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1 Clustering and Segmentation

Image segmentation is a task in computer vision; it aims to identify groups of pixels and image
regions that are similar and belong together. Different similarity measures can be used for grouping
pixels; this includes texture and color features. An instance of image segmentation is illustrated
below. In Figure 1, the objective is to group all the pixels that make up the tiger, the grass, the sky,
and the sand. The resulting segmentation can be observed in Figure 2.

Figure 1: Input image. Source: lecture 12, slide
4

Figure 2: Output segmentation. Source: lecture
12, slide 4

Other examples of image segmentation include grouping video frames into shots and separating an
image’s foreground and background. By identifying the groups of pixels that belong together, an
image can be broken down into distinct objects. In addition to its immediate use for object recognition,
this can also allow for greater efficiency in any further processing.

2 Gestalt School and Factors

Many computer vision algorithms draw from the areas outside of computer science, and image seg-
mentation is no different. Computer vision researchers drew inspiration from the field of psychology,
specifically the Gestalt Theory of Visual Perception. At a very high level, this theory states that "the
whole is greater than the sum of its parts." The relationships between parts can yield new properties
and features. This theory defines Gestalt factors, properties that can define groups in images. Below
are examples of such factors.
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Figure 3: Examples of gestalt factors. Source: Forsyth & Ponce [1]

Here is an example of an other factor; while Figure 4 does not appear to have meaningful visual
content, the addition of the overlaying gray lines (Figure 5) on the same image provides visual cues
as to the pixel groupings and image content.

Figure 4: Source: Forsyth & Ponce [1] Figure 5: Source: Forsyth & Ponce [1]

We can now more clearly see that the image is a few 9’s occluded by the gray lines. This is an
example of a continuity through occlusion cue. The gray lines give us a cue that the black pixels are
not separate and should in fact be grouped together. By grouping the black pixels together and not
perceiving them as separate objects, our brain is able to recognize that this picture contains a few
digits.

Below is another example:
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Figure 6: Source: Forsyth & Ponce [1]

What do you see? Do you see a cup or do you see the side of 2 heads facing each other? Either option
is correct, depending on your perspective. This variation in perception is due to what we identify as
the foreground and the background. If we identify the black pixels as the foreground, we see a cup.
But, if we identify the white pixels as the foreground, we see 2 faces.

This is an overview of some of the factors that affect human’s perception of pixel/image region
grouping within visual data. One thing to note, however, is that while these factors may be intuitive,
it’s hard to translate these factors into working algorithms.

How do we perform image segmentation? What algorithms do we use? One way to think about
segmentation is clustering. We have a few pixels and we want to assign each to a cluster. In the
following sections, different methods of clustering will be detailed.

3 Agglomerative Clustering

Clustering is an unsupervised learning technique where several data points, x1, ..., xn, each of
which are in RD, are grouped together into clusters without knowing the correct label/cluster.
Agglomerative clustering is one of the commonly used techniques for clustering.

The general idea behind agglomerative clustering is to look at similarities between points to decide
how these points should be grouped in a sensible manner. Before we discuss the details of the
algorithm, we must first decide how we determine similarity.

3.1 Distance Measures

We measure the similarity between objects by determining the distance between them: the smaller
the distance, the higher the degree of similarity. There are several possible distance functions, but it
is hard to determine what makes a good distance metric, so usually the focus is placed on standard,
well-researched distance metrics such as the two detailed below.

3.1.1 Euclidean Distance

One common measure of similarity is the Euclidean distance; it measures the distances between two
data points, x and x′ by taking into account the angle and the magnitude. We can write the Euclidean
distance as the following:

sim(x, x′) = xTx′ (1)

This distance measure does not normalize the vectors, so their magnitude is factored into the similarity
calculations.
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3.1.2 Cosine Similarity Measure

Another common solution is the Cosine similarity measure; it only accounts for the angle between two
data points, x and x′. Note that unlike the Euclidean distance, the cosine measure only represents
similarity, not distance. This means that the similarity between a data point x, and itself, equals 1.
As its name implies, this measure relies on the cosine between the two points, as found by:

sim(x, x′) = cos(θ) (2)

=
xTx′

||x|| · ||x′||
(3)

=
xTx′

√
xTx
√
x′Tx′

(4)

The division by the magnitudes of the vectors results in the normalization of the distance metric, and
it ensure that the measure is only dependent on the angle between the objects.

3.2 Desirable Clustering Properties

Now that the potential distance metrics are defined, the next step is to choose a clustering technique.
There are various properties of clustering methods that we might want to consider when choosing
specific techniques:

1. Scalable - in terms of compute power & memory

2. Different data types - algorithm should support arbitrary data being in Rd for all d

3. Input parameters - The parameter tuning for the algorithm should not be difficult. The
algorithm is more useful if it does not heavily rely on our accurate understanding of the data.

4. Interpretable - we should be able to interpret the results.

5. Constraints - The algorithm should effectively use the predefined constraints (e.g., we
know two points should be in the same cluster, or they shouldn’t belong together).

The following sections cover the implementation of the agglomerative clustering and its benefits and
drawbacks.

3.3 Agglomerative Clustering Implementation

The agglomerative clustering calculates the similarities among data points by grouping closer points
together. The newly created groups can further be merged to other groups that are close to them; this
iterative process results in the generation of bigger groups until there only remains one group. This
creates a hierarchy, best viewed as a dendrogram.

We can visualize this in the following diagram, which shows data points and the results of an
agglomerative clustering algorithm.
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Figure 7: Agglomerative clustering on sample input, and resulting dendrogram

The first picture shows all the data points, and pictures 2 to 5 show various steps in the clustering
algorithm. Step 2 groups the two red points together; step 3 groups the two green points together;
step 4 groups the previous green group and the nearby blue point into a new orange group; and step 5
groups all the points together into one large group. This creates the dendrogram in picture 6.

3.3.1 Algorithm

Our general algorithm is based on our intuition and has four main steps:

1. Initialize each point as its own cluster
2. Find the most similar pair of clusters
3. Merge the similar pair of clusters into a parent cluster
4. Repeat steps 2 & 3 until we have only 1 cluster.

3.3.2 Questions

Although agglomerative clustering is a powerful technique, various factors should be taken into
consideration when implementing it. For instance:

1. How do we define similarity between clusters? How do we measure the distance between
two clusters?
We can measure the distance between two clusters in a variety of different ways including
the average distance between points, the minimum distance between points in the clusters,
the distance between the means of each cluster, and the maximum distance between points
in the clusters. The method used for measuring the distance between clusters can highly
affect the results.

2. How many clusters do we chose?
When we create the dendrogram, we can decide how many clusters we want based on a
distance threshold. Alternatively, we can cut the dendrogram horizontally at its different
levels to create as many clusters as we want.

3.4 Different measures of nearest clusters

There are three main models we can use to determine the distance between cluster points as we
segment our dataset: single, complete, and average.

1. Single link:
Distance is calculated with the formula:

d(Ci, Cj) = minx∈Ci,x′∈Cj
d(x, x′) (5)
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With single linkage, we cluster by utilizing the minimum distance between points in the two
clusters.
This is also known as a minimum spanning tree.
We can stop clustering once we pass a threshold for the acceptable distance between clusters.
This algorithm tends to produces long, skinny clusters (since it is very easy to link far away
points to be in the same cluster as we only care about the point in that cluster with the
minimum distance).

Figure 8: Image segmentation example using single link measurement of nearest clusters.
Source: lecture 12, slide 46

2. Complete link:
Distance is calculated with the formula:

d(Ci, Cj) = maxx∈Ci,x′∈Cj
d(x, x′) (6)

With complete linkage, we cluster by utilizing the maximum distance between points in the
two clusters.
This algorithm tends to produces compact and tight clusters of roughly equal diameter (since
it favors having all the points close together).

Figure 9: Image segmentation example using complete link measurement of nearest clusters.
Source: lecture 12, slide 47

3. Average link:
Distance is calculated with the formula:

d(Ci, Cj) =

∑
x ∈ Ci, x

′ ∈ Cjd(x, x
′)

|Ci| · |Cj |
(7)

With average linkage, we cluster by utilizing the average distance between points in the two
clusters.
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This model is robust against noise because the distance does not depend on single pair of
points unlike single links and complete links, where points can be affected by artifacts in the
data.

Figure 10: Image segmentation example using average link measurement of nearest clusters.
Source: lecture 12, slide 48

3.5 Agglomerative clustering conclusions

The positive characteristics of agglomerative clustering:

1. Simple to implement and apply

2. Cluster shape adapts to dataset

3. Results in a hierarchy of clusters

4. No need to specify number of clusters at initialization

In terms of its negative characteristics:

1. Can return imbalanced clusters

2. Threshold value for number of clusters must be specified

3. Does not scale well with a runtime of O(n3)

4. Greedy merging can get stuck at local minima

4 K-Means Clustering

Another algorithm is k-means clustering. It identifies a fixed number of cluster "centers" as repre-
sentatives of their clusters, and labels each point according to the center it is closest to. A major
difference between k-means and agglomerative clustering is that k-means requires the input of a
target number of clusters to run the algorithm.

4.1 Image Segmentation Example

At the top left of figure 11, we have an image with three distinct color regions, so segmenting the
image using color intensity can be achieved by assigning each color intensity, shown on the top right,
to a different cluster. In the bottom left image, however, the image is cluttered with noise. To segment
the image, we can use k-means.
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Figure 11: Image segmentation example using k-means. The picture on the top left has three distinct
colors, but the bottom picture has Gaussian noise. Source: lecture 11, slide 8, slide credit: Kristen
Grauman

Using k-means, the objective here is to identify three cluster centers as the representative intensities,
and label each pixel according to its closest center. The best cluster centers are those that minimize
Sum of Square Distance between all points and their nearest cluster center ci:

SSD =
∑

i∈clusters

∑
x∈clusteri

(x− ci)2 (8)

When we are using k-means to summarize a dataset, the goal is to minimize the variance in
the data points that are assigned to each cluster. We would like to preserve as much informa-
tion as possible given a certain number of clusters. This is demonstrated by the equation below.

Figure 12: Clustering for summarization. Source: lecture 11, slide 11

4.2 Algorithm

Finding the cluster centers and group memberships of points can be thought of as a "chicken and
egg" problem. If we knew the cluster centers, we could allocate points to groups by assigning each
point to the closest center. On the other hand, if we knew the group memberships, we could find the
centers by computing the mean of each group. Therefore, we alternate between the tasks.

In order to find the centers and group memberships, we start by initializing k cluster centers, usually by
assigning them randomly. We then run through an iterative process that computes group memberships
and cluster centers for a certain number of iterations or until the values of the cluster centers converge.
The process is outlined below:

1. Initialize cluster centers c1, ..., cK . Usually, these centers are randomly chosen data points.
2. Assign each point in the dataset to the closest center. As in agglomerative clustering, we can

use the Euclidean distance or the cosine distance measure to compute the distance to each
center.

8



3. Update the cluster centers to be the mean of the points in the cluster’s group.

4. Repeat Steps 2-3 until the value of the cluster centers stops changing or the algorithm has
reached the maximum number of iterations.

Figure 13: Visualization of k-means clustering. Source: lecture 11, slide 15

4.3 Output

Each time it is run, k-means converges to a local minimum solution. Additionally, since the centers
are initialized randomly, each run of the algorithm may return a different result. Therefore, initializing
multiple runs of k-means and then choosing the most representative clustering yields the best results.
The best clustering can be measured by minimizing the sum of the square distances to the centers or
the variance of each cluster. K-means works best with spherical data.

4.4 Segmentation as Clustering

As with the example in section 4.1, clustering can be used to segment an image. While color intensity
alone can be effective in situations like Figure 11, others such as Figure 14 may require us to define a
feature space, in which we choose which features of pixels should be used as input to the clustering.
In other words, the choice of feature space directly affects the calculation of the similarity measure
between data points; the creative choice of feature space enables us to "represent" the data points in a
way that clusters are more easily distinguishable from each other.

Figure 14: Image of a panda. Source: lecture 11, slide 19

In addition to pixel intensity, examples of pixel groupings using an image feature space include RGB
color similarities, texture similarities, and pixel positions. Clustering based on color similarities
can be modeled using separate features for red, green, and blue. Texture can be measured by the
similarities of pixels after applying specific filters. Position features include the coordinates of pixels
within an image. Both intensity and position can be used together to group pixels based on similarity
and proximity.
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4.5 K-Means++

K-means method is appealing due to its speed and simplicity but not its accuracy. By augmentation
with a variant on choosing the initial seeds for the k-means clustering problems, arbitrarily bad
clusterings that are sometimes a result of k-means clustering may be avoided. The algorithm for
choosing the initial seeds for k-means++ is outlined as following:

1. Randomly choose a starting center from the data points

2. Compute a distance D(X), which is a distance between each data point x to the center that
has been chosen. By using a weighted probability distribution, a new data point is chosen as
a new center based on a probability that is proportional to D(x)2

3. Repeat the previous step until k centers have been chosen and then proceed with the usual
k-means clustering process as the initial seeds have been selected

It has been shown that k-means++ is Olog(K) competitive.

4.6 Evaluation of clusters

The clustering results can be evaluated in various ways. For example, there is an internal evaluation
measure, which involves giving a single quality score the results. External evaluation, on the other
hand, compares the clustering results to an existing true classification. More qualitatively, we can
evaluate the results of clustering based on its generative measure: how well is the reconstruction
of points from the clusters or is the center of the cluster a good representation of the data. Another
evaluation method is a discriminative method where we evaluate how well clusters correspond to
the labels. We check if the clusters are able to separate things that should be separated. This measure
can only be worked with supervised learning as there are no labels associated with unsupervised
learning.

4.7 Pros & Cons

There are advantages and disadvantages associated with k-means clustering technique:

Pros

1. Simple and easy to implement

2. Fast for low-dimensional data

3. Good representation of the data (cluster centers minimize the conditional variance)

Cons

1. Doesn’t identify outliers

2. Need to specify k value, which is unknown

3. Cannot handle non-globular data of different sizes and densities

4. Restricted to data which has the notion of a center

5. Converge to a local minimum of the objective function instead and is not guaranteed to
converge to the global minimum of the objective function

In order to choose the number of clusters or the k value, the objective function can be plotted against
different k values. The abrupt change in the objective function at a certain k value is suggestive of
that specific number of clusters in the data. This technique is called "knee-finding" or "elbow-finding"

5 Mean-shift Clustering

Mean-shift clustering is yet another clustering algorithm. At its essence, mean-shift clustering is
about finding the densest areas in our feature space. This algorithm has four main steps:

1. Initialize random seed, and window W
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2. Calculate center of gravity (the "mean) of W:
∑
x∈W

xH(x)

3. Shift the search window to the mean
4. Repeat step 2 until convergence

One way to mentally visualize this algorithm is to picture each data point as a marble. If each marble
is attracted to areas of high density, all the marbles will eventually converge onto 1 or more centers.

We can also try to visualize the algorithm via this picture:

Figure 15: Results of mean-shift clustering.
Source: Y. Ukrainitz & B. Sarel

In this picture, we see the algorithm will generate 2 clusters. All the data points on the left converge
onto one center and all the data points on the right converge onto a different center.

To learn more about mean-shift clustering please refer to the next set of notes.
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