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1 Mean-Shift

Previously, we discussed the applications of agglomerative clustering and k-means algorithm for
image segmentation. This lecture focuses on a mean shift, a mode-seeking technique that analyzes
a density function to identify its maxima; one of the primary application of mean-shift algorithm
is image segmentation. In the following sections, the different steps involved in the mean-shift
algorithm are detailed.

1.1 Optimizations

To correctly assign points to clusters, a window must be initialized at each point and shifted to
the most dense area. This procedure can result in a large number of redundant or very similar
computations. It is possible to improve the speed of the algorithm by computing window shifts in
parallel or by reducing the number of windows that must be shifted over the data; this is achieved
using a method called "basin of attraction".

Parallelization The computations required to shift different windows are independent of each other
and can be split across multiple processors and computed simultaneously. By parallelizing mean-shift
over multiple processors or machines, it is possible to achieve a large speed increase without any loss
to accuracy.

Basin of Attraction It is very likely that points close to the path and stopping points of the window
will be assigned to the same cluster. Thus, these points can be assigned early without the need
for calculating mean-shift operations and initializing windows at their location; this reduces the
computation time.
after each update to the window location, nearby points are assigned using the following methods:
Assign all points within a radius r of the shift end point to the same cluster. This is because the
window has just been shifted to an area of higher density, thus it is likely that points close to this area
all belong to the same cluster

Figure 1: Adding points within radius r of shift end point
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Assign all points within radius c of the path of the shift to the same cluster. Imagine initializing a
window at one of the points near the path of the shift. Because all windows are shifted in the direction
of the most dense area, it is likely that this window will be shifted in the same direction and the point
will eventually be assigned to the same cluster. It is common to select the radius c such that c ≤ r.

Figure 2: Adding points within radius c of window path

There is a trade off in selecting the values for r and c. The smaller the values, the fewer nearby
points are assigned early and the higher the computation cost will be. However, the resulting cluster
assignments will have less error if mean-shift was calculated without this method. The larger the
values, the more nearby points are assigned resulting in faster speed increases, but also the possibility
that the final cluster assignments will be less accurate to standard mean-shift.

1.2 Technical Details

In order to correctly shift the window you must first identify a nearby area with highest density to
calculate the shift vector. This can be accomplished using the multivariate kernel density estimate, a
means of estimating the probability density function of a random variable.

Given n data points x ∈ Rd, the multivariate kernel density estimate, using a radially symmetric
(Comaniciu & Meer, 2002) kernel K(x), is given by
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where h is known as the bandwidth parameter which defines the radius of the kernel. The radially
symmetric kernel, K(x) is given by

K(x) = ckk(||x||2), (2)

where ck represents a normalization constant.

Selecting the appropriate h is crucial to achieving accurate density estimation. Selecting a value that
is too small results in a small radius and can be subject to noise in the data. Selecting a value that is
too large includes many far away points and results in fewer clusters.

The resulting derivative of the multivariate kernel density estimate is given by
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where g(x) = −K ′(x) denotes the derivative of the selected kernel profile.
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, is the mean-shift vector that points towards the

direction of maximum density.

1.3 Mean-Shift Procedure

From a given point xt, calculate the following steps in order to reach the center of the cluster.

2



1. Compute the mean-shift vector m [term 2 from equation (3) above]:
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2. Translate the density window using the mean-shift vector:

xt+1
i = xti +m(xti) (5)

3. Repeat steps 1 and 2 until convergence

∇f(xi) = 0 (6)

1.4 Kernel Functions

A kernel, K(x) is a non-negative function that integrates to 1 over all values of x. These requirements
ensure that kernel density estimation will result in a probability density function.

Examples of popular kernel functions include:

• Uniform (rectangular)

– K(x) = 1
2 where |x| ≤ 1 and 0 otherwise

• Gaussian

– K(x) = 1√
2π

e−
1
2u

2

• Epanechnikov (parabolic)

– K(x) = 3
4 (1− x2) where |x| ≤ 1 and 0 otherwise

1.5 Mean-Shift Conclusions

The mean-shift algorithm has many pros and cons to consider.

Positives of mean-shift:

• Very general and application independent.

• Model-free. Mean-shift does not assume any prior shape of data clusters.

• Only depends on a single parameter defining the window size. Additional parameters will
be required (r and c) if basin of attraction is applied.

• Finds a variable number of modes. The modes of a distribution function are the local
maximums and the locations of these maximums are where the clusters will be centered.

• Robust to outliers in the data. Mean-shift won’t try to force outliers to an existing cluster if
they are further than the window size away from all other points.

Negatives of mean-shift:

• Output depends on window size and determining the appropriate window size is not trivial.

• Computationally relatively expensive to compute the mean-shift from all data points.

• Does not scale well with dimension of feature space.

2 Object recognition

2.1 Object recognition tasks

The field of object recognition can be broken down into a number of different visual recognition
tasks.
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Classification Classification involves teaching computers to properly label images based on the
categories of object. It focuses on answering the questions, "is this image of a particular object?"
and "does this image contain a particular object?" Typically, classification questions have yes or no
answers. For example, typical classification questions could ask if the image contains a building or if
the image is of a lake.

Image search This recognition task involves searching a collection of photos for photos of a
particular object; an examples is Google Photos.

Organizing photo collections Object recognition can help organize photo collections based upon
location of the photos, similarity of activities, the people who appear in the photos, and other
recognizable objects.

Detection Detection focuses on the question, "where is a particular object in the image?" Traditional
detection methods search for a bounding box that contains the object in question. Using segmentation
techniques, the object can also be more specifically selected from the pixels in the image, for what is
called accurate localization.
Detection can also be targeted at finding geometric and semantic attributes. For example, detection
tasks include asking questions such as "is the traffic light red?", "what angle do two buildings make
with one another?". Other common attributes found by detection include the distance objects are
from one another, and what view of the object the image has.

Single Instance Recognition Instead of searching to generally categorize objects, single instance
recognition seeks to recognize a particular object or landmark in images. For example, we may want
to determine if the picture contains the Golden Gate Bridge or just a bridge. We may want to find a
box of a specific brand of cereal.

Activity or event recognition Activity or event recognition is used to detect what is occurring in a
photo. For example, we can ask what people are doing or if the event is a wedding.

2.2 Challenges

The challenges to building good object recognition methods include both image and category compli-
cations. Since computers can only see the pixel values of images, object recognition methods must
account for a lot of variance.

Category numbers Studies have shown that humans can recognize roughly 10,000 to 30,000
categories of objects. Currently, the best visual recognition methods can work with about 200
categories for detection, and 1,000 for classification. Many researchers are working to build image
datasets to improve object recognition; performing recognition on higher number of categories is the
subject of many competitions!

Viewpoint variation There are many potential ways to view an object, and the change in viewpoint
can lead an object to look very different.

Illumination Different levels of light, particularly low light or a different light direction, will cause
shadows to shift and the details of an object to become obscured.

Scale Objects belonging to one category can come in a variety of sizes. If a classification is only
trained on a particular size of object, then it will fail to recognize the same object in a different size.
One way to solve this bias would be to figure out a way to make better datasets that account for scale
variation.

Deformation Objects can change form and look very different, while still being considered the
same object. For example, a person can be photographed in a number of poses, but is still considered
a person if they’re bending over or if their arms are crossed.

Occlusion Objects may be occluded, which could hide aspects of their characteristic geometry.
While occlusion may be an excellent tool for artists (see Magritte), it is a challenge for computers.
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Background clutter Similarities between the texture, color, and shapes in the background and the
foreground can make it difficult to detect an object by blending in the object and/or causing it to
appear differently.

Intra-class variation There can be significant shape variations event within one class of objects.
For example, everything from a barstool to a lounge chair, and a beanbag to an abstract artistic bench
can be considered a chair.

3 K-nearest neighbors

3.1 Supervised learning

We can use machine learning to learn how to label an image based upon its features. The goal of
supervised learning is to use an existing data set to find the following equation:

y = f(x) (7)

In the above equation, y is the output, f is the prediction function, and x is a set of features from an
image.

There are two phases of supervised learning: the train and the test phase. In the train phase, we fit an
equation, f , to the training data set {(x1, y1)...}, which matches sets of image features to known iden-
tifier labels. f can be estimated by minimizing the prediction error, the difference between y and f(x).

In the second phase, the test phase, we evaluate our equation, y = f(x), using a new test example
that has never been seen by f before. We can compare f(x), and its expected output, y, to evaluate
if the prediction function works on a new image. If the prediction function does not work on new
images, it’s not very useful!

One way to use supervised machine learning is to learn the decision rules for a classification task. A
decision rule divides input space into decision regions that are separated by decision boundaries.

Figure 3: Decision regions and decision boundaries (in red) for three categories, R1, R2, and R3

over a feature space with two dimension. ?

3.2 Nearest neighbor classifier

The nearest neighbor classifier is an algorithm for assigning categories to objects based upon their
nearest neighbor. We assign a new test data point the same label as its nearest training data point.

Nearest neighbors are found using the Euclidean distance between features. For a set of training data,
where Xn and Xm are the n-th and the m-th data points, the distance equation is written as:

Dist(Xn, Xm) = ||Xn −Xm||2 =

√∑
i

(Xn
i −Xm

i )2 (8)
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The definition of the nearest neighbors classifier allows for complex decision boundaries that are
shaped around each data point in the training set.

3.3 K-nearest neighbors classifier

We can enhance the nearest neighbors classifier by looking at the k nearest neighbors as opposed
to just the nearest neighbor. The k-nearest neighbor classifier calculates the k nearest neighbors,
and labels a new object by a score calculated over this set of nearest neighbors. A commonly used
metric is to assign a new object to the category that a majority of their nearest neighbors belong to.
Heuristics are used to break ties, and are evaluated based upon what works the best.

Figure 4: For the + data point, the green circle represents it’s k-nearest neighbors, for k = 5. Since
three out of five of its nearest neighbors are green circles, our test data point will be classified as a

green circle. ?

Like the nearest neighbor classifier, the k-nearest neighbor algorithm allows for complex decision
boundaries using a relatively simple equation!

3.4 Pros of using k-nearest neighbors

K-NN is a very simple algorithm which makes it a good one to try out at first. IN addition, K-NN has
very flexible decision boundaries. Another reason to use K-NN is that with infinite examples, 1-NN
provably has error that is at most twice Bayes optimal error (proof is out of scope for this class).

3.5 Problems with k-nearest neighbors

3.5.1 Choosing the value of k

It’s important to choose the proper value of K when using the K-nearest neighbor algorithm. If the
value of K is too small, then the algorithm will be too sensitive to noise points. If the value of K is
too high, then the neighborhood may include points from other classes. Similarly, as K increases,
the decision boundaries will become more smooth, and for a smaller value of K, there will be more
smaller regions to consider.
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Figure 1: Comparing the result of choosing K=1 vs. K=15

Solution: Cross validate!
One way to find the proper value of K is to create a holdout cross validation/development set from
the training set. From there, we would adjust the hyper parameters (e.g, K) on the development set
to maximize training, and then ’test’ the development set’s accuracy. We would then change the
validation set from the training set and repeat until we find the best value of K.

3.5.2 Euclidean measurement

Another issue that can arise with the K-nearest neighbor algorithm is that using the Euclidean measure
might provide counter-intuitive results. See example below:

Figure 3: Different values, but using the Euclidean measure equates them to be the same

Solution: Normalize!
Normalizing the vectors to unit length will guarantee that the proper Euclidean measurement is used.

3.5.3 Curse of dimensionality

When using the K-nearest neighbor algorithm, one issue we need to keep in mind is how to deal with
larger dimensions. When the dimensions grow, we need to cover a larger space to find the nearest
neighbor. This makes it take longer and longer to calculate the nearest points, and the algorithm will
run slower. This also means we will need to have a greater number of examples to train on. Currently,
there is no best solution to the dimensionality problem.
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Figure 4: Larger dimensions require long calculation times

Problem: Assume there are 5000 points uniformly distributed in the unit hypercube, and we want to
apply 5-NN (Nearest Neighbor). Suppose our query point is at the origin:

• In 1 dimension, we must go a distance of 5
5000=0.001 on the average to capture 5 nearest

neighbors

• In 2 dimensions, we must go
√
0.001 to get a square that contains 0.001 of the volume

• In d dimensions, we must go (0.001)
1
d

Note: K-nearest neighbors is just one of the many classifiers to choose from. That being said, it’s
not always easy to choose the "best" model for your data. It’s best to think about how well you can
generalize your model (i.e., how well does your model generalize from the data it was trained on to a
new set?).

3.6 Bias-variance trade-off

:

The key to generalization error is to get low, generalized error, by finding the right number/type
of parameters. There are two main components of generalization error: bias and variance. Bias
is defined as how much the average model over all the training sets differs from the true model.
Variance is defined as how much the models estimated from different training sets differ from each
other. We need to find the right balance between bias and variance, hence, the bias-variance trade-off.
Models with too few parameters are inaccurate because of a large bias (not enough flexibility).
Similarly, models with too many parameters are inaccurate because of a large variance (too much
sensitivity to the sample). To types of incorrect fitting will be listed below:

Underfitting: The model is too "simple" to represent all of the relevant class characteris-
tics.

• High bias and low variance
• High training error and high test error

Overfitting: The model is too "complex" and fits irrelevant characteristics (noise) in the data.

• Low bias and high variance
• High training error and and high test error

Figure 5: A graph that depicts the trade-off between bias and variance.
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