#### Lecture:

#### Face Recognition and Feature Reduction

#### Juan Carlos Niebles and Ranjay Krishna Stanford Vision and Learning Lab

**Stanford University** 

Lecture 11 -1

#### Recap - Curse of dimensionality

- Assume 5000 points uniformly distributed in the unit hypercube and we want to apply 5-NN. Suppose our query point is at the origin.
  - In 1-dimension, we must go a distance of 5/5000=0.001 on the average to capture 5 nearest neighbors.
  - In 2 dimensions, we must go  $\sqrt{0.001}$  to get a square that contains 0.001 of the volume.
  - In d dimensions, we must go  $(0.001)^{1/d}$



**Stanford University** 

#### Lecture 11 -2 31-Oct-17

## What we will learn today

- Singular value decomposition
- Principal Component Analysis (PCA)
- Image compression



## What we will learn today

- Singular value decomposition
- Principal Component Analysis (PCA)
- Image compression



- There are several computer algorithms that can "factorize" a matrix, representing it as the product of some other matrices
- The most useful of these is the Singular Value Decomposition.
- Represents any matrix A as a product of three matrices: UΣV<sup>T</sup>
- Python command:

– [U,S,V]= numpy.linalg.svd(A)

#### $\mathbf{U}\mathbf{\Sigma}\mathbf{V}^{\mathsf{T}} = \mathbf{A}$

Where U and V are rotation matrices, and Σ is a scaling matrix. For example:

$$\begin{array}{cccc} U & \Sigma & V^T & A \\ \begin{bmatrix} -.40 & .916 \\ .916 & .40 \end{bmatrix} \times \begin{bmatrix} 5.39 & 0 \\ 0 & 3.154 \end{bmatrix} \times \begin{bmatrix} -.05 & .999 \\ .999 & .05 \end{bmatrix} = \begin{bmatrix} 3 & -2 \\ 1 & 5 \end{bmatrix}$$

**Stanford University** 

Lecture 11 -6

- Beyond 2x2 matrices:
  - In general, if **A** is  $m \ge n$ , then **U** will be  $m \ge m$ , **\Sigma** will be  $m \ge n$ , and **V**<sup>T</sup> will be  $n \ge n$ .
  - (Note the dimensions work out to produce *m* x *n* after multiplication)

$$\begin{bmatrix} U & \Sigma & V^T \\ -.39 & -.92 \\ -.92 & .39 \end{bmatrix} \times \begin{bmatrix} 9.51 & 0 & 0 \\ 0 & .77 & 0 \end{bmatrix} \times \begin{bmatrix} -.42 & -.57 & -.70 \\ .81 & .11 & -.58 \\ .41 & -.82 & .41 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$$

**Stanford University** 

Lecture 11 -7 2.

- **U** and **V** are always rotation matrices.
  - Geometric rotation may not be an applicable concept, depending on the matrix. So we call them "unitary" matrices – each column is a unit vector.
- **Σ** is a diagonal matrix
  - The number of nonzero entries = rank of A
  - The algorithm always sorts the entries high to low

$$\begin{bmatrix} U & \Sigma & V^T \\ -.39 & -.92 \\ -.92 & .39 \end{bmatrix} \times \begin{bmatrix} 9.51 & 0 & 0 \\ 0 & .77 & 0 \end{bmatrix} \times \begin{bmatrix} -.42 & -.57 & -.70 \\ .81 & .11 & -.58 \\ .41 & -.82 & .41 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$$

**Stanford University** 

Lecture 11 -8

- We've discussed SVD in terms of geometric transformation matrices
- But SVD of an image matrix can also be very useful
- To understand this, we'll look at a less geometric interpretation of what SVD is doing

$$\begin{bmatrix} U & \Sigma & V^T \\ -.39 & -.92 \\ -.92 & .39 \end{bmatrix} \times \begin{bmatrix} 9.51 & 0 & 0 \\ 0 & .77 & 0 \end{bmatrix} \times \begin{bmatrix} -.42 & -.57 & -.70 \\ .81 & .11 & -.58 \\ .41 & -.82 & .41 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$$

- Look at how the multiplication works out, left to right:
- Column 1 of **U** gets scaled by the first value from **Σ**.

$$\begin{bmatrix} U\Sigma & V^T & A_{partial} \\ \hline -3.67 & -.71 & 0 \\ -8.8 & .30 & 0 \end{bmatrix} \times \begin{bmatrix} -.42 & -.57 & -.70 \\ .81 & .11 & -.58 \\ .41 & -.82 & .41 \end{bmatrix} \begin{bmatrix} 1.6 & 2.1 & 2.6 \\ 3.8 & 5.0 & 6.2 \end{bmatrix}$$

The resulting vector gets scaled by row 1 of V<sup>T</sup> to produce a contribution to the columns of A



Each product of (column i of U)·(value i from Σ)·(row i of V<sup>T</sup>) produces a component of the final A.

Stanford University

Lecture 11 -11



- We're building **A** as a linear combination of the columns of **U**
- Using all columns of **U**, we'll rebuild the original matrix perfectly
- But, in real-world data, often we can just use the first few columns of *U* and we'll get something close (e.g. the first *A<sub>partial</sub>*, above)

Lecture 11 -12 2-Nov-17



- We can call those first few columns of **U** the *Principal Components* of the data
- They show the major patterns that can be added to produce the columns of the original matrix
- The rows of V<sup>T</sup> show how the *principal components* are mixed to produce the columns of the matrix

Lecture 11 -13 2-Nov-17



We can look at Σ to see that the first column has a large effect

while the second column has a much smaller effect in this example

Lecture 11 -14





- For this image, using only the first 10 of 300 principal components produces a recognizable reconstruction
- So, SVD can be used for image compression

Lecture 11 -15

## SVD for symmetric matrices

• If A is a symmetric matrix, it can be decomposed as the following:

$$A = \Phi \Sigma \Phi^T$$

• Compared to a traditional SVD decomposition,  $U = V^{T}$  and is an orthogonal matrix.

## **Principal Component Analysis**



- Remember, columns of *U* are the *Principal Components* of the data: the major patterns that can be added to produce the columns of the original matrix
- One use of this is to construct a matrix where each column is a separate data sample
- Run SVD on that matrix, and look at the first few columns of U to see patterns that are common among the columns
- This is called *Principal Component Analysis* (or PCA) of the data samples

Lecture 11 -17 2-Nov-17

## **Principal Component Analysis**



- Often, raw data samples have a lot of redundancy and patterns
- PCA can allow you to represent data samples as weights on the principal components, rather than using the original raw form of the data
- By representing each sample as just those weights, you can represent just the "meat" of what's different between samples.
- This minimal representation makes machine learning and other algorithms much more efficient

## How is SVD computed?

- For this class: tell PYTHON to do it. Use the result.
- But, if you're interested, one computer algorithm to do it makes use of Eigenvectors!

Lecture 11 -19 2-Nov-17

## Eigenvector definition

- Suppose we have a square matrix **A**. We can solve for vector x and scalar  $\lambda$  such that Ax=  $\lambda$ x
- In other words, find vectors where, if we transform them with **A**, the only effect is to scale them with no change in direction.
- These vectors are called eigenvectors (German for "self vector" of the matrix), and the scaling factors λ are called eigenvalues
- An *m* x *m* matrix will have ≤ *m* eigenvectors where λ is nonzero

# Finding eigenvectors

 Computers can find an x such that Ax= λx using this iterative algorithm:

– X = random unit vector

- while(x hasn't converged)
  - X = Ax
  - normalize x
- x will quickly converge to an eigenvector
- Some simple modifications will let this algorithm find all eigenvectors

# Finding SVD

- Eigenvectors are for square matrices, but SVD is for all matrices
- To do svd(A), computers can do this:
  - Take eigenvectors of AA<sup>T</sup> (matrix is always square).
    - These eigenvectors are the columns of **U**.
    - Square root of eigenvalues are the singular values (the entries of Σ).
  - Take eigenvectors of A<sup>T</sup>A (matrix is always square).
    - These eigenvectors are columns of **V** (or rows of **V**<sup>T</sup>)



# Finding SVD

- Moral of the story: SVD is fast, even for large matrices
- It's useful for a lot of stuff
- There are also other algorithms to compute SVD or part of the SVD
  - Python's np.linalg.svd() command has options to efficiently compute only what you need, if performance becomes an issue

A detailed geometric explanation of SVD is here: <u>http://www.ams.org/samplings/feature-column/fcarc-svd</u>

**Stanford University** 

Lecture 11 -23

## What we will learn today

- Introduction to face recognition
- Principal Component Analysis (PCA)
- Image compression



#### Covariance

- Variance and Covariance are a measure of the "spread" of a set of points around their center of mass (mean)
- Variance measure of the deviation from the mean for points in one dimension e.g. heights
- Covariance as a measure of how much each of the dimensions vary from the mean with respect to each other.
- Covariance is measured between 2 dimensions to see if there is a relationship between the 2 dimensions e.g. number of hours studied & marks obtained.
- The covariance between one dimension and itself is the variance

#### Covariance

covariance (X,Y) = 
$$\Sigma_{i=1}^{n} (\overline{X_i} - X) (\overline{Y_i} - Y)$$
  
(n -1)

So, if you had a 3-dimensional data set (x,y,z), then you could measure the covariance between the x and y dimensions, the y and z dimensions, and the x and z dimensions. Measuring the covariance between x and x, or y and y, or z and z would give you the variance of the x, y and z dimensions respectively

Lecture 11 -26 2-Nov-17

#### Covariance matrix

Representing Covariance between dimensions as a matrix e.g. for 3 dimensions

$$C = \begin{array}{c} cov(x,x) & cov(x,y) & cov(x,z) \\ cov(y,x) & cov(y,y) & cov(y,z) \\ cov(z,x) & cov(z,y) & cov(z,z) \end{array}$$
 Variances

- Diagonal is the variances of x, y and z
- cov(x,y) = cov(y,x) hence matrix is symmetrical about the diagonal
- N-dimensional data will result in NxN covariance matrix

#### Covariance

- What is the interpretation of covariance calculations?
  - e.g.: 2 dimensional data set
  - x: number of hours studied for a subject
  - y: marks obtained in that subject
  - covariance value is say: 104.53
  - what does this value mean?

#### **Covariance interpretation**



**Stanford University** 

Lecture 11 -29 2-Nov-17

#### **Covariance interpretation**

- Exact value is not as important as it's sign.
- A **positive value** of covariance indicates both dimensions increase or decrease together e.g. as the number of hours studied increases, the marks in that subject increase.
- A **negative value** indicates while one increases the other decreases, or vice-versa e.g. active social life at PSU vs performance in CS dept.
- If **covariance is zero**: the two dimensions are independent of each other e.g. heights of students vs the marks obtained in a subject

#### Example data

Covariance between the two axis is high. Can we reduce the number of dimensions to just 1?



#### **Stanford University**

Lecture 11 -31 2-Nov-17

#### Geometric interpretation of PCA



Stanford University

Lecture 11 -32 2-Nov-17

## Geometric interpretation of PCA

 Let's say we have a set of 2D data points x. But we see that all the points lie on a line in 2D.



 So, 2 dimensions are redundant to express the data. We can express all the points with just one dimension.

# PCA: Principle Component Analysis

- Given a set of points, how do we know if they can be compressed like in the previous example?
  - The answer is to look into the correlation between the points
  - The tool for doing this is called PCA

#### **PCA Formulation**

- Basic idea:
  - If the data lives in a subspace, it is going to look very flat when viewed from the full space, e.g.





Slide inspired by N. Vasconcelos

**Stanford University** 

Lecture 11 -35

#### **PCA Formulation**

- Assume x is Gaussian with covariance Σ.
- Recall that a gaussian is defined with it's mean and variance:

 $\mathbf{X}~\sim~\mathcal{N}(oldsymbol{\mu},\,oldsymbol{\Sigma})$ 

• Recall that  $\mu$  and  $\Sigma$  of a gaussian are defined as:

$$oldsymbol{\mu} = \mathrm{E}[\mathbf{X}] = [\mathrm{E}[X_1], \mathrm{E}[X_2], \dots, \mathrm{E}[X_k]]^\mathrm{T}$$

$$oldsymbol{\Sigma} =: \mathrm{E}[(\mathbf{X} - oldsymbol{\mu})(\mathbf{X} - oldsymbol{\mu})^{\mathrm{T}}] = [\mathrm{Cov}[X_i, X_j]; 1 \leq i, j \leq k]$$

#### Lecture 11 -36

X<sub>2</sub>′

Ð٢

2-Nov-17

φ<sub>1</sub>

 $X_1$ 

### PCA formulation

 Since gaussians are symmetric, it's covariance matrix is also a symmetric matrix. So we can express it as:

$$-\Sigma = U\Lambda U^{\top} = U\Lambda^{1/2}(U\Lambda^{1/2})^{\top}$$

 $\mathbf{X} ~\sim \mathcal{N}(oldsymbol{\mu}, oldsymbol{\Sigma}) \iff \mathbf{X} ~\sim oldsymbol{\mu} + \mathbf{U} \mathbf{\Lambda}^{1/2} \mathcal{N}(0, \mathbf{I})$ 

 $\iff \mathbf{X} \sim \boldsymbol{\mu} + \mathbf{U} \mathcal{N}(0, \boldsymbol{\Lambda}).$ 

Stanford University

Lecture 11 -37 2-Nov-17

### **PCA Formulation**

• If x is Gaussian with covariance Σ,

- Principal components  $\varphi_i$  are the eigenvectors of  $\Sigma$
- Principal lengths  $\lambda_i$  are the eigenvalues of  $\Sigma$



- by computing the eigenvalues we know the data is
  - Not flat if  $\lambda_1 \approx \lambda_2$
  - Flat if  $\lambda_1 >> \lambda_2$

Slide inspired by N. Vasconcelos

### PCA Algorithm (training)

▶ Given sample 
$$\mathcal{D} = \{\mathbf{x_1}, \dots, \mathbf{x_n}\}, \ x_i \in \mathcal{R}^d$$

• compute sample mean:  $\hat{\mu} = \frac{1}{n} \sum_{i} (\mathbf{x}_i)$ 

• compute sample covariance:  $\widehat{\boldsymbol{\Sigma}} = rac{1}{n} \sum_i (\mathbf{x}_i - \widehat{\mu}) (\mathbf{x}_i - \widehat{\mu})^T$ 

• compute eigenvalues and eigenvectors of  $\widehat{\Sigma}$ 

$$\hat{\Sigma} = \Phi \wedge \Phi^T, \ \Lambda = diag(\sigma_1^2, \dots, \sigma_n^2) \ \Phi^T \Phi = I$$

• order eigenvalues 
$$\sigma_1^2 > ... > \sigma_n^2$$

• if, for a certain k,  $\sigma_k << \sigma_1$  eliminate the eigenvalues and eigenvectors above k.

Slide inspired by N. Vasconcelos

#### **Stanford University**

#### Lecture 11 -39 2-Nov-17

# PCA Algorithm (testing)

• Given principal components  $\phi_i, i \in 1, ..., k$  and a test sample  $\mathcal{T} = \{\mathbf{t}_1, \ldots, \mathbf{t}_n\}, t_i \in \mathcal{R}^d$ 

- subtract mean to each point  $\mathbf{t}_i' = \mathbf{t}_i \hat{\mu}$
- project onto eigenvector space  $\mathbf{y}_i = \mathbf{A}\mathbf{t}'_i$  where

$$\mathbf{A} = \begin{bmatrix} \phi_1^T \\ \vdots \\ \phi_k^T \end{bmatrix}$$

• use  $\mathcal{T}' = \{\mathbf{y}_1, \dots, \mathbf{y}_n\}$  to estimate class conditional densities and do all further processing on  $\mathbf{y}$ .

Slide inspired by N. Vasconcelos

**Stanford University** 

#### Lecture 11 -40 2-

- An alternative manner to compute the principal components, based on singular value decomposition
- Quick reminder: SVD
  - Any real n x m matrix (n>m) can be decomposed as



- Where M is an (n x m) column orthonormal matrix of left singular vectors (columns of M)
- П is an (m x m) diagonal matrix of singular values
- N<sup>T</sup> is an (m x m) row orthonormal matrix of right singular vectors (columns of N)

$$M^T M = I$$
  $N^T N = I$ 

Slide inspired by N. Vasconcelos

**Stanford University** 

#### Lecture 11 -41

• To relate this to PCA, we consider the <u>data matrix</u>



• The sample mean is

$$\mu = \frac{1}{n} \sum_{i} x_{i} = \frac{1}{n} \begin{bmatrix} 1 & 1 & 1 \\ x_{1} & \dots & x_{n} \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix} = \frac{1}{n} X 1$$

Slide inspired by N. Vasconcelos

**Stanford University** 

#### Lecture 11 -42

- Center the data by subtracting the mean to each column of X
- The centered data matrix is



Slide inspired by N. Vasconcelos

**Stanford University** 

Lecture 11 -43

• The sample <u>covariance</u> matrix is

$$\Sigma = \frac{1}{n} \sum_{i} (x_{i} - \mu) (x_{i} - \mu)^{T} = \frac{1}{n} \sum_{i} x_{i}^{c} (x_{i}^{c})^{T}$$

where x<sub>i</sub><sup>c</sup> is the i<sup>th</sup> column of X<sub>c</sub>

• This can be written as



Slide inspired by N. Vasconcelos

Stanford University

#### Lecture 11 -44 2-Nov-17

\_

The matrix ullet

$$\begin{array}{c|c} - & \boldsymbol{X}_{1}^{c} & - \\ \boldsymbol{X}_{c}^{T} = \begin{bmatrix} - & \boldsymbol{X}_{1}^{c} & - \\ - & \boldsymbol{X}_{n}^{c} & - \end{bmatrix} \end{array}$$

is real (n x d). Assuming n>d it has SVD decomposition

$$X_c^T = M\Pi N^T$$
  $M^T M = I$   $N^T N = I$ 

and

$$\Sigma = \frac{1}{n} X_c X_c^T = \frac{1}{n} N\Pi M^T M\Pi N^T = \frac{1}{n} N\Pi^2 N^T$$

Slide inspired by N. Vasconcelos

**Stanford University** 

Lecture 11 - 45



- Note that N is (d x d) and orthonormal, and  $\Pi^2$  is diagonal. This is just the eigenvalue decomposition of  $\Sigma$
- It follows that
  - The eigenvectors of  $\boldsymbol{\Sigma}$  are the columns of N
  - The eigenvalues of  $\boldsymbol{\Sigma}$  are

$$\lambda_i = \frac{1}{n} \pi_i^2$$

• This gives an alternative algorithm for PCA

Slide inspired by N. Vasconcelos

2-Nov-17

**Stanford University** 

Lecture 11 -46

- In summary, computation of PCA by SVD
- Given X with one example per column
  - Create the centered data matrix

$$\boldsymbol{X}_{c}^{T} = \left(\boldsymbol{I} - \frac{1}{\boldsymbol{n}}\boldsymbol{1}\boldsymbol{1}^{T}\right)\boldsymbol{X}^{T}$$

- Compute its SVD

$$X_c^T = M\Pi N^T$$

- Principal components are columns of N, eigenvalues are

$$\lambda_i = \frac{1}{n} \pi_i^2$$

Slide inspired by N. Vasconcelos

Stanford University

#### Lecture 11 -47

# Rule of thumb for finding the number of PCA components

- A natural measure is to pick the eigenvectors that explain p% of the data variability
  - Can be done by plotting the ratio  $r_k$  as a function of k





 E.g. we need 3 eigenvectors to cover 70% of the variability of this dataset

Slide inspired by N. Vasconcelos

Stanford University

Lecture 11 -48

# What we will learn today

- Introduction to face recognition
- Principal Component Analysis (PCA)
- Image compression

### **Original Image**



- Divide the original 372x492 image into patches:
  - Each patch is an instance that contains 12x12 pixels on a grid
- View each as a 144-D vector

#### Stanford University

#### Lecture 11 -50 2-

#### L<sub>2</sub> error and PCA dim



#### PCA compression: 144D ) 60D



Stanford University

#### Lecture 11 -52 2-Nov-17

#### PCA compression: 144D ) 16D



Stanford University



### 16 most important eigenvectors



Stanfo

### PCA compression: 144D ) 6D



Stanford University



2-INOV-1/

### 6 most important eigenvectors



### PCA compression: 144D ) 3D



**Stanford University** 

Lecture 11 -57 2-Nov-17

### 3 most important eigenvectors







Stan

### PCA compression: 144D ) 1D



**Stanford University** 

#### Lecture 11 -59

### What we have learned today

- Introduction to face recognition
- Principal Component Analysis (PCA)
- Image compression

