Lecture:

Face Recognition and Feature Reduction

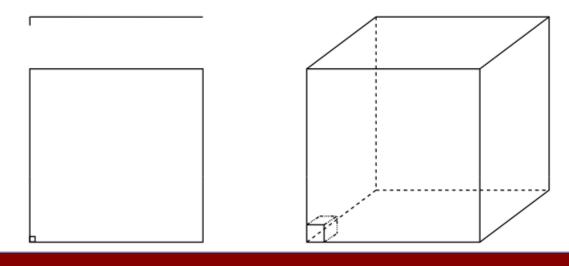
Juan Carlos Niebles and Ranjay Krishna Stanford Vision and Learning Lab

Stanford University

Lecture 11 -1

Recap - Curse of dimensionality

- Assume 5000 points uniformly distributed in the unit hypercube and we want to apply 5-NN. Suppose our query point is at the origin.
 - In 1-dimension, we must go a distance of 5/5000=0.001 on the average to capture 5 nearest neighbors.
 - In 2 dimensions, we must go $\sqrt{0.001}$ to get a square that contains 0.001 of the volume.
 - In d dimensions, we must go $(0.001)^{1/d}$



Stanford University

Lecture 11 -2 31-Oct-17

What we will learn today

- Singular value decomposition
- Principal Component Analysis (PCA)
- Image compression

What we will learn today

- Singular value decomposition
- Principal Component Analysis (PCA)
- Image compression

- There are several computer algorithms that can "factorize" a matrix, representing it as the product of some other matrices
- The most useful of these is the Singular Value Decomposition.
- Represents any matrix A as a product of three matrices: UΣV^T
- Python command:

– [U,S,V]= numpy.linalg.svd(A)

$\mathbf{U}\mathbf{\Sigma}\mathbf{V}^{\mathsf{T}} = \mathbf{A}$

Where U and V are rotation matrices, and Σ is a scaling matrix. For example:

$$\begin{array}{cccc} U & \Sigma & V^T & A \\ \begin{bmatrix} -.40 & .916 \\ .916 & .40 \end{bmatrix} \times \begin{bmatrix} 5.39 & 0 \\ 0 & 3.154 \end{bmatrix} \times \begin{bmatrix} -.05 & .999 \\ .999 & .05 \end{bmatrix} = \begin{bmatrix} 3 & -2 \\ 1 & 5 \end{bmatrix}$$

Stanford University

Lecture 11 -6

- Beyond 2x2 matrices:
 - In general, if **A** is $m \ge n$, then **U** will be $m \ge m$, **\Sigma** will be $m \ge n$, and **V**^T will be $n \ge n$.
 - (Note the dimensions work out to produce *m* x *n* after multiplication)

$$\begin{bmatrix} U & \Sigma & V^T \\ -.39 & -.92 \\ -.92 & .39 \end{bmatrix} \times \begin{bmatrix} 9.51 & 0 & 0 \\ 0 & .77 & 0 \end{bmatrix} \times \begin{bmatrix} -.42 & -.57 & -.70 \\ .81 & .11 & -.58 \\ .41 & -.82 & .41 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$$

Stanford University

Lecture 11 -7 2.

- **U** and **V** are always rotation matrices.
 - Geometric rotation may not be an applicable concept, depending on the matrix. So we call them "unitary" matrices – each column is a unit vector.
- **Σ** is a diagonal matrix
 - The number of nonzero entries = rank of A
 - The algorithm always sorts the entries high to low

$$\begin{bmatrix} U & \Sigma & V^T \\ -.39 & -.92 \\ -.92 & .39 \end{bmatrix} \times \begin{bmatrix} 9.51 & 0 & 0 \\ 0 & .77 & 0 \end{bmatrix} \times \begin{bmatrix} -.42 & -.57 & -.70 \\ .81 & .11 & -.58 \\ .41 & -.82 & .41 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$$

Stanford University

Lecture 11 -8

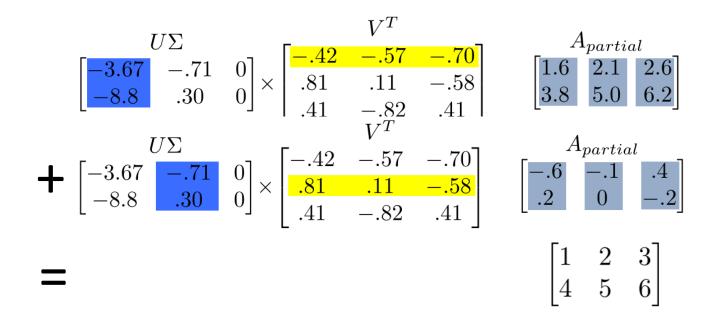
- We've discussed SVD in terms of geometric transformation matrices
- But SVD of an image matrix can also be very useful
- To understand this, we'll look at a less geometric interpretation of what SVD is doing

$$\begin{bmatrix} U & \Sigma & V^T \\ -.39 & -.92 \\ -.92 & .39 \end{bmatrix} \times \begin{bmatrix} 9.51 & 0 & 0 \\ 0 & .77 & 0 \end{bmatrix} \times \begin{bmatrix} -.42 & -.57 & -.70 \\ .81 & .11 & -.58 \\ .41 & -.82 & .41 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$$

- Look at how the multiplication works out, left to right:
- Column 1 of **U** gets scaled by the first value from **Σ**.

$$\begin{bmatrix} U\Sigma & V^T & A_{partial} \\ \hline -3.67 & -.71 & 0 \\ -8.8 & .30 & 0 \end{bmatrix} \times \begin{bmatrix} -.42 & -.57 & -.70 \\ .81 & .11 & -.58 \\ .41 & -.82 & .41 \end{bmatrix} \begin{bmatrix} 1.6 & 2.1 & 2.6 \\ 3.8 & 5.0 & 6.2 \end{bmatrix}$$

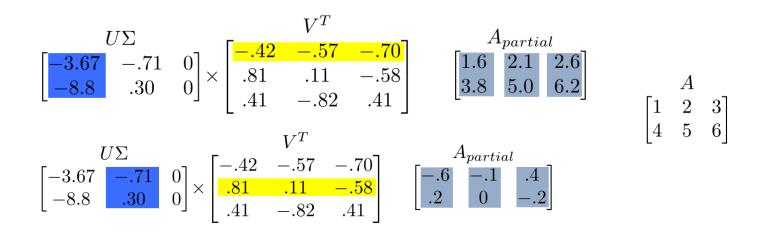
The resulting vector gets scaled by row 1 of V^T to produce a contribution to the columns of A



Each product of (column i of U)·(value i from Σ)·(row i of V^T) produces a component of the final A.

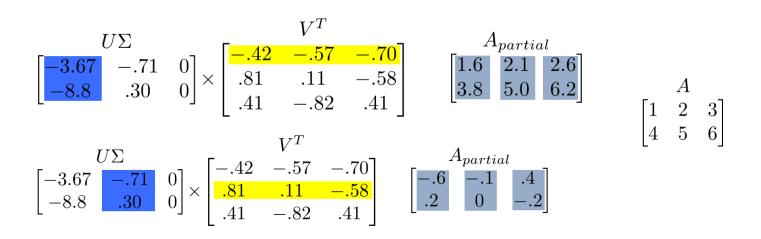
Stanford University

Lecture 11 -11



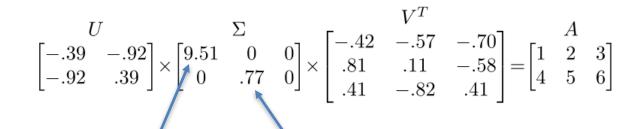
- We're building **A** as a linear combination of the columns of **U**
- Using all columns of **U**, we'll rebuild the original matrix perfectly
- But, in real-world data, often we can just use the first few columns of *U* and we'll get something close (e.g. the first *A_{partial}*, above)

Lecture 11 -12 2-Nov-17



- We can call those first few columns of **U** the *Principal Components* of the data
- They show the major patterns that can be added to produce the columns of the original matrix
- The rows of V^T show how the *principal components* are mixed to produce the columns of the matrix

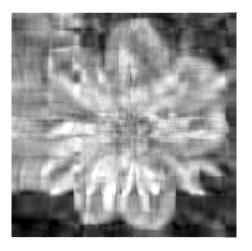
Lecture 11 -13 2-Nov-17



We can look at Σ to see that the first column has a large effect

while the second column has a much smaller effect in this example

Lecture 11 -14



- For this image, using only the first 10 of 300 principal components produces a recognizable reconstruction
- So, SVD can be used for image compression

Lecture 11 -15

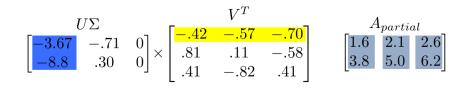
SVD for symmetric matrices

• If A is a symmetric matrix, it can be decomposed as the following:

$$A = \Phi \Sigma \Phi^T$$

• Compared to a traditional SVD decomposition, $U = V^{T}$ and is an orthogonal matrix.

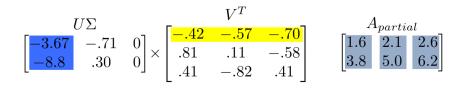
Principal Component Analysis



- Remember, columns of *U* are the *Principal Components* of the data: the major patterns that can be added to produce the columns of the original matrix
- One use of this is to construct a matrix where each column is a separate data sample
- Run SVD on that matrix, and look at the first few columns of U to see patterns that are common among the columns
- This is called *Principal Component Analysis* (or PCA) of the data samples

Lecture 11 -17 2-Nov-17

Principal Component Analysis



- Often, raw data samples have a lot of redundancy and patterns
- PCA can allow you to represent data samples as weights on the principal components, rather than using the original raw form of the data
- By representing each sample as just those weights, you can represent just the "meat" of what's different between samples.
- This minimal representation makes machine learning and other algorithms much more efficient

How is SVD computed?

- For this class: tell PYTHON to do it. Use the result.
- But, if you're interested, one computer algorithm to do it makes use of Eigenvectors!

Lecture 11 -19 2-Nov-17

Eigenvector definition

- Suppose we have a square matrix **A**. We can solve for vector x and scalar λ such that Ax= λ x
- In other words, find vectors where, if we transform them with **A**, the only effect is to scale them with no change in direction.
- These vectors are called eigenvectors (German for "self vector" of the matrix), and the scaling factors λ are called eigenvalues
- An *m* x *m* matrix will have ≤ *m* eigenvectors where λ is nonzero

Finding eigenvectors

 Computers can find an x such that Ax= λx using this iterative algorithm:

– X = random unit vector

- while(x hasn't converged)
 - X = Ax
 - normalize x
- x will quickly converge to an eigenvector
- Some simple modifications will let this algorithm find all eigenvectors

Finding SVD

- Eigenvectors are for square matrices, but SVD is for all matrices
- To do svd(A), computers can do this:
 - Take eigenvectors of AA^T (matrix is always square).
 - These eigenvectors are the columns of **U**.
 - Square root of eigenvalues are the singular values (the entries of Σ).
 - Take eigenvectors of A^TA (matrix is always square).
 - These eigenvectors are columns of **V** (or rows of **V**^T)

Finding SVD

- Moral of the story: SVD is fast, even for large matrices
- It's useful for a lot of stuff
- There are also other algorithms to compute SVD or part of the SVD
 - Python's np.linalg.svd() command has options to efficiently compute only what you need, if performance becomes an issue

A detailed geometric explanation of SVD is here: <u>http://www.ams.org/samplings/feature-column/fcarc-svd</u>

Stanford University

Lecture 11 -23

What we will learn today

- Introduction to face recognition
- Principal Component Analysis (PCA)
- Image compression

Covariance

- Variance and Covariance are a measure of the "spread" of a set of points around their center of mass (mean)
- Variance measure of the deviation from the mean for points in one dimension e.g. heights
- Covariance as a measure of how much each of the dimensions vary from the mean with respect to each other.
- Covariance is measured between 2 dimensions to see if there is a relationship between the 2 dimensions e.g. number of hours studied & marks obtained.
- The covariance between one dimension and itself is the variance

Covariance

covariance (X,Y) =
$$\Sigma_{i=1}^{n} (\overline{X_i} - X) (\overline{Y_i} - Y)$$

(n -1)

So, if you had a 3-dimensional data set (x,y,z), then you could measure the covariance between the x and y dimensions, the y and z dimensions, and the x and z dimensions. Measuring the covariance between x and x, or y and y, or z and z would give you the variance of the x, y and z dimensions respectively

Lecture 11 -26 2-Nov-17

Covariance matrix

Representing Covariance between dimensions as a matrix e.g. for 3 dimensions

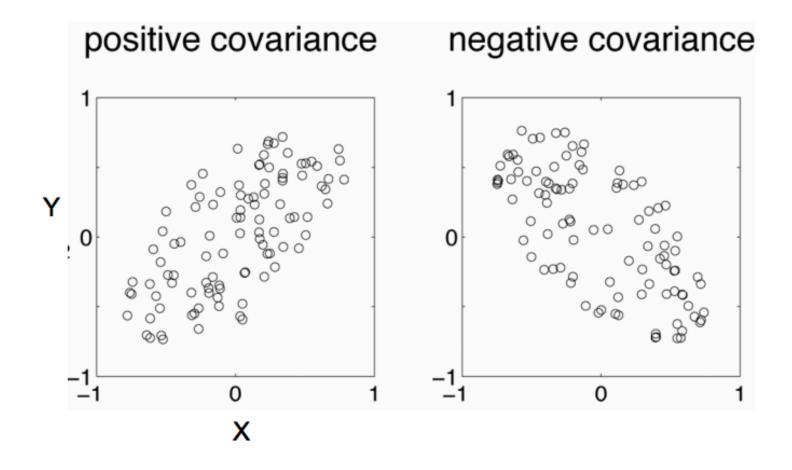
$$C = \begin{array}{c} cov(x,x) & cov(x,y) & cov(x,z) \\ cov(y,x) & cov(y,y) & cov(y,z) \\ cov(z,x) & cov(z,y) & cov(z,z) \end{array}$$
 Variances

- Diagonal is the variances of x, y and z
- cov(x,y) = cov(y,x) hence matrix is symmetrical about the diagonal
- N-dimensional data will result in NxN covariance matrix

Covariance

- What is the interpretation of covariance calculations?
 - e.g.: 2 dimensional data set
 - x: number of hours studied for a subject
 - y: marks obtained in that subject
 - covariance value is say: 104.53
 - what does this value mean?

Covariance interpretation



Stanford University

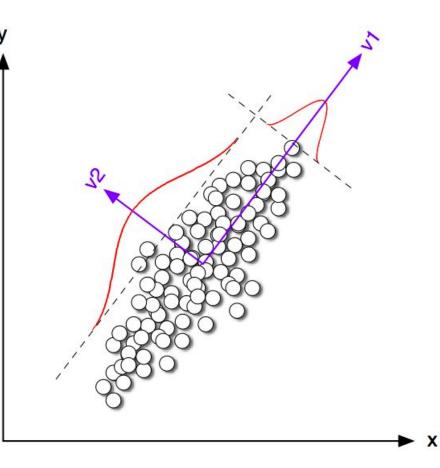
Lecture 11 -29 2-Nov-17

Covariance interpretation

- Exact value is not as important as it's sign.
- A **positive value** of covariance indicates both dimensions increase or decrease together e.g. as the number of hours studied increases, the marks in that subject increase.
- A **negative value** indicates while one increases the other decreases, or vice-versa e.g. active social life at PSU vs performance in CS dept.
- If **covariance is zero**: the two dimensions are independent of each other e.g. heights of students vs the marks obtained in a subject

Example data

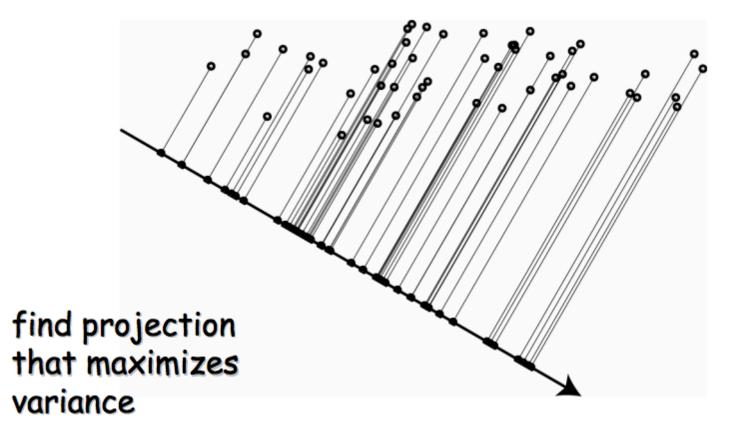
Covariance between the two axis is high. Can we reduce the number of dimensions to just 1?



Stanford University

Lecture 11 -31 2-Nov-17

Geometric interpretation of PCA

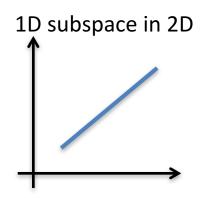


Stanford University

Lecture 11 -32 2-Nov-17

Geometric interpretation of PCA

 Let's say we have a set of 2D data points x. But we see that all the points lie on a line in 2D.



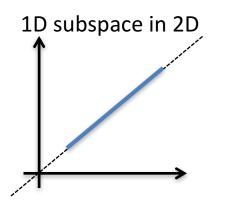
 So, 2 dimensions are redundant to express the data. We can express all the points with just one dimension.

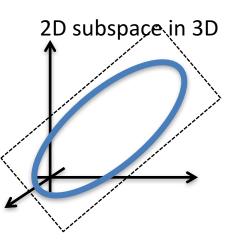
PCA: Principle Component Analysis

- Given a set of points, how do we know if they can be compressed like in the previous example?
 - The answer is to look into the correlation between the points
 - The tool for doing this is called PCA

PCA Formulation

- Basic idea:
 - If the data lives in a subspace, it is going to look very flat when viewed from the full space, e.g.





Slide inspired by N. Vasconcelos

Stanford University

Lecture 11 -35

PCA Formulation

- Assume x is Gaussian with covariance Σ.
- Recall that a gaussian is defined with it's mean and variance:

 $\mathbf{X}~\sim~\mathcal{N}(oldsymbol{\mu},\,oldsymbol{\Sigma})$

• Recall that μ and Σ of a gaussian are defined as:

$$oldsymbol{\mu} = \mathrm{E}[\mathbf{X}] = [\mathrm{E}[X_1], \mathrm{E}[X_2], \dots, \mathrm{E}[X_k]]^\mathrm{T}$$

$$oldsymbol{\Sigma} =: \mathrm{E}[(\mathbf{X} - oldsymbol{\mu})(\mathbf{X} - oldsymbol{\mu})^{\mathrm{T}}] = [\mathrm{Cov}[X_i, X_j]; 1 \leq i, j \leq k]$$

Lecture 11 -36

X₂′

Ð٢

2-Nov-17

φ₁

 X_1

PCA formulation

 Since gaussians are symmetric, it's covariance matrix is also a symmetric matrix. So we can express it as:

$$-\Sigma = U\Lambda U^{\top} = U\Lambda^{1/2}(U\Lambda^{1/2})^{\top}$$

 $\mathbf{X} ~\sim \mathcal{N}(oldsymbol{\mu}, oldsymbol{\Sigma}) \iff \mathbf{X} ~\sim oldsymbol{\mu} + \mathbf{U} \mathbf{\Lambda}^{1/2} \mathcal{N}(0, \mathbf{I})$

 $\iff \mathbf{X} \sim \boldsymbol{\mu} + \mathbf{U} \mathcal{N}(0, \boldsymbol{\Lambda}).$

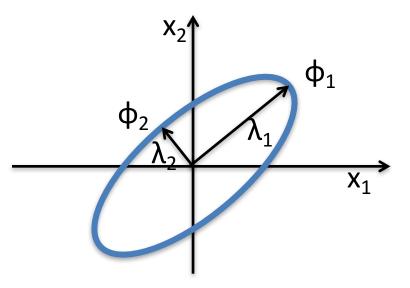
Stanford University

Lecture 11 -37 2-Nov-17

PCA Formulation

• If x is Gaussian with covariance Σ,

- Principal components φ_i are the eigenvectors of Σ
- Principal lengths λ_i are the eigenvalues of Σ



- by computing the eigenvalues we know the data is
 - Not flat if $\lambda_1 \approx \lambda_2$
 - Flat if $\lambda_1 >> \lambda_2$

Slide inspired by N. Vasconcelos

PCA Algorithm (training)

▶ Given sample
$$\mathcal{D} = \{\mathbf{x_1}, \dots, \mathbf{x_n}\}, \ x_i \in \mathcal{R}^d$$

• compute sample mean: $\hat{\mu} = \frac{1}{n} \sum_{i} (\mathbf{x}_i)$

• compute sample covariance: $\widehat{\boldsymbol{\Sigma}} = rac{1}{n} \sum_i (\mathbf{x}_i - \widehat{\mu}) (\mathbf{x}_i - \widehat{\mu})^T$

• compute eigenvalues and eigenvectors of $\widehat{\Sigma}$

$$\hat{\Sigma} = \Phi \wedge \Phi^T, \ \Lambda = diag(\sigma_1^2, \dots, \sigma_n^2) \ \Phi^T \Phi = I$$

• order eigenvalues
$$\sigma_1^2 > ... > \sigma_n^2$$

• if, for a certain k, $\sigma_k << \sigma_1$ eliminate the eigenvalues and eigenvectors above k.

Slide inspired by N. Vasconcelos

Stanford University

Lecture 11 -39 2-Nov-17

PCA Algorithm (testing)

• Given principal components $\phi_i, i \in 1, ..., k$ and a test sample $\mathcal{T} = \{\mathbf{t}_1, \ldots, \mathbf{t}_n\}, t_i \in \mathcal{R}^d$

- subtract mean to each point $\mathbf{t}_i' = \mathbf{t}_i \hat{\mu}$
- project onto eigenvector space $\mathbf{y}_i = \mathbf{A}\mathbf{t}'_i$ where

$$\mathbf{A} = \begin{bmatrix} \phi_1^T \\ \vdots \\ \phi_k^T \end{bmatrix}$$

• use $\mathcal{T}' = \{\mathbf{y}_1, \dots, \mathbf{y}_n\}$ to estimate class conditional densities and do all further processing on \mathbf{y} .

Slide inspired by N. Vasconcelos

Stanford University

Lecture 11 -40 2-

- An alternative manner to compute the principal components, based on singular value decomposition
- Quick reminder: SVD
 - Any real n x m matrix (n>m) can be decomposed as

- Where M is an (n x m) column orthonormal matrix of left singular vectors (columns of M)
- П is an (m x m) diagonal matrix of singular values
- N^T is an (m x m) row orthonormal matrix of right singular vectors (columns of N)

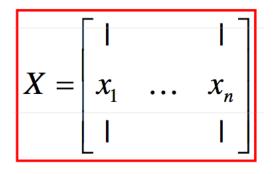
$$M^T M = I$$
 $N^T N = I$

Slide inspired by N. Vasconcelos

Stanford University

Lecture 11 -41

• To relate this to PCA, we consider the <u>data matrix</u>



• The sample mean is

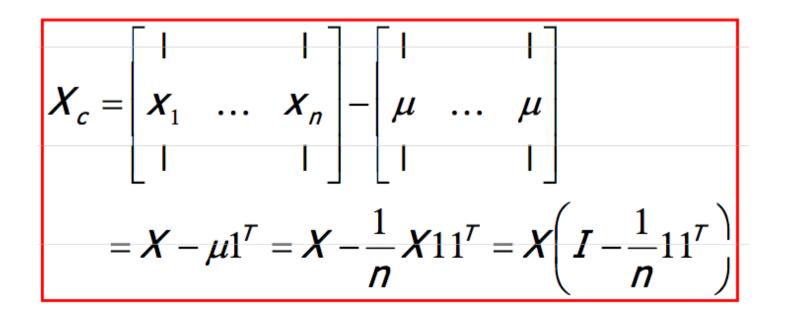
$$\mu = \frac{1}{n} \sum_{i} x_{i} = \frac{1}{n} \begin{bmatrix} 1 & 1 & 1 \\ x_{1} & \dots & x_{n} \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix} = \frac{1}{n} X 1$$

Slide inspired by N. Vasconcelos

Stanford University

Lecture 11 -42

- Center the data by subtracting the mean to each column of X
- The centered data matrix is



Slide inspired by N. Vasconcelos

Stanford University

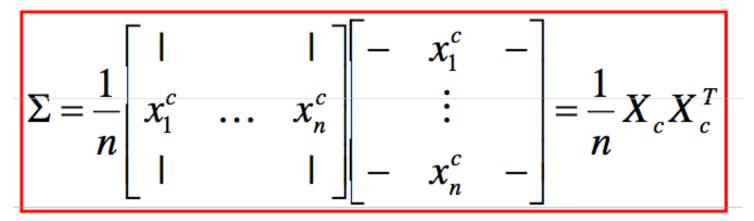
Lecture 11 -43

• The sample <u>covariance</u> matrix is

$$\Sigma = \frac{1}{n} \sum_{i} (x_{i} - \mu) (x_{i} - \mu)^{T} = \frac{1}{n} \sum_{i} x_{i}^{c} (x_{i}^{c})^{T}$$

where x_i^c is the ith column of X_c

• This can be written as



Slide inspired by N. Vasconcelos

Stanford University

Lecture 11 -44 2-Nov-17

_

The matrix ullet

$$\begin{array}{c|c} - & \boldsymbol{X}_{1}^{c} & - \\ \boldsymbol{X}_{c}^{T} = \begin{bmatrix} - & \boldsymbol{X}_{1}^{c} & - \\ - & \boldsymbol{X}_{n}^{c} & - \end{bmatrix} \end{array}$$

is real (n x d). Assuming n>d it has SVD decomposition

$$X_c^T = M\Pi N^T$$
 $M^T M = I$ $N^T N = I$

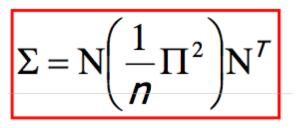
and

$$\Sigma = \frac{1}{n} X_c X_c^T = \frac{1}{n} N\Pi M^T M\Pi N^T = \frac{1}{n} N\Pi^2 N^T$$

Slide inspired by N. Vasconcelos

Stanford University

Lecture 11 - 45



- Note that N is (d x d) and orthonormal, and Π^2 is diagonal. This is just the eigenvalue decomposition of Σ
- It follows that
 - The eigenvectors of $\boldsymbol{\Sigma}$ are the columns of N
 - The eigenvalues of $\boldsymbol{\Sigma}$ are

$$\lambda_i = \frac{1}{n} \pi_i^2$$

• This gives an alternative algorithm for PCA

Slide inspired by N. Vasconcelos

2-Nov-17

Stanford University

Lecture 11 -46

- In summary, computation of PCA by SVD
- Given X with one example per column
 - Create the centered data matrix

$$\boldsymbol{X}_{c}^{T} = \left(\boldsymbol{I} - \frac{1}{\boldsymbol{n}}\boldsymbol{1}\boldsymbol{1}^{T}\right)\boldsymbol{X}^{T}$$

- Compute its SVD

$$X_c^T = M\Pi N^T$$

- Principal components are columns of N, eigenvalues are

$$\lambda_i = \frac{1}{n} \pi_i^2$$

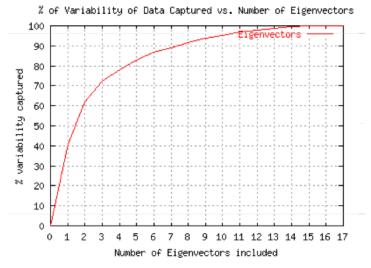
Slide inspired by N. Vasconcelos

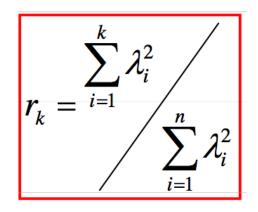
Stanford University

Lecture 11 -47

Rule of thumb for finding the number of PCA components

- A natural measure is to pick the eigenvectors that explain p% of the data variability
 - Can be done by plotting the ratio r_k as a function of k





 E.g. we need 3 eigenvectors to cover 70% of the variability of this dataset

Slide inspired by N. Vasconcelos

Stanford University

Lecture 11 -48

What we will learn today

- Introduction to face recognition
- Principal Component Analysis (PCA)
- Image compression

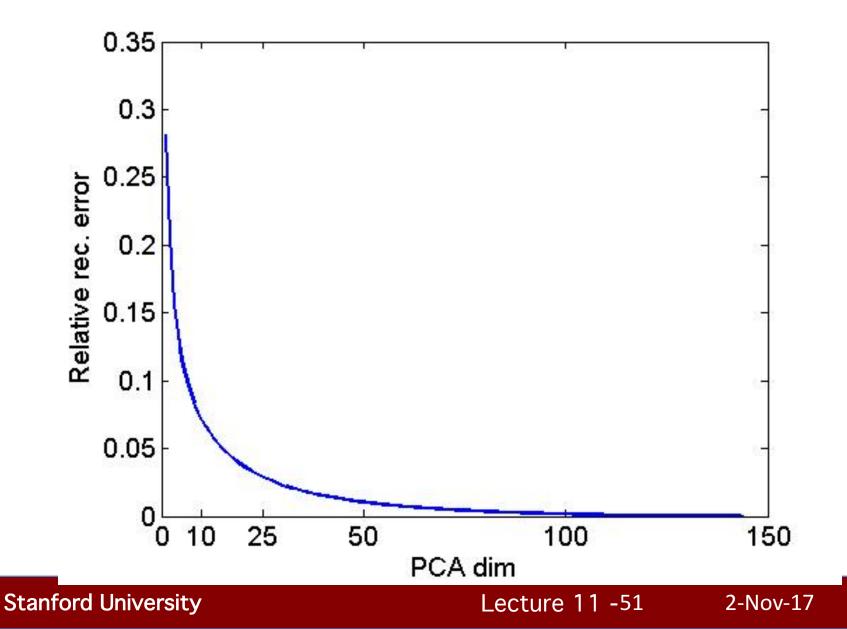
Original Image

- Divide the original 372x492 image into patches:
 - Each patch is an instance that contains 12x12 pixels on a grid
- View each as a 144-D vector

Stanford University

Lecture 11 -50 2-

L₂ error and PCA dim

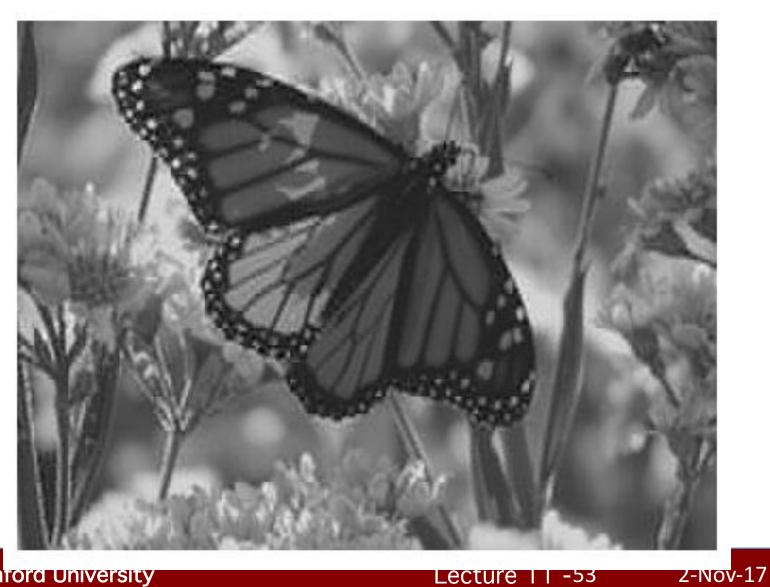


PCA compression: 144D) 60D

Stanford University

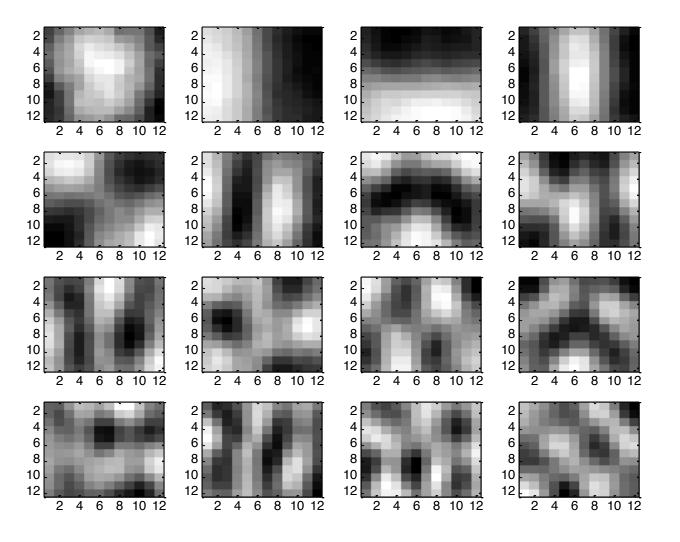
Lecture 11 -52 2-Nov-17

PCA compression: 144D) 16D



Stanford University

16 most important eigenvectors



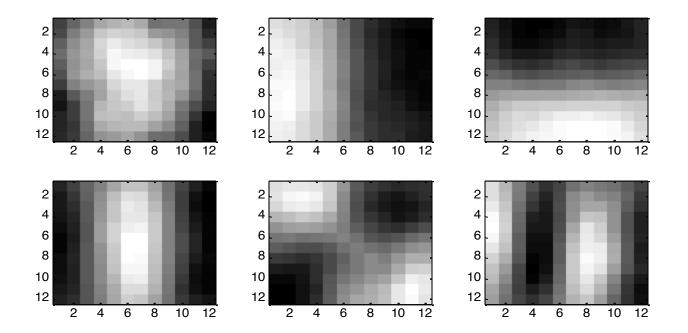
Stanfo

PCA compression: 144D) 6D

Stanford University

2-INOV-1/

6 most important eigenvectors

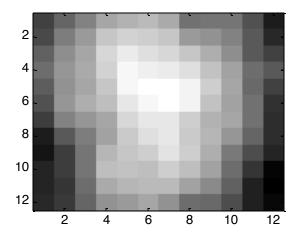


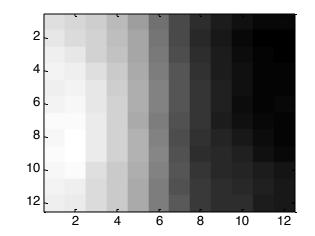
PCA compression: 144D) 3D

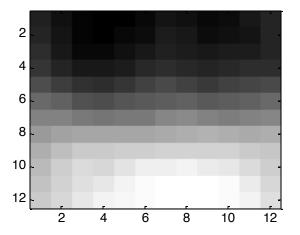
Stanford University

Lecture 11 -57 2-Nov-17

3 most important eigenvectors

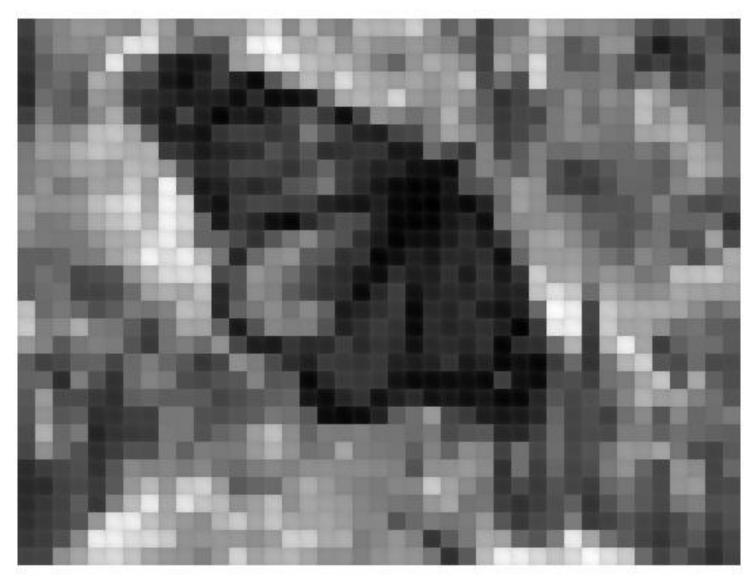






Stan

PCA compression: 144D) 1D



Stanford University

Lecture 11 -59

What we have learned today

- Introduction to face recognition
- Principal Component Analysis (PCA)
- Image compression

