness	variations	

28-Nov-178
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Estimating	optical	flow

• Given	two	subsequent	frames,	estimate	the	apparent	motion	field	
u(x,y),	v(x,y)	between	them

• Key	assumptions
• Brightness	constancy:		projection	of	the	same	point	looks	the	same	in	

every	frame
• Small	motion: points	do	not	move	very	far
• Spatial	coherence: points	move	like	their	neighbors

I(x,y,t–1) I(x,y,t)

So
ur
ce
:	S
ilv
io
	S
av
ar
es
e
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Key	Assumptions:	small	motions

*	Slide	from	Michael	Black,	CS143 2003
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Key	Assumptions:	spatial	coherence

*	Slide	from	Michael	Black,	CS143 2003
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Key	Assumptions:	brightness	Constancy

*	Slide	from	Michael	Black,	CS143 2003
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I(x +u, y+ v, t) ≈ I(x, y, t −1)+ Ix ⋅u(x, y)+ Iy ⋅ v(x, y)+ It

• Brightness	Constancy	Equation:
I(x, y, t −1) = I(x +u(x, y), y+ v(x, y), t)

Linearizing	the	right	side	using	Taylor	expansion:

I(x,y,t–1) I(x,y,t)

0»+×+× tyx IvIuIHence,

Image	derivative	along	x

→∇I ⋅ u v[ ]T + It = 0
I(x +u, y+ v, t)− I(x, y, t −1) = Ix ⋅u(x, y)+ Iy ⋅ v(x, y)+ It

So
ur
ce
:	S
ilv
io
	S
av
ar
es
e
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Filters	used	to	find	the	derivatives

28-Nov-1714
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• How	many	equations	and	unknowns	per	pixel?

The	component	of	the	flow	perpendicular	to	the	gradient	(i.e.,	
parallel	to	the	edge)	cannot	be	measured

edge

(u,v)

(u’,v’)

gradient

(u+u’,v+v’)

If	(u,	v	)	satisfies	the	equation,	
so	does	(u+u’,	v+v’	)	if

•One	equation	(this	is	a	scalar	equation!),	two	unknowns	(u,v)

∇I ⋅ u ' v '[ ]T = 0

Can	we	use	this	equation	to	recover	image	motion	(u,v)	at	each	
pixel?

So
ur
ce
:	S
ilv
io
	S
av
ar
es
e
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The	brightness	constancy	constraint

∇I ⋅ u v[ ]T + It = 0
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The	aperture	problem

Actual	motion

So
ur
ce
:	S
ilv
io
	S
av
ar
es
e
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The	aperture	problem

Perceived	motion So
ur
ce
:	S
ilv
io
	S
av
ar
es
e
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The	barber	pole	illusion

http://en.wikipedia.org/wiki/Barberpole_illusion So
ur
ce
:	S
ilv
io
	S
av
ar
es
e
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The	barber	pole	illusion
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What	we	will	learn	today?

• Optical	flow
• Lucas-Kanade method
• Horn-Schunk method
• Pyramids	for	large	motion
• Common	fate
• Applications

28-Nov-1720

Reading:	[Szeliski]	Chapters:	8.4,	8.5
[Fleet	&	Weiss,	2005]
http://www.cs.toronto.edu/pub/jepson/teaching/vision/2503/opticalFlow.pdf
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Solving	the		ambiguity…

• How	to	get	more	equations	for	a	pixel?
• Spatial	coherence	constraint:
• Assume	the	pixel’s	neighbors	have	the	same	(u,v)

– If	we	use	a	5x5	window,	that	gives	us	25	equations	per	pixel

B.	Lucas	and	T.	Kanade.	An	iterative	image	registration	technique	with	an	application	to	stereo	
vision.	In	Proceedings	of	the	International	Joint	Conference	on	Artificial	Intelligence,	pp.	674–
679,	1981.

So
ur
ce
:	S
ilv
io
	S
av
ar
es
e
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• Overconstrained linear	system:

Lucas-Kanade flow

So
ur
ce
:	S
ilv
io
	S
av
ar
es
e
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• Overconstrained linear	system

The	summations	are	over	all	pixels	in	the	K	x	K	window

Least	squares	solution	for	d given	by

So
ur
ce
:	S
ilv
io
	S
av
ar
es
e
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Lucas-Kanade flow
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Conditions	for	solvability
– Optimal	(u,	v)	satisfies	Lucas-Kanade	equation

Does	this	remind	anything	to	you?

When	is	This	Solvable?
• ATA should	be	invertible	
• ATA should	not	be	too	small	due	to	noise

– eigenvalues	l1 and	l 2 of	ATA should	not	be	too	small
• ATA should	be	well-conditioned

– l 1/	l 2 should	not	be	too	large	(l 1 =	larger	eigenvalue)

So
ur
ce
:	S
ilv
io
	S
av
ar
es
e
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• Eigenvectors	and	eigenvalues	of	ATA	relate	to	edge	
direction	and	magnitude	
• The	eigenvector	associated	with	the	larger	eigenvalue	points	in	

the	direction	of	fastest	intensity	change
• The	other	eigenvector	is	orthogonal	to	it

M	=	ATA	is	the	second	moment	matrix	!
(Harris	corner	detector…)

So
ur
ce
:	S
ilv
io
	S
av
ar
es
e
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Interpreting	the	eigenvalues

l1

l2

“Corner”
l1 and l2 are large,
l1 ~ l2

l1 and l2 are small “Edge” 
l1 >> l2

“Edge” 
l2 >> l1

“Flat” 
region

Classification	of	image	points	using	eigenvalues	of	the	
second	moment	matrix:

So
ur
ce
:	S
ilv
io
	S
av
ar
es
e
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Edge

– gradients	very	large	or	very	small
– large l1,	small	l2

So
ur
ce
:	S
ilv
io
	S
av
ar
es
e
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Low-texture	region

– gradients	have	small	magnitude
– small l1,	small	l2

So
ur
ce
:	S
ilv
io
	S
av
ar
es
e

28-Nov-1728



Lecture 17 -Stanford University

High-texture	region

– gradients	are	different,	large	magnitudes
– large l1,	large	l2

So
ur
ce
:	S
ilv
io
	S
av
ar
es
e
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Errors	in	Lukas-Kanade

What	are	the	potential	causes	of	errors	in	this	procedure?
– Suppose	ATA	is	easily	invertible
– Suppose	there	is	not	much	noise	in	the	image

• When our assumptions are violated
– Brightness constancy is not satisfied
– The motion is not small
– A point does not move like its neighbors

• window size is too large
• what is the ideal window size?

*	From	Khurram Hassan-Shafique CAP5415	Computer	Vision	2003
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– Can solve using Newton’s method (out of scope for this 
class)

– Lukas-Kanade method does one iteration of Newton’s method
• Better results are obtained via more iterations

Improving	accuracy
• Recall	our	small	motion	assumption

• This is not exact
– To do better, we need to add higher order terms back in:

• This is a polynomial root finding problem

It-1(x,y)

It-1(x,y)

It-1(x,y)

*	From	Khurram	Hassan-Shafique	CAP5415	Computer	Vision	2003
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Iterative	Refinement
• Iterative Lukas-Kanade Algorithm

1. Estimate velocity at each pixel by solving Lucas-
Kanade equations

2. Warp I(t-1) towards I(t) using the estimated flow field
- use image warping techniques

3. Repeat until convergence

*	From	Khurram	Hassan-Shafique	CAP5415	Computer	Vision	2003
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When	do	the	optical	flow	assumptions	
fail?

28-Nov-1733

In	other	words,	in	what	situations	does	the	displacement	of	
pixel	patches	
not	represent	physical	movement	of	points	in	space?

1. Well, TV is based on illusory motion 
– the set is stationary yet things seem to move 

2. A uniform rotating sphere 
– nothing seems to move, yet it is rotating 

3. Changing directions or intensities of lighting can make things seem to move 
– for example, if the specular highlight on a rotating sphere moves.

4. Muscle movement can make some spots on a cheetah move opposite direction of motion. 
– And infinitely more break downs of optical flow.
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What	we	will	learn	today?

• Optical	flow
• Lucas-Kanade method
• Horn-Schunk method
• Pyramids	for	large	motion
• Common	fate
• Applications

28-Nov-1734

Reading:	[Szeliski]	Chapters:	8.4,	8.5
[Fleet	&	Weiss,	2005]
http://www.cs.toronto.edu/pub/jepson/teaching/vision/2503/opticalFlow.pdf
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Horn-Schunk method	for	optical	flow

• The	flow	is	formulated	as	a	global	
energy function which	is	should	be	minimized:

28-Nov-1735
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Horn-Schunk method	for	optical	flow

• The	flow	is	formulated	as	a	global	
energy function which	is	should	be	minimized:

• The	first	part	of	the	function	is	the	brightness	
consistency.

28-Nov-1736
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Horn-Schunk method	for	optical	flow

• The	flow	is	formulated	as	a	global	
energy function which	is	should	be	minimized:

• The	second	part	is	the	smoothness	constraint.	
It’s	trying	to	make	sure	that	the	changes	
between	frames	are	small.

28-Nov-1737
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Horn-Schunk method	for	optical	flow

• The	flow	is	formulated	as	a	global	
energy function which	is	should	be	minimized:

• 𝛼 is	a	regularization	constant.	Larger	values	of	
𝛼 lead	to	smoother	flow.

28-Nov-1738
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Horn-Schunk method	for	optical	flow

• The	flow	is	formulated	as	a	global	
energy function which	is	should	be	minimized:

• By	taking	the	derivative	with	respect	to	u	and	
v,	we	get	the	following	2	equations:

28-Nov-1739
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Horn-Schunk method	for	optical	flow

• By	taking	the	derivative	with	respect	to	u	and	
v,	we	get	the	following	2	equations:

• Where																										is	called	the	Lagrange	
operator.	In	practice,	it	is	measured	using:

• where													is	the	weighted	average	of	u	measured	at	(x,y).

28-Nov-1740
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Horn-Schunk method	for	optical	flow

• Now	we	substitute	
in:

• To	get:

• Which	is	linear	in	u	and	v	and	can	be	solved	
for	each	pixel	individually.

28-Nov-1741
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Iterative	Horn-Schunk

• But	since	the	solution	depends	on	the	
neighboring	values	of	the	flow	field,	it	must	be	
repeated	once	the	neighbors	have	been	
updated.

• So	instead,	we	can	iteratively	solve	for	u	and	v	
using:

28-Nov-1742
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What	does	the	smoothness	regularization	do	
anyway?

• It’s	a	sum	of	squared	terms	(a	Euclidian	distance	measure).
• We’re	putting	it	in	the	expression	to	be	minimized.
• =>	In	texture	free	regions,	there	is	no	optical	flow

Regularized	flow

Optical	flow

• =>	On	edges,	points	will	flow	to	nearest	points,	solving	the	aperture	problem.

Slide	credit:	Sebastian	Thurn
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Dense	Optical	Flow	with	Michael	
Black’s	method	

• Michael	Black	took	Horn-Schunk’s method	one	
step	further,	starting	from	the	regularization	
constant:

• Which	looks	like	a	quadratic:

• And	replaced	it	with	this:

• Why	does	this	regularization	work	better?

28-Nov-1744
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What	we	will	learn	today?

• Optical	flow
• Lucas-Kanade method
• Horn-Schunk method
• Pyramids	for	large	motion
• Common	fate
• Applications

28-Nov-1745
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• Key	assumptions	(Errors	in	Lucas-Kanade)

• Small	motion: points	do	not	move	very	far

• Brightness	constancy:		projection	of	the	same	point	looks	
the	same	in	every	frame

• Spatial	coherence: points	move	like	their	neighbors

Recap

So
ur
ce
:	S
ilv
io
	S
av
ar
es
e
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Revisiting	the	small	motion	assumption

• Is	this	motion	small	enough?
– Probably	not—it’s	much	larger	than	one	pixel	(2nd order	terms	dominate)
– How	might	we	solve	this	problem?
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Reduce	the	resolution!
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So
ur
ce
:	S
ilv
io
	S
av
ar
es
e

image Iimage H

Gaussian	pyramid	of	image	1 Gaussian	pyramid	of	image	2

image	2image	1 u=10 pixels

u=5 pixels

u=2.5 pixels

u=1.25 pixels

Coarse-to-fine	optical	flow	estimation

28-Nov-1749
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image Iimage J

Gaussian	pyramid	of	image	1	(t) Gaussian	pyramid	of	image	2	(t+1)

image	2image	1

Coarse-to-fine	optical	flow	estimation

run	iterative	L-K

run	iterative	L-K

warp	&	upsample

.

.

.

So
ur
ce
:	S
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io
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Optical	Flow	Results
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Optical	Flow	Results
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• http://www.ces.clemson.edu/~stb/klt/
• OpenCV
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What	we	will	learn	today?

• Optical	flow
• Lucas-Kanade method
• Horn-Schunk method
• Pyramids	for	large	motion
• Common	fate
• Applications

28-Nov-1753
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• Key	assumptions	(Errors	in	Lucas-Kanade)

• Small	motion: points	do	not	move	very	far

• Brightness	constancy:		projection	of	the	same	point	looks	
the	same	in	every	frame

• Spatial	coherence: points	move	like	their	neighbors

Recap

So
ur
ce
:	S
ilv
io
	S
av
ar
es
e
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Reminder:	Gestalt	– common	fate

28-Nov-1755
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Motion	segmentation
• How	do	we	represent	the	motion	in	this	scene?

So
ur
ce
:	S
ilv
io
	S
av
ar
es
e
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• Break	image	sequence	into	“layers”	each	of	which	has	a	
coherent	(affine)	motion

Motion	segmentation
J.	Wang	and	E.	Adelson.	Layered	Representation	for	Motion	Analysis.	CVPR	1993.

So
ur
ce
:	S
ilv
io
	S
av
ar
es
e
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• Substituting	into	the	brightness	constancy	
equation:

yaxaayxv
yaxaayxu

654

321

),(
),(

++=
++=

0»+×+× tyx IvIuI

Affine	motion

So
ur
ce
:	S
ilv
io
	S
av
ar
es
e
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0)()( 654321 »++++++ tyx IyaxaaIyaxaaI

• Substituting	into	the	brightness	constancy	
equation:

yaxaayxv
yaxaayxu

654

321

),(
),(

++=
++=

• Each	pixel	provides	1	linear	constraint	in	6	unknowns

[ ] 2å ++++++= tyx IyaxaaIyaxaaIaErr )()()( 654321
!

• Least	squares	minimization:

Affine	motion

Source:	Silvio	Savarese
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How	do	we	estimate	the	layers?
• 1.	Obtain	a	set	of	initial	affine	motion	hypotheses

– Divide	the	image	into	blocks	and	estimate	affine	motion	parameters	in	each	block	by	
least	squares
• Eliminate	hypotheses	with	high	residual	error

• Map	into	motion	parameter	space
• Perform	k-means	clustering	on	affine	motion	parameters

–Merge	clusters	that	are	close	and	retain	the	largest	clusters	to	obtain	a	smaller	set	of	
hypotheses	to	describe	all	the	motions	in	the	scene

So
ur
ce
:	S
ilv
io
	S
av
ar
es
e
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How	do	we	estimate	the	layers?
• 1.	Obtain	a	set	of	initial	affine	motion	hypotheses

– Divide	the	image	into	blocks	and	estimate	affine	motion	parameters	in	each	block	by	
least	squares
• Eliminate	hypotheses	with	high	residual	error

• Map	into	motion	parameter	space
• Perform	k-means	clustering	on	affine	motion	parameters

–Merge	clusters	that	are	close	and	retain	the	largest	clusters	to	obtain	a	smaller	set	of	
hypotheses	to	describe	all	the	motions	in	the	scene

So
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How	do	we	estimate	the	layers?
• 1.	Obtain	a	set	of	initial	affine	motion	hypotheses

– Divide	the	image	into	blocks	and	estimate	affine	motion	parameters	in	each	block	by	
least	squares
• Eliminate	hypotheses	with	high	residual	error

• Map	into	motion	parameter	space
• Perform	k-means	clustering	on	affine	motion	parameters

–Merge	clusters	that	are	close	and	retain	the	largest	clusters	to	obtain	a	smaller	set	of	
hypotheses	to	describe	all	the	motions	in	the	scene

2.	Iterate	until	convergence:
•Assign	each	pixel	to	best	hypothesis

–Pixels	with	high	residual	error	remain	unassigned
•Perform	region	filtering	to	enforce	spatial	constraints
•Re-estimate	affine	motions	in	each	region

So
ur
ce
:	S
ilv
io
	S
av
ar
es
e
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Example	result

J. Wang and E. Adelson. Layered Representation for Motion Analysis. CVPR 1993. So
ur
ce
:	S
ilv
io
	S
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ar
es
e
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What	we	will	learn	today?

• Optical	flow
• Lucas-Kanade method
• Horn-Schunk method
• Pyramids	for	large	motion
• Common	fate
• Applications

28-Nov-1764
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Uses	of	motion

• Tracking	features
• Segmenting	objects	based	on	motion	cues
• Learning	dynamical	models
• Improving	video	quality

– Motion	stabilization
– Super	resolution

• Tracking	objects
• Recognizing	events	and	activities

28-Nov-1765
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Estimating	3D	structure

So
ur
ce
:	S
ilv
io
	S
av
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es
e
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Segmenting	objects	based	on	motion	cues

• Background	subtraction
– A	static	camera	is	observing	a	scene
– Goal:	separate	the	static	background from	the	moving	foreground

So
ur
ce
:	S
ilv
io
	S
av
ar
es
e
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• Motion	segmentation
– Segment	the	video	into	multiple	coherently	moving	objects

Segmenting	objects	based	on	motion	cues

S.	J.	Pundlik and	S.	T.	Birchfield,	Motion	Segmentation	at	Any	Speed,	
Proceedings	of	the	British	Machine	Vision	Conference		(BMVC)	2006
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Z.Yin and	R.Collins,	"On-the-fly	Object	Modeling	while	Tracking,"	IEEE	Computer	Vision	and	Pattern	
Recognition	(CVPR	'07),Minneapolis,	MN,	June	2007.	

Tracking	objects
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Synthesizing	dynamic	textures
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Super-resolution

Example:	A	set	of	low	
quality	images
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Super-resolution

Each	of	these	images	looks	
like	this:
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Super-resolution

The	recovery	result:
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D. Ramanan, D. Forsyth, and A. Zisserman. Tracking People by Learning their Appearance. PAMI 2007.

Tracker

Recognizing	events	and	activities
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Juan	Carlos	Niebles,	Hongcheng	Wang	and	Li	Fei-Fei,	Unsupervised	Learning	of	Human	Action	Categories	Using	
Spatial-Temporal	Words,	(BMVC),	Edinburgh,	2006.	

Recognizing	events	and	activities
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Crossing	– Talking	– Queuing	– Dancing	– jogging	

W.	Choi &		K.	Shahid	&	S.	Savarese	WMC	2010

Recognizing	events	and	activities
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W.	Choi,	K.	Shahid,	S.	Savarese,	"What	are	they	doing?	:	Collective	Activity	Classification	Using	Spatio-Temporal	Relationship	Among	
People",	9th	International	Workshop	on	Visual	Surveillance	(VSWS09)	in	conjuction with	ICCV	09
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Optical	flow	without	motion!
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What	we	have	learned	today?

• Optical	flow
• Lucas-Kanade method
• Horn-Schunk method
• Pyramids	for	large	motion
• Common	fate
• Applications

28-Nov-1779

[Fleet	&	Weiss,	2005]
http://www.cs.toronto.edu/pub/jepson/teaching/vision/2503/opticalFlow.pdf

Reading:	[Szeliski]	Chapters:	8.4,	8.5


