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1 Overview and Motivation

1.1 Overview

Dimensionality reduction is a process for reducing the number of features used in an analysis or a
prediction model. This enhances the performance of computer vision and machine learning-based
approaches and enables us to represent the data in a more efficient way. There are several methods
commonly used in dimensionality reduction. The two main methods covered in this lecture are
Singular Value Decomposition (SVD) and Principal Component Analysis (PCA).

1.2 Motivation

Dimension reduction benefits models for a number of reasons.

1. Reduction in computational cost can be achieved. In many data sets, most of the variance can
be explained by a relatively small number of input variables and their linear combinations.
Focusing on these key components using dimensionality reduction, we can reduce the
computational cost without losing much granularity in the data.

2. Reduce the effects of the “curse of dimensionality”. In lecture 11 we learned that as we
increase the dimension of a feature space, the number of data points needed to “fill in” that
space with the same density explodes exponentially. That is to say, the more dimensions
used in a machine learning algorithm, the more examples are needed for learning and the
longer it takes the algorithm to analyze the same number of data points. By performing
dimensionality reduction, we can mitigate the effects of this “curse of dimensionality”.

3. Compress data. By reducing the dimensionality of an image, we can dramatically reduce
the data storage requirements.
In such cases the computational cost per data point may be reduced by many orders of
magnitude with a procedure like SVD

2 Singular Value Decomposition

2.1 Overview

Intuitively, Singular Value Decomposition (SVD) is a procedure that allows one to represent the data
in a new sub-feature space, such that the majority of variations in the data is captured; this is achieved
by "rotating the axes" of the original feature space to form new axes which are linear combinations of
the original axes/features (e.g. age, income, gender, etc. of a customer). These “new axes” are useful
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because they systematically break down the variance in the data points (how widely the data points
are distributed) based on each directions contribution to the variance in the data:

The result of this process is a ranked list of "directions" in the feature space ordered from most
variance to least. The directions along which there is greatest variance are referred to as the "principal
components" (of variation in the data); by focusing on the data distribution along these dimensions,
one can capture most of the information represented in the original feature space without having to
deal with a high number of dimensions in the original space (but see below on the difference between
feature selection and dimensionality reduction).

2.2 Technical Details of Singular Value Decomposition

• SVD represents any matrix A as a product of three matrices: A = UΣV T where U and V
are rotation matrices, and Σ is a diagonal scaling matrix. For example:

• For many readers, it may be sufficient to extract SVD values by writing: [U, S, V] =
numpy.linalg.svd(A). However, the underpinnings of how SVD is computed is useful for
later topics. Computers typically compute SVD by taking the following steps:

– Compute the eigenvectors of AAT . These vectors are the columns of U. Square root of
the eigenvalues are the singular values (entries of Σ)

– Compute the eigenvectors of ATA. These vectors are columns of V (or rows of V T )

• Since SVD relies on eigenvector computation, which are typically fast, SVD can be per-
formed quite quickly; even for large matrices.

• A more detailed, geometric explanation of SVD may be found here[1].

2.3 Applications of Singular Value Decomposition

• One the most utilized applications of SVD is the computation of matrix inverses. If an
arbitrary matrix A can be decomposed by way of: A = UΣV T , the inverse of A may be
defined as: A+ = V T Σ−1U . Although this inverse is an approximation, it allows one
to calculate the inverses of many non-square matrices. MacAusland (2014) discusses the
mathematical basis of this inverse, which is named the Moore-Penrose inverse, after its
creators[3]. Unsurprisingly, a large variety of matrix problems can be solved be utilizing
this approach.

• Singular Value Decomposition can also be used to compute the Principal Components of
a matrix. Principal Components are heavily utilized in various data analysis and machine
learning routines, hence SVD is typically a core routine within many programs.

3 Principal Component Analysis

3.1 What are Principal Components?

Continuing with the SVD example we have above, notice that Column 1 of U gets scaled by the first
value from Σ.

Then, the resulting vector UΣ gets scaled by row 1 of V T to produce a contribution to the columns
of A which is denoted Apartial. Each product of (column i of U)*(value i from Σ)*(row i of V T )
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produces a component of the final A.

In this process we are building the the matrix A as a linear combination of the columns of U. As seen
above, if we use all columns of U, we rebuild A perfectly. However, in real-world data, we can use
only the first few columns of U to get a good approximation of A. This arises due to the properties
of Σ. Σ is a diagonal matrix where the largest value is in the top left corner, and the rest of the values
on the diagonal decreases as you move to the right. Thus, the first few columns of U contribute the
largest weight towards A. These first few columns of U are called principal components.

However, not all matrices can be easily compressed as in the previous example. One way to evaluate
the feasibility is Principal Component Analysis. From a high level standpoint, we want to see if
it’s possible to remove dimensions that don’t contribute much to the final image. We achieve this
by analyzing the covariance matrix. Although the value of covariance doesn’t matter as much, the
sign of covariance does, with positive indicating positive correlation and negative indicating negative
correlation. A covariance of zero indicates the two are independent of one another.

3.2 Performing Principal Component Analysis

Principal Component Analysis can be performed using the sklearn package:
sklearn.decomposition.PCA. However, it was alluded to earlier that SVD can be used to
perform Principal Component Analysis. A non-formal approach is outlined below:

1. Format your data into a m ∗ n matrix where m denotes the number of samples and p
represents the number of features or variables corresponding to a single sample.

2. Center the matrix X by subtracting the mean and dividing by the standard deviation along
each column(feature) in X

3. Diagonalizing X using SVD yields: X = UΣV T

4. Eigenvectors are the principal directions and the projections on these axises are the compo-
nents. This ultimately means we want to compute XV

5. Since V holds eigenvectors and is thus orthonormal, XV = UΣV TV = US

6. (5) implies we simply need the columns of US, both matrices that are surfaced by SVD

Detailed explanations that elucidate the reasoning behind the above steps are discussed by Moore
(1981) and can be found on numerous websites online.
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3.3 Applications of Principal Components
• PCA has been extensively used in image compression. Much of the information

captured within an image matrix can be extracted using matrices of lower ranks. This
allows large images to be compressed without significant loss of quality. An exam-
ple of PCA based compression, using only the first 16 principal components, is shown below:

Figure 1: Right: Original Image, Left: Compressed Image

With just the first 16 principal components, an image that closely resembles the original
image can be reconstructed. The relative error as a result of the dimensions used for PCA
for the above image is shown below:

Figure 2: Relative Error as Function of PCA dimensions
• Web search engines also utilize PCA. There are billions of pages on the Internet that may

have a non-trivial relation to a provided search phrase. Companies such as Google, Bing
and Yahoo typically narrow the search space by only considering a small subset of this
search matrix, which can be extracted using PCA[2]. This is critical for timely and efficient
searches, and it speaks to the power of SVD.

In essence, PCA represents data samples as weights on various components - allowing one to
essentially represent the difference between samples. This can significantly reduce data redundancy
and can make algorithms used in a variety of industries more efficient and insightful!
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