Lecture #14: Visual Bag of Words

Megha Srivastava, Jessica Taylor, Shubhang Desai, Samuel Premutico, Zhefan Wang
Department of Computer Science
Stanford University
Stanford, CA 94305
{meghas, jtaylor5, shubhang, samprem, zwangl41}@cs.stanford.edu

1 Introduction

In this lecture, we learn another approach to recognition. To recognize objects in images, we need to
first represent them in the form of feature vectors. Feature vectors are mathematical representations
of an image’s important features. These feature vectors, for example, can be the raw color values of
the image or contain information about the position of the pixel in the image as we have seen and
implemented in Homework 5. We then create a space representation of the image to view the image
values in a lower dimensional space. Every image is then converted into a set of coefficients and
projected into the PCA space. The transformed data is classified using a classifier. Some examples
of such classifiers include K-means and HAC. This process of going from an image to a useful
representation of the image in a lower dimensional space can be achieved in many ways. In this
lecture, we discuss another approach entitled Visual Bag of Words.

1.1 Idea of Bag of Words

The idea behind "Bag of Words" is a way to simplify object representation as a collection of their
subparts for purposes such as classification. The model originated in natural language processing,
where we consider texts such as documents, paragraphs, and sentences as collections of words -
effectively "bags" of words. Consider a paragraph - a list of words and their frequencies can be
considered a "bag of words" that represents the particular paragraph, which we can then use as
a representation of the paragraph for tasks such as sentiment analysis, spam detection, and topic
modeling.

Although "Bag of Words" appears to be associated with language, the idea of simplifying complex
objects into collections of their subparts can be extended to different types of objects. In Computer
Vision, we can consider an image to be a collection of image features. By incorporating frequency
counts of these features, we can apply the "Bag of Words" model towards images and use this for
prediction tasks such as image classification and face detection.

There are two main steps for the "Bag of Words" method when applied to computer vision, and these
will further be explored in the Outline section below.

1. Build a "dictionary" or "vocabulary" of features across many images - what kinds of common
features exist in images? We can consider, for example, color scheme of the room, parts of faces such
as eyes, and different types of objects.

2. Given new images, represent them as histograms of the features we had collected - frequencies of
the visual "words" in the vocabulary we have built.

1.2 Origins

The origins of applying the "Bag of Words" model to images comes from Texture Recognition and,
as previously mentioned, Document Representation.

Computer Vision: Foundations and Applications (CS 131, 2017), Stanford University.

1. Textures consist of repeated elements, called textons - for example, a net consists of repeated holes
and a brick wall consists of repeated brick pieces. If we were to consider each texton a feature, then
each image could be represented as a histogram across these features - where the texton in the texture
of the image would have high frequency in the histogram. Images with multiple textures, therefore,
can be represented by histograms with high values for multiple features.

2. Documents consist of words which can be considered their features. Thus, every document is
represented by a histogram across the words in the dictionary - one would expect, for example, the
document of George Bush’s state of the union address in 2001 to contain high relative frequencies for

non non

"economy", "Iraq", "army", etc.

Thus, a "bag of words" can be viewed as a histogram representing frequencies across a vocabulary
developed over a set of images or documents - new data then can be represented with this model and
used for prediction tasks.

2 Algorithm Summary

Let’s describe in detail how the Bag of Words algorithm can be applied to a large set of images.

2.1 Extracting Interesting Features

The first step in the Bag-of-Words algorithm is extracting the features of the images. We eventually
use these features to find the most common features across our dataset of images. We can choose any
type of feature we want to find our features. For example, we can simply split our images into a grid
and grab the subimages as features (shown below). Or, we can use corner detection of SIFT features
as our features.
PR — T ; —
Birlgisasriifks
e |
Er S mEm——
HEAEEETNNN). -~
LA EEEEEE
- SANEEEEEENN R
RS ER=—
wENYEEEEEEN
Using grid of subimages as features [?]

2.2 Learning Visual Vocabulary

Once we have our features, we must turn this large feature set into a small set of "themes". These
"themes" are analogous to the "words" in the Natural Language Processing version of the algorithm.
As mentioned above, in the Computer Vision application, the "words" are called textons.

To find textons, we simply cluster our features. We can use any clustering technique (K-Means is
most common, but Mean Shift or HAC may also work) to cluster the features. We then use the centers
of each cluster as the textons. Our set of textons is known as a visual vocabulary. An example of a
visual vocabulary is given below.

----ﬁ---h:----
pe_ _YdFEel ! - B
o "HaaP] INE N
did EA" s . SN Y
L LT b 4 |éE-' ¥
EdE=W__ Lk |=-_u—_.
PLNENLS _BEius

dJRIIEIE FETINR '
=K = [§#| l:'!ﬂ E.
.g—:’.l|=.|l- =F=
|-.ﬂ:f“-q |_||| “ M
Il *EF=MENSEZEE

Example of a visual vocabulary [?]

2.3 Quantize Features

A synonym for texton in this case is codevector. In other words, the center of each of our features
cluster is a codevector. Altogether, our set of codevectors form a codebook. We can use this codebook
to quantize features: we extract features from new images using the same method we used to extract
features from our dataset, and then use our codebook to map the feature vectors to the indexes of the
closest codevectors.

The size of our codebook (which is exactly equivalent to amount of clusters in our clustering algorithm)
is an important hyperparameter. If it’s too small, then our codevectors are not representative of the
underlying data. If it’s too large, then the codebook will start to overfit the underlying data. We must
be conscious of this when picking the K value for K-Means (if, of course, we decide to use K-Means
as our clustering algorithm).

2.4 Represent Images by Frequencies

Once we have built our codebook, we can use it to do interesting things. First, we can represent
every image in our dataset as a histogram of codevector frequencies (shown below). We use feature
quantization to accomplish this. Then, we have two options, depending on our type of problem. If
we have a supervised learning problem (i.e. our data has labels), we can train a classifier on the
histograms. This classifier will then be trained on the appearance of the textons and hence will be a
robust way to distinguish between classes. If we have an unsupervised learning problem (i.e. our data
does not have labels), we can further cluster the histograms to find visual themes/groups within our
dataset.

frequency

1 O]
PLNERLS, B

codewords
Representing our images as a histogram of texton frequencies [?]

We can create our visual vocabulary from a different dataset than the dataset that we are interested in
classifying/clustering, and so long as our first dataset is representative of the second, this algorithm
will be successful.

2.5 Large-Scale Image Search

Large-scale image matching is one of the ways that the Bag-of-words model has been useful. Given a
large database, which can hold tens of thousands of object instances, how can one match an images
to this database?

The Bag-of-words model can help build the database. First, features can be extracted from the
database images. Then we can learn a vocabulary using k-means (typical k:100,000). Next we
compute the weights for each word. Going back to the word dictionary example, weighting the words
can help us decrease the importance of certain words. If we are trying to find the topic of a document,
we can give words like "the", "a", and "is" low weights since they are likely to be common between
documents and used frequently within a document. With images we can do the same, giving useless
features low weights and the more important features higher weights. Once the features have been

weighted, we can create an inverted file mapping words to images.

Term Frequency Inverse Document Frequency (TF-IDF) scoring weights each word by it’s document
frequency.

The inverse document frequency (IDF) of a word j can be found by

NumD
IDF = log(umDocs

NumDocsjappears

To compute the value of bin j in image I:

Binj = frequncy;in 1 *x IDF

We can create an inverted file that holds the mapping of words to documents to quickly compute
the similarity between a new image and all of the images in the database. If we have images that
have around 1000 features, and a database of around 100,000 visual words, each histogram will be
extremely sparse. We would only consider images whose bins overlap with the new image.

Large-scale image search works well for CD covers and movie posters, and real-time performance
is possible. The downside for the large scale image search is that the performance of the algorithm
degrades as the database grows. Using the Bag-of-Words model for this problem sometimes results
in noisy image similarities due to quantization error and imperfect feature detection.[?]

3 Spatial Pyramid Matching

3.1 Motivation

So far, we have not exploited the spatial information. But there is a simple yet smart method to
incorporate the spatial information in the model: spatial pyramid matching.

3.2 Pyramids

A pyramid is built by using multiple copies of the source image. Each level in the pyramid is i of the
size of the previous level. The lowest level is of the highest resolution and the highest level is of the
lowest resolution. If illustrated graphically, the entire multi-scale representation looks like a pyramid,
with the original image on the bottom and each cycle’s resulting smaller image stacked one atop the
other. [?]

Level 4

Blur and “#1/16 resolution
subsample ’ Level 3
Blur and 1/8 resolution

subsample Jr Level 2
1/4 resolution

Blur and
subsample

Level 1

Blur and 1/2 resolution
subsample

Level O

Original

image

Visual representation of an image pyramid with 5 ==

levels

3.3 Bag of Words + Pyramids

Bag of Words alone doesn’t discriminate if a patch was obtained from the top, middle or bottom
of the image because it doesn’t save any spatial information. Spatial pyramid matching partitions
the image into increasingly fine sub-regions and allows us to computes histograms (BoW) of local
features inside each sub-region. [?]

If the BoWs of the upper part of the image contain "sky visual words", the BoWs in the middle
"vegetation and mountains visual words" and the BoWs at the bottom "mountains visual words", then
it is very likely that the image scene category is "mountains".

Locally orderless
representation at
several levels of
spatial resolution

v

IH H{! | \’!I \{Hl

MM |“ o Ldald loatu |

level 0 level 1 level 2

3.4 Some results

Scene category dataset

ﬁ&!! FHBRr ol . B 560

office kitchen living room -droom store

s EEM 'iﬁ—

=hil
mdusmal tall building inside city highway

E:aa A e P e Bl sk

coast open country ‘mountain forest suburb

Muilti-class classification results
(100 training images per class)

Weak features Strong features
(vocabulary size: 16) (vocabulary size: 200)
Level Single-level Pyramid Single-level Pyramid
0(Lx1) 453 +0.5 722 £0.6

1(2x2) 53.6+0.3 56.2+£0.6 | 77.9+£0.6 79.0 £0.5
24 x4) 61.7+0.6 64.7£0.7 | 79.4+0.3 81.1+£0.3
3(8x8) 63.3+0.8 66.8+0.6 | 77.24+0.4 80.7 +0.3

Caltech101 dataset

http://www.vision.caltech.edu/Image_Datasets/Caltechl0l/Caltechl0l.html

Multi-class classification results (30 training images per class)

Weak features (16) Strong features (200)
Level Single-level Pyramid Single-level Pyramid
0 15.5 +£0.9 41.2 £1.2
1 314 +£1.2 32.8 +1.3 55.9 £0.9 57.0 0.8
2 47.2 1.1 493 +1.4 63.6 0.9 64.6 +0.8
3 522 +0.8 54.0 +1.1 60.3 +0.9 64.6 +0.7

Strong features (ie.larger vocabulary size) is better than weaker features (ie. smaller vocabulary size).
Notice also that as expected, incorporating pyramid matching always generate better result than single
level feature extraction. This is exactly what we expected because under the same circumstance,
pyramid approach encodes more information (ie.spacial information) than single-level approach does.

4 Naive Bayes

4.1 Basic Idea

Once we have produced a visual word histogram, we can use Naive Bayes to classify the histogram.
To do so, we simply measure whether a given visual word is present or absent, and assume the
presence/absence of one visual word to be conditionally independent of each other visual word given
an object class.

L

X_HHHHHH

PLONERLS Bl

Consider some visual word histogram X, where x; is the count of visual word i in the histogram. We
are only interested in the presence or absence of word i, we have z; € {0, 1}.

4.2 Prior

P(c) denotes that probability of encountering one object class versus others. For all m object classes,

we then have .
> Ple)=1
i=1

For an image represented by histogram x, and some object class ¢, we can compute

P(ale) = [] Plaile)
i=1

4.3 Posterior

Using the prior equation, we can now calculate the probability than the image represented by
histogram x belongs to class category c using Bayes Theorem
P(c)P
Plefe) — FOPE)
> P()P(z|c)
Expanding the numerator and denominator, we can rewrite the previous equation as
P o P(x
P(C|.’I}) — (C) Hz:}n (.’ﬂ ‘C)
2o P TLZ, Plzile)

4.4 Classification

In order to classify the image represented by histogram x, we simply find the class ¢* that maximizes
the previous equation:
¢* = argmaz.P(c|z)
Since we end up multiplying together a large number of very small probabilities, we will likely run
into unstable values as they approach 0. As a result, we use logs to calculate probabilities:
c¢* = argmazlogP(c|x)

Now consider two classes ¢; and cs:

Per) ITiL, Plwile)
2o PN Plaile)

P(c2) [Ti~ P(wilca)

P(02|x) = ’ _}n 7
Zc’ P(C) i=1 P(JT1|C)

Since the denominators are identical, we can ignore it when calculating the maximum. Thus

P(eilr) =

and

m

P(c1|z) o P(ey) [[P(wiler)
=1

and
m

P(ca|z) o P(ea) [[P(wile2)
i=1
and for the general class c:
P(c|z) x P(c) H P(z;lc)
i=1

and using logs:

logP(c|z) o< logP(c) + Z logP(x;|c)
i=1

Now, classification becomes
¢ = argmaz.P(c|x)
c* = argmazlogP(c|x)
m
¢ = argmaz.logP(c) + Z logP(z;|c)
i=1

	Introduction
	Idea of Bag of Words
	Origins

	Algorithm Summary
	Extracting Interesting Features
	Learning Visual Vocabulary
	Quantize Features
	Represent Images by Frequencies
	Large-Scale Image Search

	Spatial Pyramid Matching
	Motivation
	Pyramids
	Bag of Words + Pyramids
	Some results

	Naive Bayes
	Basic Idea
	Prior
	Posterior
	Classification

