
Lecture 13: Face Recognition and LDA

JR Cabansag, Yuxing Chen, Jonathan Griffin, Dunchadhn Lyons, George Preudhomme
Department of Computer Science

Stanford University
Stanford, CA 94305

{cabansag, yxchen28, jgriffi2, dunlyons, gpreud}@cs.stanford.edu

1 Introduction to Facial Recognition

1.1 Neuroscience Background

In the 1960’s and 1970’s, neuroscientists discovered that, depending on the angle of observation,
certain neurons in the brain fire when looking at a face. More recently, they have to come to believe
that an area of the brain known as the Fusiform Face Area (FFA) is primarily responsible for
reacting to faces. These advances in the biological understanding of facial recognition have been
mirrored by similar advances in computer vision, as new techniques have attempted to come closer to
the standard of human facial recognition.

1.2 Applications

Computer facial recognition has a wide range of applications:

• Digital Photography: Identifying specific faces in an image allows programs to respond
uniquely to different individuals, such as centering the image focus on a particular individual
or improving aesthetics through various image operations (blur, saturation, etc).

• Surveillance: By recognizing the faces of specific individuals, we can use surveillance
cameras to detect when they enter a location.

• Album Organization: If we can recognize a specific person, we can group images in which
they appear.

• Person tracking: If we can recognize a specific person, we can track their location through
frames of video (useful for surveillance or for robots in the home).

• Emotions and Expressions: By detecting emotions or expressions in faces, we can build
smart devices that interact with us based on mood.

• Security and Warfare: If we can recognize a specific person, we can identify enemies of
interest in drone images and video.

• Teleconferencing: If we can recognize specific people, then teleconferencing applications
could automatically provide information to users about who they are communicating with.

1.3 A Key Distinction: Detection vs. Recognition

While face Detection entails determining whether an image contains a face and where in the image
the face exists, face Recognition entails determining whose face an image contains.

1.4 Space of Faces

If we consider an m×n image of a face, that image can be represented by a point in high dimensional
space (Rmn). But relatively few high-dimensional vectors consist of valid face images (images can

Computer Vision: Foundations and Applications (CS 131, 2017), Stanford University.



contain much more than just faces), and thus the region that an arbitrary face image could fall into is
a relatively small subspace. The task is to effectively model this subspace of face images.

Figure 1: The region occupied by images of faces is a small subspace of the total space of images.
Source: Lecture 13, slide 14

In order to model this subspace or "face-space" we compute the k-dimensional subspace such that
the projection of the data points onto the subspace has the largest variance among all k-dimensional
subspaces. This low-dimensional subspace captures the key appearance characteristics of faces.

2 The Eigenfaces Algorithm

2.1 Key Ideas and Assumptions

• Assume that most face images lie on a low-dimensional subspace determined by the first k
directions of maximum variance.

• Use Principle Components Analysis (PCA) to determine the vectors or “eigenfaces” that
span that subspace.

• Represent all face images in the dataset as linear combinations of eigenfaces, where eigen-
faces are sort of defined as the principal components of SVD decomposition.

2.1.1 What are eigenfaces?

"Eigenfaces" are the visual representations of the eigenvectors in the directions of maximum variance.
They often resemble generic-looking faces.

2



Figure 2: Faces and Eigenfaces. Source: Lecture 13, slide 29

2.2 Training Algorithm

Algorithm 1 Eigenfaces Training Algorithm [2]
1: Align training images x1, ..., xn
2: Compute the average face:

µ =
1

N

∑
xi

3: Compute the difference image (the centered data matrix):

Xc = X − µ1T = X − 1

N
X11T = X(1− 1

N
11T )

4: Compute the covariance matrix:

Σ =
1

N
XcXc

T

5: Compute the eigenvectors of the covariance matrix Σ using PCA (Principle Components Analy-
sis)

6: Compute each training image xi’s projections as

xi → (xi
c · φ1, xic · φ2, ..., xic · φk) ≡ (a1, a2, ..., ak)

where φi is the i’th-highest ranked eigenvector
7: The reconstructed face xi ≈ µ+ a1 · φ1 + ...+ ak · φk

Figure 3: The reconstructed face after projection. Source: Lecture 13, slide 25

2.2.1 Why can we do this?

Empirically, the eigenvalues (variance along eigenvectors) drop rapidly with the number of principle
components, which is why we can reduce dimensionality without much loss of information.

3



Figure 4: Eigenvalues sorted in descending order of magnitude. Source: Lecture 13, slide 26

2.2.2 Reconstruction and Error

We only select the top k eigenfaces, which reduces the dimensionality. Fewer eigenfaces result in
more information loss, and hence less discrimination between faces.

Figure 5: Reconstructed faces with varying number of eigenfaces. Source: Lecture 13, slide 27

2.3 Testing Algorithm

Algorithm 2 Eigenfaces Testing Algorithm [2]
1: Take query image t
2: Project onto eigenvectors:

t→ ((t− µ) · φ1, (t− µ) · φ2, ..., (t− µ) · φk) ≡ (w1, w2, ..., wk)

3: Compare projection w with all N training projections. Use euclidean distance and nearest-
neighbors algorithm to output a label

2.4 Advantages

• This method is completely knowledge-free – it does not know anything about faces, expres-
sions, etc.

• It is a non-iterative (fast), globally-optimal solution.

4



2.5 Disadvantages

• This technique requires carefully controlled data.

1. All faces must be centered in the frame. Otherwise the results may be noisy.

2. The images must be the same size.

3. There is some sensitivity to the face angle.

• Method is completely knowledge free.

1. It makes no effort to preserve class distinctions.

2. PCA doesn’t take into account who it is trying to represent in this lower dimensional
space (it doesn’t take into account the labels associated with the faces). Therefore, it
might map different faces near the same subspace, making it difficult for classifiers to
distinguish between them.

• PCA projection is optimal for reconstruction from a low dimensional basis but may not be
optimal for discrimination (the algorithm does not attempt to preserve class distinctions).

2.6 Beyond Facial Recognition: Expressions and Emotions

This technique also generalizes beyond simple facial recognition and can be used to detect expressions
and emotions. The subspaces would therefore represent happiness, disgust, or other potential
expressions, and the algorithm would remain unchanged.

Figure 6: Eigenfaces expressing happiness. Source: Lecture 13, slide 33

5



Figure 7: Eigenfaces expressing disgust. Source: Lecture 13, slide 34

3 Linear Discriminant Analysis

3.1 PCA vs. LDA

PCA and LDA are similar in that both reduce the dimensions of a sample. However, PCA projections
don’t consider the labels of the classes. An alternative approach is to move away from PCA toward
an algorithm that is optimal for classification (as opposed to reconstruction). Linear Discriminant
Analysis (LDA) finds a projection that keeps different classes far away from each other.

• PCA maintains maximum variance.
• LDA allows for class discrimination by finding a projection that maximizes scatter between

classes and minimizes scatter within classes.

Figure 8: PCA vs. LDA. Source: Lecture 13, slide 41

The difference between PCA and LDA projections is demonstrated in the figure above. PCA preserves
the maximum variance and maps the points of the classes along the line with the positive slope, which

6



makes it difficult to distinguish a points’ class. Meanwhile, LDA maps the points onto the line with
the negative slope, which results in points being located close to other points in their class and far
from points in the opposite class.

3.2 General Idea

LDA operates using two values: between class scatter and within class scatter. Between class scatter
is concerned with the distance between different class clusters, whereas within class scatter refers to
the distance between points of a class. LDA maximizes between class scatter and minimizes within
class scatter.

Figure 9: Between Class Scatter vs. Within Class Scatter. Source: Lecture 13, slide 43

3.3 Mathematical Formulation of LDA with 2 Variables

We want to find a projection w that maps points with classes 0 and 1 in the space x ∈ Rn to a
new space z ∈ Rm, such that z = wTx. Ideally, m < n, and our projection should maximize the
function:

J(w) =
SB when projected onto w
SW when projected onto w

In this equation, SB represents between class scatter and SW represents within class scatter. Let us
then define a variable µi that represents the mean of a class’ points:

µi = EX|Y [X|Y = i]

Let us also define a variable Σi that represents the covariance matrix of a class:

Σi = EX|Y [(X − µi)(X − µi)
T |Y = i]

Using these values, we can redefine our variables SB and SW to be:

SB = (µ1 − µ0)2 = (µ1 − µ0)(µ1 − µ0)T

SW = (Σ1 + Σ0)

Plugging these new values of SB and SW back into J(w), we get:

7



J(w) =
(µ1 − µ0)2 when projected onto w
(Σ1 + Σ0) when projected onto w

=
wT (µ1 − µ0)(µ1 − µ0)Tw

wT (Σ1 + Σ0)w

We can maximize J(w) by maximizing the numerator, wT (µ1 − µ0)(µ1 − µ0)Tw, and keeping its
denominator, wT (Σ1 + Σ0)w constant. In other words:

max wT (µ1 − µ0)(µ1 − µ0)Tw subject to wT (Σ1 + Σ0)w = K

Using Lagrange multipliers, we can define the Lagrangian as:

L = wTSBw − λ(wTSWw −K) = wT (SB − λSW )w +K

We must then maximize L with respect to λ and w. We can do so by taking its gradient with respect
to w and finding where the critical points are:

∇wL = 2(SB − λSW )w = 0

Using this equation, we get that the critical points are located at:

SBw = λSWw

This is a generalized eigenvector problem. In the case where S−1W = (Σ1 + Σ0)−1 exists, we obtain:

S−1W SBw = λw

We can then plug in our definition of SB to get:

S−1W (µ1 − µ0)(µ1 − µ0)Tw = λw

Notice that (µ1 − µ0)Tw is a scalar, and thus we can represent it by a term α such that:

S−1W (µ1 − µ0) =
λ

α
w

The magnitude of w does not matter, so we can represent our projection w as:

w∗ = S−1W (µ1 − µ0) = (Σ1 − Σ0)−1(µ1 − µ0)

3.4 LDA with N Variables and C Classes

3.4.1 Preliminaries

Variables:

• N sample images: {x1, · · · , xN}
• C classes: {Y1, Y2, · · · , YC}. Each of the N sample images is associated with one class in
{Y1, Y2, · · · , YC}.

• Average of each class: the mean for class i is µi = 1
Ni

∑
xk∈Yi

xk

• Average of all data: µ = 1
N

N∑
k=1

xk

Scatter Matrices:

8



• Scatter of class i: Si =
∑

xk∈Yi

(xk − µi)(xk − µi)
T

• Within class scatter: Sw =

c∑
i=1

Si

• Between class scatter: Sb =

c∑
i=1

Ni(µi − µ)(µi − µ)T

3.4.2 Mathematical Formulation

We want to learn a projection W such that it converts all the points from x ∈ Rm to a new space
z ∈ Rn, where in general m and n are unknown:

z = wTx, x ∈ Rm, z ∈ Rn

After the projection, the between class scatter is S̃B = WTSBW , where W and SB are calculated
from our original dataset. The within class scatter is S̃W = WTSWW . So the objective becomes:

Wopt = argmax
W

∣∣∣S̃B

∣∣∣∣∣∣S̃W

∣∣∣ = argmax
W

∣∣WTSBW
∣∣

|WTSWW |

Again, after applying Lagrange multipliers we obtain a generalized eigenvector problem, where we
have:

SBwi = λiSWwi, i = 1, . . . ,m

Note that Rank(SB) and Rank(SW ) are limited by the number of classes (C) and the number of
sample images (N ):

Rank(SB) ≤ C − 1

Rank(SW ) ≤ N − C
And therefore the rank of Wopt is limited as well.

3.5 Results: Eigenface vs. Fisherface

Belhumeur, Hespanha, Kriegman performed an experiment comparing the recognition error rates of
PCA to LDA ("Eigenface vs Fisherface") using a dataset of 160 images of 10 distinct people. The
images contained significant variation in lighting, facial expressions, and eye-wear. Error rates were
determined using the "leaving-one-out" strategy, where a single image was classified by removing
that image from the dataset and training on the other 159 images, at which point classification was
done on the left-out image with a nearest-neighbors classifier. This process was repeated over all 160
images in order to determine an error rate [1].

Figure 10: Variation in Facial Expression, Eyewear, and Lighting. Source: [1]

9



Figure 11: Eigenface vs. Fisherface. Source: Lecture 13, slide 61

Error rates for the two algorithms (and a variation of standard Eigenface) are plotted in the figure
above. Eigenface’s error rate actually improves by removing the first three prinicple components.
Fisherface, as shown in the figure above, gives the lowest error rate.

References
[1] J. Hespanha P. Belhumeur and D. Kriegman. Eigenfaces vs. fisherfaces: Recognition using class specific

linear projection. IEEE Transactions on pattern analysis and machine intelligence, 19(7):711–720, 1997.

[2] Matthew Turk and Alex Pentland. Eigenfaces for recognition. Journal of Cognitive Neuroscience, 3(1):71–
86, 1991.

10


	Introduction to Facial Recognition
	Neuroscience Background
	Applications
	A Key Distinction: Detection vs. Recognition
	Space of Faces

	The Eigenfaces Algorithm
	Key Ideas and Assumptions
	What are eigenfaces?

	Training Algorithm
	Why can we do this?
	Reconstruction and Error

	Testing Algorithm
	Advantages
	Disadvantages
	Beyond Facial Recognition: Expressions and Emotions

	Linear Discriminant Analysis
	PCA vs. LDA
	General Idea
	Mathematical Formulation of LDA with 2 Variables
	LDA with N Variables and C Classes
	Preliminaries
	Mathematical Formulation

	Results: Eigenface vs. Fisherface


