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Recap - Curse of dimensionality

e Assume 5000 points uniformly distributed in the unit
hypercube and we want to apply 5-NN. Suppose our query
point is at the origin.

— In 1-dimension, we must go a distance of 5/5000=0.001 on the
average to capture 5 nearest neighbors.

— In 2 dimensions, we must go /o 001 to get a square that contains 0.001
of the volume.

— In d dimensions, we must go (0-001)1/d

[
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What we will learn today

* Singular value decomposition

* Principal Component Analysis (PCA)
* Image compression
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What we will learn today

* Singular value decomposition
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Singular Value Decomposition (SVD)

 There are several computer algorithms that can
“factorize” a matrix, representing it as the product of
some other matrices

 The most useful of these is the Singular Value
Decomposition.

* Represents any matrix A as a product of three matrices:
Uzv?

* Python command:
— [U,S,V]= numpy.linalg.svd(A)
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Singular Value Decomposition (SVD)

UIVT = A

e Where U and V are rotation matrices, and Z is a
scaling matrix. For example:

U ) % A

—.40 .916 " 5.39 0 " —.05 .999| (3 -2
916 .40 0 3.154 999 05| |1 5
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Singular Value Decomposition (SVD)

* Beyond 2x2 matrices:

— In general, if Ais m x n, then U will be m x m, Z will
be m x n, and VT will be n x n.

— (Note the dimensions work out to produce m xn
after multiplication)

VT

U )y - . ' A
[—.39 —.92])({9.51 0 0]>< _SJ:‘[Q i17 _'gg _[1 2 3]
— 3C | | : . - =4 = e

92 .39 0 .77 0 4 s a1 4 5 6
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Singular Value Decomposition (SVD)

 UandV are always rotation matrices.

— Geometric rotation may not be an applicable concept,
depending on the matrix. So we call them “unitary”
matrices — each column is a unit vector.

* 2is adiagonal matrix
— The number of nonzero entries = rank of A
— The algorithm always sorts the entries high to low

VT
U > - . . A
[—.39 —.92] {9.51 0 0] —A2 mar = [1 2 3]
: : 5 6

—92 39 %[0 oo ;1§2 .
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SVD Applications

 We've discussed SVD in terms of geometric
transformation matrices

* But SVD of an image matrix can also be very
useful

 To understand this, we’ll look at a less
geometric interpretation of what SVD is doing
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SVD Applications

U > i A
[—.39 "92]><{9'51 0 olx ol oD _!1 2 3]
_( 20 ' ' ' ' ’ 14 5 6

92 39 %[0 oY e, v Tl 5o

* Look at how the multiplication works out, left to right:
 Column 1 of U gets scaled by the first value from Z.

»/UZ vt Apartial
| [}ﬁz o ‘122] HEN
' 41 —.82 41 o
 The resulting vector gets scaled by ro of VT to produce a
contribution to the columns of A

Stanford University Lecture 11 -10 2-Nov-17



SVD Applications
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* Each product of (column i of U)-(value i from Z)-(row i of
V7) produces a component of the final A.
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SVD Applications

T
Ux v
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 We're building A as a linear combination of the columns of U
e Using all columns of U, we’ll rebuild the original matrix perfectly

e But, in real-world data, often we can just use the first few
columns of U and we’ll get something close (e.g. the first A,q tia
above)
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SVD Applications

VT A
> partial

[- ~71 0] y _é‘iQ _1517 _gg {1.6 2.1 2.6]

. . . A

30 0 41 -89 41 3.8 5.0 6.2

VT y
U ] {—.42 — .57 —.70] [ partial
X

~3.67 0 —6 =1 |4
[_8.8 - olx| 81 11 58 }

41 —82 41 - . =
* We can call those first few columns of U the Principal
Components of the data

 They show the major patterns that can be added to produce
the columns of the original matrix

* The rows of VT show how the principal components are mixed
to produce the columns of the matrix
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SVD Applications

T
v A
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We can look at 2

to see that the
first column has a
large effect

while the second
column has a much
smaller effect in this
example
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SVD Applications

* For this image, using only the first 10 of 300
principal components produces a recognizable
reconstruction

* So, SVD can be used for image compression

Stanford University Lecture 11 -15 2-Nov-17



SVD for symmetric matrices

* |If Ais a symmetric matrix, it can be
decomposed as the following:

A= dXNd!

 Compared to a traditional SVD decomposition,
U =V' and is an orthogonal matrix.
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Principal Component Analysis

VT
Apartial

Us
_ 42 —57 -70] {1.6 2.1 2.6]

R
80 0

 Remember, columns of U are the Principal Components of the
data: the major patterns that can be added to produce the
columns of the original matrix

* One use of this is to construct a matrix where each column is a
separate data sample

 Run SVD on that matrix, and look at the first few columns of U
to see patterns that are common among the columns

* This is called Principal Component Analysis (or PCA) of the data
samples

81 A1 —.58
41 -8 41 3.8 5.0 6.2
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Principal Component Analysis

VT

Uux Apa tial
{- —71 o]x oD {1.6 2.1 2.6]
30 oY T 38 50 62

e Often, raw data samples have a lot of redundancy and patterns

e PCA can allow you to represent data samples as weights on the
principal components, rather than using the original raw form
of the data

* By representing each sample as just those weights, you can
represent just the “meat” of what’s different between samples.

e This minimal representation makes machine learning and other
algorithms much more efficient
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How is SVD computed?

 For this class: tell PYTHON to do it. Use the
result.

* But, if you're interested, one computer
algorithm to do it makes use of Eigenvectors!
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Eigenvector definition

* Suppose we have a square matrix A. We can solve
for vector x and scalar A such that Ax= Ax

* |n other words, find vectors where, if we
transform them with A, the only effect is to scale
them with no change in direction.

* These vectors are called eigenvectors (German
for “self vector” of the matrix), and the scaling
factors A are called eigenvalues

 An m x m matrix will have £ m eigenvectors
where A is nonzero
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Finding eigenvectors

* Computers can find an x such that Ax= Ax using
this iterative algorithm:

— X = random unit vector

— while(x hasn’t converged)
e X=AXx
* normalize x

* x will quickly converge to an eigenvector

* Some simple modifications will let this algorithm
find all eigenvectors
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Finding SVD

* Eigenvectors are for square matrices, but SVD is
for all matrices

 To do svd(A), computers can do this:

— Take eigenvectors of AAT (matrix is always square).

* These eigenvectors are the columns of U.

» Square root of eigenvalues are the singular values (the
entries of Z).

— Take eigenvectors of ATA (matrix is always square).
* These eigenvectors are columns of V (or rows of VT)
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Finding SVD

* Moral of the story: SVD is fast, even for large matrices

e It’s useful for a lot of stuff
* There are also other algorithms to compute SVD or part of

the SVD
— Python’s np.linalg.svd() command has options to efficiently
compute only what you need, if performance becomes an

issue

A detailed geometric explanation of SVD is here:
http://www.ams.org/samplings/feature-column/fcarc-svd
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What we will learn today

* Principal Component Analysis (PCA)
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Covariance

e Variance and Covariance are a measure of the “spread”
of a set of points around their center of mass (mean)

e Variance — measure of the deviation from the mean for
points in one dimension e.g. heights

e Covariance as a measure of how much each of the
dimensions vary from the mean with respect to each
other.

e Covariance is measured between 2 dimensions to see if
there is a relationship between the 2 dimensions e.g.
number of hours studied & marks obtained.

* The covariance between one dimension and itself is
the variance
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Covariance

covariance (X,Y) = 2., (X: - X) (Y. - Y)
(n-1)

* So, if you had a 3-dimensional data set (x,y,z), then you
could measure the covariance between the x and y
dimensions, the y and z dimensions, and the x and z
dimensions. Measuring the covariance between x and x, or
y and y, or zand z would give you the variance of the x, y
and z dimensions respectively

Stanford University Lecture 11 -26 2-Nov-17



Covariance matrix

* Representing Covariance between dimensions as a
matrix e.g. for 3 dimensions

“\Variances
. _/

* Diagonal is the variances of x, y and z

e cov(x,y) = cov(y,x) hence matrix is symmetrical about
the diagonal

e N-dimensional data will result in NxN covariance matrix
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Covariance

 What is the interpretation of covariance
calculations?
— e.g.: 2 dimensional data set
— x: number of hours studied for a subject
— y: marks obtained in that subject
— covariance value is say: 104.53
— what does this value mean?

Stanford University Lecture 11 -28 2-Nov-17



Covariance interpretation

positive covariance negative covariance
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Covariance interpretation

e Exact value is not as important as it’s sign.

* A positive value of covariance indicates both
dimensions increase or decrease together e.g. as
the number of hours studied increases, the marks
in that subject increase.

* A negative value indicates while one increases
the other decreases, or vice-versa e.g. active
social life at PSU vs performance in CS dept.

* |f covariance is zero: the two dimensions are
independent of each other e.g. heights of
students vs the marks obtained in a subject
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Example data

Covariance between the Vv
two axis is high. Can we
reduce the number of
dimensions to just 1?
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Geometric interpretation of PCA

find projection
that maximizes
variance
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Geometric interpretation of PCA

1D sub in 2D
e Let’ssay we haveasetof2Ddata 4 > "

points x. But we see that all the /
points lie on a line in 2D.

>

* So, 2 dimensions are redundant to
express the data. We can express
all the points with just one
dimension.
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PCA: Principle Component Analysis

* Given a set of points, how do we know if they
can be compressed like in the previous
example?

— The answer is to look into the correlation between
the points

— The tool for doing this is called PCA
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PCA Formulation

e Basicidea:

— If the data lives in a subspace, it is going to look very flat
when viewed from the full space, e.g.

12 subspace in 2D ZAD subspace.in 3D

Slide inspired by N. Vasconcelos
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PCA Formulation

e Assume X is Gaussian with
covariance 2. X,

®,

* Recall that a gaussian is defined with ¢,
it’s mean and variance:

X ~ N(p, %)

* Recall that uand 2 of a gaussian are
defined as:

u = E[X] = [E[X.], B[X,], .., BIX,]]"
% = E[(X — p)(X — p)"] = [Cov[Xi, X;]; 1 <, < K]
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PCA formulation

e Since gaussians are symmetric, it’s covariance
matrix is also a symmetric matrix. So we can
express it as:

— 3 = UAUT = UA1/2(UA1/2)T

X ~N(p,2) < X ~pu+UAY2N(0,1)

< X ~pu+UN(0,A).
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PCA Formulation

e |f xis Gaussian with covariance 2,
X5%

®,

— Principal components ¢, are the ¢2
eigenvectors of 2

— Principal lengths A, are the X1
eigenvalues of 2

* by computing the eigenvalues we know the data is
— Flatif A, >>A,

Slide inspired by N. Vasconcelos
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PCA Algorithm (training)

Given sample D = {x1,...,xn}, z; € R%
e compute sample mean: i = 1(x;)
e compute sample covariance: £ =+ (x; — a)(x; — )T

e compute eigenvalues and eigenvectors of >

> = dADP!, A =diag(c?,...,02) dTd =1

e order eigenvalues 0% > ... > 03

e if, for a certain k, 0. << oy eliminate the eigenvalues and
eigenvectors above k.

Slide inspired by N. Vasconcelos
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PCA Algorithm (testing)

Given principal compoenents ¢;,7 € 1,....k and a test sample
T ={t1,...,tn}, t; € RY

e subtract mean to each point tg =t;,—

e project onto eigenvector space y; = At, where
o1

A= ;
bk

e use 7' = {y1,...yn} to estimate class conditional densities
and do all further processing on v.

Slide inspired by N. Vasconcelos
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PCA by SVD

* An alternative manner to compute the principal components,
based on singular value decomposition

e Quick reminder: SVD

— Any real n x m matrix (n>m) can be decomposed as

A=MIIN’

— Where M is an (n x m) column orthonormal matrix of left singular
vectors (columns of M)

— Mis an (m x m) diagonal matrix of singular values

— NTis an (m x m) row orthonormal matrix of right singular vectors
(columns of N)

M M=171 N'N=7

Slide inspired by N. Vasconcelos
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PCA by SVD

 To relate this to PCA, we consider the data matrix

X=|x ... x

* The sample mean is

y:lZ)(,zl X, ... X =L

Slide inspired by N. Vasconcelos
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PCA by SVD

* Center the data by subtracting the mean to each column of X

e The centered data matrix is

‘ (
=X-ul" =X-—X11"=X l—lnf\
n . n )

Slide inspired by N. Vasconcelos
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PCA by SVD

* The sample covariance matrix is

R Y )]

i

where xis the it column of X_
* This can be written as

I | || — x5 -
1 1 1
_ C C : . T
Z__ xl e s -xn . __XCXC
7 I | | — x° — 7
h— __ n —

Slide inspired by N. Vasconcelos
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PCA by SVD

e The matrix - 7

X! =

c

is real (n x d). Assuming n>d it has SVD decomposition

X! =MIIN’ MM=I  N/'N=1
and
zzl)(cx[ - L NN = LNt
N N N

Slide inspired by N. Vasconcelos
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PCA by SVD

n

* Note that N is (d x d) and orthonormal, and M2 is diagonal.
This is just the eigenvalue decomposition of
* |t follows that

— The eigenvectors of 2 are the columns of N
— The eigenvalues of 2 are

> :N(lnz)NT

A =l7z2

l i

n
* This gives an alternative algorithm for PCA

Slide inspired by N. Vasconcelos
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PCA by SVD

* In summary, computation of PCA by SVD
* Given X with one example per column

— Create the centered data matrix

xT =1L |x7

c
n
— Compute its SVD
r T
X! =MIIN
— Principal components are columns of N, eigenvalues are
1
A =—n’
n I

Slide inspired by N. Vasconcelos
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Rule of thumb for finding the number of

PCA components

* A natural measure is to pick the eigenvectors that explain
p% of the data variability

— Can be done by plotting the ratio r, as a function of k

% of Variability of Data Captured vs. Number of Eigenvectors
100 —T—T— T T T T v

. _—~——FTgervectors

%0 m__"-’m__
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20 '."I
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J
10—],"

|
ob— w0
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Number of Eigenvectors included

— E.g. we need 3 eigenvectors to cover 70% of the variability of
this dataset

Slide inspired by N. Vasconcelos
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What we will learn today

* Image compression
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Orlgmal Image

e Divide the original 372x492 image into patches:
e Each patch is an instance that contains 12x12 pixels on a grid
e View each as a 144-D vector
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L, error and PCA dim
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PCA compression: 144D ) 16D




16 most important eigenvectors
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PCA compression: 144D ) 6D

N,




6 most important eigenvectors
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PCA compression: 144D ) 3D
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3 most important eigenvectors
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PCA compression: 144D ) 1D
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What we have learned today

* Introduction to face recognition

* Principal Component Analysis (PCA)
* Image compression
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