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Recap	- Curse	of	dimensionality
• Assume	5000	points	uniformly	distributed	in	the	unit	

hypercube	and	we	want	to	apply	5-NN.	Suppose	our	query	
point	is	at	the	origin.
– In	1-dimension,	we	must	go	a	distance	of	5/5000=0.001	on	the	

average	to	capture	5	nearest	neighbors.
– In	2	dimensions,	we	must	go													to	get	a	square	that	contains	0.001	

of	the	volume.		
– In	d	dimensions,	we	must	go	
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What	we	will	learn	today
• Singular	value	decomposition
• Principal	Component	Analysis	(PCA)
• Image	compression
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What	we	will	learn	today
• Singular	value	decomposition
• Principal	Component	Analysis	(PCA)
• Image	compression
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Singular	Value	Decomposition	(SVD)

• There	are	several	computer	algorithms	that	can	
“factorize”	a	matrix,	representing	it	as	the	product	of	
some	other	matrices

• The	most	useful	of	these	is	the	Singular	Value	
Decomposition.

• Represents	any	matrix	A as	a	product	of	three	matrices:	
UΣVT

• Python	command:	
– [U,S,V]= numpy.linalg.svd(A)
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Singular	Value	Decomposition	(SVD)

UΣVT =	A
• Where	U and	V are	rotation	matrices,	and	Σ	is	a	
scaling	matrix.	For	example:
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Singular	Value	Decomposition	(SVD)
• Beyond	2x2	matrices:

– In	general,	if	A is	m x	n,	then	U will	be	m	x	m, Σ will	
be	m x	n,	and	VT will	be	n x	n.	

– (Note	the	dimensions	work	out	to	produce	m x	n
after	multiplication)
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Singular	Value	Decomposition	(SVD)

• U and	V are	always	rotation	matrices.	
– Geometric	rotation	may	not	be	an	applicable	concept,	
depending	on	the	matrix.	So	we	call	them	“unitary”	
matrices	– each	column	is	a	unit	vector.	

• Σ	is	a	diagonal	matrix
– The	number	of	nonzero	entries	=	rank	of	A
– The	algorithm	always	sorts	the	entries	high	to	low
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SVD	Applications

• We’ve	discussed	SVD	in	terms	of	geometric	
transformation	matrices

• But	SVD	of	an	image	matrix	can	also	be	very	
useful

• To	understand	this,	we’ll	look	at	a	less	
geometric	interpretation	of	what	SVD	is	doing

2-Nov-179



Lecture 11 -Stanford University

SVD	Applications

• Look	at	how	the	multiplication	works	out,	left	to	right:
• Column	1	of	U gets	scaled	by	the	first	value	from	Σ.

• The	resulting	vector	gets	scaled	by	row	1	of	VT to	produce	a	
contribution	to	the	columns	of	A
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SVD	Applications

• Each	product	of	(column	i of	U)·(value	i from	Σ)·(row	i of	
VT)	produces	a	component	of	the	final	A.
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SVD	Applications

• We’re	building	A	as	a	linear	combination	of	the	columns	of U
• Using	all	columns	of	U,	we’ll	rebuild	the	original	matrix	perfectly
• But,	in	real-world	data,	often	we	can	just	use	the	first	few	

columns	of	U and	we’ll	get	something	close	(e.g.	the	first	Apartial,	
above)
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SVD	Applications

• We	can	call	those	first	few	columns	of U	the	Principal	
Components of	the	data

• They	show	the	major	patterns	that	can	be	added	to	produce	
the	columns	of	the	original	matrix

• The	rows	of	VT show	how	the	principal	components are	mixed	
to	produce	the	columns	of	the	matrix
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SVD	Applications

We	can	look	at	Σ	
to	see	that	the	
first	column	has	a	
large	effect
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SVD	Applications

• For	this	image,	using	only	the	first	10 of	300	
principal	components	produces	a	recognizable	
reconstruction

• So,	SVD	can	be	used	for	image	compression
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SVD	for	symmetric	matrices

• If	A	is	a	symmetric	matrix,	it	can	be	
decomposed	as	the	following:

• Compared	to	a	traditional	SVD	decomposition,	
U	=	VT and	is	an	orthogonal	matrix.
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Principal	Component	Analysis

• Remember,	columns	of U	are	the	Principal	Components of	the	
data:	the	major	patterns	that	can	be	added	to	produce	the	
columns	of	the	original	matrix

• One	use	of	this	is	to	construct	a	matrix	where	each	column	is	a	
separate	data	sample

• Run	SVD	on	that	matrix,	and	look	at	the	first	few	columns	of	U
to	see	patterns	that	are	common	among	the	columns

• This	is	called	Principal	Component	Analysis (or	PCA)	of	the	data	
samples
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Principal	Component	Analysis

• Often,	raw	data	samples	have	a	lot	of	redundancy	and	patterns
• PCA	can	allow	you	to	represent	data	samples	as	weights	on	the	

principal	components,	rather	than	using	the	original	raw	form	
of	the	data

• By	representing	each	sample	as	just	those	weights,	you	can	
represent	just	the	“meat”	of	what’s	different	between	samples.

• This	minimal	representation	makes	machine	learning	and	other	
algorithms	much	more	efficient
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How	is	SVD	computed?

• For	this	class:	tell	PYTHON	to	do	it.	Use	the	
result.

• But,	if	you’re	interested,	one	computer	
algorithm	to	do	it	makes	use	of	Eigenvectors!
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Eigenvector	definition

• Suppose	we	have	a	square	matrix	A.	We	can	solve	
for	vector	x	and	scalar	λ such	that	Ax= λx

• In	other	words,	find	vectors	where,	if	we	
transform	them	with	A,	the	only	effect	is	to	scale	
them	with	no	change	in	direction.

• These	vectors	are	called	eigenvectors	(German	
for	“self	vector”	of	the	matrix),	and	the	scaling	
factors	λ are	called	eigenvalues

• An	m x	mmatrix	will	have	≤	m eigenvectors	
where	λ is	nonzero
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Finding	eigenvectors
• Computers	can	find	an	x	such	that	Ax= λx	using	
this	iterative	algorithm:

– X	=	random	unit	vector
– while(x	hasn’t	converged)

• X	=	Ax
• normalize	x	

• x	will	quickly	converge	to	an	eigenvector
• Some	simple	modifications	will	let	this	algorithm	
find	all	eigenvectors
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Finding	SVD

• Eigenvectors	are	for	square	matrices,	but	SVD	is	
for	all	matrices

• To	do	svd(A),	computers	can	do	this:
– Take	eigenvectors	of	AAT	(matrix	is	always	square).	

• These	eigenvectors	are	the	columns	of	U.	
• Square	root	of	eigenvalues are	the	singular	values	(the	
entries	of	Σ).

– Take	eigenvectors	of	ATA	(matrix	is	always	square).	
• These	eigenvectors	are	columns	of	V (or	rows	of	VT)
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Finding	SVD

• Moral	of	the	story:	SVD	is	fast,	even	for	large	matrices
• It’s	useful	for	a	lot	of	stuff
• There	are	also	other	algorithms	to	compute	SVD	or	part	of	

the	SVD
– Python’s	np.linalg.svd()	command	has	options	to	efficiently	

compute	only	what	you	need,	if	performance	becomes	an	
issue
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What	we	will	learn	today
• Introduction	to	face	recognition
• Principal	Component	Analysis	(PCA)
• Image	compression
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Covariance
• Variance	and	Covariance	are	a	measure	of	the	“spread”	
of	a	set	of	points	around	their	center	of	mass	(mean)	

• Variance	– measure	of	the	deviation	from	the	mean	for	
points	in	one	dimension	e.g.	heights	

• Covariance	as	a	measure	of	how	much	each	of	the	
dimensions	vary	from	the	mean	with	respect	to	each	
other.	

• Covariance	is	measured	between	2	dimensions	to	see	if	
there	is	a	relationship	between	the	2	dimensions	e.g.	
number	of	hours	studied	&	marks	obtained.	

• The	covariance	between	one	dimension	and	itself	is	
the	variance
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Covariance

• So,	if	you	had	a	3-dimensional	data	set	(x,y,z),	then	you	
could	measure	the	covariance	between	the	x	and	y	
dimensions,	the	y	and	z	dimensions,	and	the	x	and	z	
dimensions.	Measuring	the	covariance	between	x	and	x	,	or	
y	and	y	,	or	z	and	z	would	give	you	the	variance	of	the	x	,	y	
and	z	dimensions	respectively
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Covariance	matrix
• Representing	Covariance	between	dimensions	as	a	
matrix	e.g.	for	3	dimensions

• Diagonal	is	the	variances	of	x,	y	and	z	
• cov(x,y)	=	cov(y,x)	hence	matrix	is	symmetrical	about	
the	diagonal	

• N-dimensional	data	will	result	in	NxN covariance	matrix
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Covariance

• What	is	the	interpretation	of	covariance	
calculations?	
– e.g.:	2	dimensional	data	set	
– x:	number	of	hours	studied	for	a	subject	
– y:	marks	obtained	in	that	subject	
– covariance	value	is	say:	104.53	
– what	does	this	value	mean?
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Covariance	interpretation
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Covariance	interpretation
• Exact	value	is	not	as	important	as	it’s	sign.	
• A	positive	value	of	covariance	indicates	both	
dimensions	increase	or	decrease	together	e.g.	as	
the	number	of	hours	studied	increases,	the	marks	
in	that	subject	increase.	

• A	negative	value	indicates	while	one	increases	
the	other	decreases,	or	vice-versa	e.g.	active	
social	life	at	PSU	vs	performance	in	CS	dept.	

• If	covariance	is	zero:	the	two	dimensions	are	
independent	of	each	other	e.g.	heights	of	
students	vs	the	marks	obtained	in	a	subject
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Example	data

2-Nov-1731

Covariance	between	the	
two	axis	is	high.	Can	we	
reduce	the	number	of	
dimensions	to	just	1?
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Geometric	interpretation	of	PCA
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Geometric	interpretation	of	PCA

• Let’s	say	we	have	a	set	of	2D	data	
points	x.	But	we	see	that	all	the	
points	lie	on	a	line	in	2D.	

• So,	2	dimensions	are	redundant	to	
express	the	data.	We	can	express	
all	the	points	with	just	one	
dimension.
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PCA:	Principle	Component	Analysis

• Given	a	set	of	points,	how	do	we	know	if	they	
can	be	compressed	like	in	the	previous	
example?	
– The	answer	is	to	look	into	the	correlation	between	
the	points	

– The	tool	for	doing	this	is	called	PCA
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PCA	Formulation
• Basic	idea:

– If	the	data	lives	in	a	subspace,	it	is	going	to	look	very	flat	
when	viewed	from	the	full	space,	e.g.
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PCA	Formulation
• Assume	x	is	Gaussian	with	

covariance	Σ.

• Recall	that	a	gaussian is	defined	with	
it’s	mean	and	variance:

• Recall	that μ and	Σ of	a	gaussian are	
defined	as:
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PCA	formulation

• Since	gaussians are	symmetric,	it’s	covariance	
matrix	is	also	a	symmetric	matrix.	So	we	can	
express	it	as:	
– Σ = UΛUT = UΛ1/2(UΛ1/2)T
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PCA	Formulation
• If	x	is	Gaussian	with	covariance	Σ,	

– Principal	components	φi are	the	
eigenvectors	of	Σ
– Principal	lengths	λi are	the	
eigenvalues	of	Σ

• by	computing	the	eigenvalues	we	know	the	data	is
– Not	flat	if	λ1 ≈	λ2
– Flat	if	λ1 >>	λ2
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PCA	Algorithm	(training)
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PCA	Algorithm	(testing)
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PCA	by	SVD
• An	alternative	manner	to	compute	the	principal	components,	

based	on	singular	value	decomposition
• Quick	reminder:	SVD

– Any	real	n	x	m	matrix	(n>m)	can	be	decomposed	as

– Where	M	is	an	(n	x	m)	column	orthonormal	matrix	of	left	singular	
vectors	(columns	of	M)

– Π is	an	(m	x	m)	diagonal	matrix	of	singular	values
– NT is	an	(m	x	m)	row	orthonormal	matrix	of	right	singular	vectors	

(columns	of	N)
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PCA	by	SVD
• To	relate	this	to	PCA,	we	consider	the	data	matrix

• The	sample	mean	is
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PCA	by	SVD
• Center	the	data	by	subtracting	the	mean	to	each	column	of	X
• The	centered	data	matrix is
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PCA	by	SVD
• The	sample	covariance matrix	is

where	xic is	the	ith column	of	Xc
• This	can	be	written	as
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PCA	by	SVD
• The	matrix

is	real	(n	x	d).	Assuming	n>d	it	has	SVD	decomposition

and
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PCA	by	SVD

• Note	that	N	is	(d	x	d)	and	orthonormal,	and	Π2 is	diagonal.	
This	is	just	the	eigenvalue	decomposition	of	Σ

• It	follows	that
– The	eigenvectors	of	Σ are	the	columns	of	N
– The	eigenvalues	of	Σ are

• This	gives	an	alternative	algorithm	for	PCA
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PCA	by	SVD
• In	summary,	computation	of	PCA	by	SVD
• Given	X	with	one	example	per	column

– Create	the	centered	data	matrix

– Compute	its	SVD

– Principal	components	are	columns	of	N,	eigenvalues	are
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Rule	of	thumb	for	finding	the	number	of	
PCA	components

• A	natural	measure	is	to	pick	the	eigenvectors	that	explain	
p%	of	the	data	variability
– Can	be	done	by	plotting	the	ratio	rk as	a	function	of	k

– E.g.	we	need	3	eigenvectors	to	cover	70%	of	the	variability	of	
this	dataset
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What	we	will	learn	today
• Introduction	to	face	recognition
• Principal	Component	Analysis	(PCA)
• Image	compression
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Original	Image

• Divide the original 372x492 image into patches:
• Each patch is an instance that contains 12x12 pixels on a grid

• View each as a 144-D vector
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L2 error	and	PCA	dim
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PCA	compression:	144D	) 60D
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PCA	compression:	144D	) 16D
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16	most	important	eigenvectors
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PCA	compression:	144D	) 6D
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PCA	compression:	144D	) 3D
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PCA	compression:	144D	) 1D
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What	we	have	learned	today
• Introduction	to	face	recognition
• Principal	Component	Analysis	(PCA)
• Image	compression
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