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Recap: Image Segmentation

* Goal: identify groups of pixels that go together
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Recap: Gestalt Theory

e Gestalt: whole or group
— Whole is greater than sum of its parts
— Relationships among parts can yield new properties/features

Psychologists identified series of factors that predispose set of
elements to be grouped (by human visual system)

“l stand at the window and see a house, trees, sky.
Theoretically | might say there were 327 brightnesses
and nuances of colour. Do | have “327"? No. | have sky, house,

and trees.”
Max Wertheimer
(1880-1943)

Untersuchungen zur Lehre von der Gestalt,

Psychologische Forschung, Vol. 4, pp. 301-350, 1923
http://psy.ed.asu.edu/~classics/Wertheimer/Forms/forms.htm
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Recap: Gestalt Factors
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These factors make intuitive sense, but are very difficult to translate into algorithms.
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What will we learn today?

* K-means clustering
* Mean-shift clustering

Reading: [FP] Chapters: 14.2, 14.4

D. Comaniciu and P. Meer, Mean Shift: A Robust Approach toward Feature
Space Analysis, PAMI 2002.
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What will we learn today?

* K-means clustering

Reading: [FP] Chapters: 14.2, 14.4

D. Comaniciu and P. Meer, Mean Shift: A Robust Approach toward Feature
Space Analysis, PAMI 2002.
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Image Segmentation: Toy Example

white
pixels

3 | black pixels gray > _~
2 1) pixels ]
| |

input image L - J

intensity
 These intensities define the three groups.

 We could label every pixel in the image according to which
of these primary intensities it is.

— i.e., segment the image based on the intensity feature.
 What if the image isn’t quite so simple?

Slide credit: Kristen Grauman
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Slide credit: Kristen Grauman
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* Now how to determine the three main
intensities that define our groups?

e We need to cluster.

Slide credit: Kristen Grauman
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e Goal: choose three “centers” as the representative intensities,
and label every pixel according to which of these centers it is
nearest to.

e Best cluster centers are those that minimize Sum of Square
Distance (SSD) between all points and their nearest cluster

center ¢;:
SSD = E E (x—cl.)2

clusteri xEclusteri

Slide credit: Kristen Grauman
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Clustering for Summarization

Goal: cluster to minimize variance in data
given clusters
— Preserve information

Cluster center Data

N K / /
c,d =argc,1§1in%226ﬁ(ci—xj)2

\

Whether X; is assigned to ¢,
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Clustering

* With this objective, it is a “chicken and egg”
problem:

— If we knew the cluster centers, we could allocate points to
groups by assignhing each to its closest center.

————————————————
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— If we knew the group memberships, we could get the
centers by computing the mean per group.
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Slide credit: Kristen Grauman
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1.

2.

1.

1.

Initialize (t =

K-means clustering

0): cluster centers c,,...,c,

Compute O': assign each point to the closest center

- o' denotes the set of assignment for each X;to cluster C; atiteration ¢

Update t=t¢

—argmm—EE(S’ 1(c - X, )

¢ = argminiiiéf. (c’.‘l— x.)z
c N ~ 4 Yy l J

+1, Repeat Step 2-3 till stopped

Computer ¢ update cluster centers as the mean of the points

Stanford University
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K-means clustering

1. Initialize (t=0): cluster centers c,,...,c,
e Commonly used: random initialization

e Orgreedily choose K to minimize residual
t . .
2. Compute O': assigh each point to the closest center

e Typical distance measure:
* Euclidean sim(x,x)=x"x'
* Cosine  sim(x,x')= xTx'/(HxH : Hx'H)
e Others

1. Computer ¢ update cluster centers as the mean of the points

¢ = argminiiiéf. (c’.‘l— x.)z
c N ~ 4 Yy l J

2. Update r=r+1, Repeat Step 2-3 till stopped

t
e (C doesn’t change anymore.
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K-means clustering
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1. Initialize 2. Assign Points to 3. Re-compute Repeat (2) and (3)

Cluster Centers Clusters Means

e Java demo:

http://home.dei.polimi.it/matteucc/Clustering/tutorial html/AppletKM.html
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K-means clustering

* Converges to a local minimum solution

— Initialize multiple runs
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* Need to pick K (# of clusters)
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Segmentation as Clustering

Original image

3 clusters
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K-Means++

 Can we prevent arbitrarily bad local minima?

1. Randomly choose first center.
2. Pick new center with prob. proportional to (x—cl.)z

— (Contribution of x to total error)

3. Repeat until K centers.
* Expected error = O(log K )* optimal

Arthur & Vassilvitskii 2007

Slide credit: Steve Seitz
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Feature Space

 Depending on what we choose as the feature space,
we can group pixels in different ways.

* Grouping pixels based on
intensity similarity

* Feature space: intensity value (1D)

Slide credit: Kristen Grauman
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Feature Space

* Depending on what we choose as the feature space, we can
group pixels in different ways.

* Grouping pixels based
on color similarity

B

* Feature space: color value (3D)

Slide credit: Kristen Grauman
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Feature Space

* Depending on what we choose as the feature space, we can
group pixels in different ways.

* Grouping pixels based
on texture similarity
ENNNAE

ESNNLL -
ENNEZ -
3 5 . B . ™

Filter bank of
24 filters

4

* Feature space: filter bank responses (e.g., 24D)

Slide credit: Kristen Grauman
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Smoothing Out Cluster Assighments

* Assigning a cluster label per pixel may yield outliers:

—
Original Labeled by cluster center’s intensity
|?
* How can we ensure they 3
are spatially smooth? 2

Slide credit: Kristen Grauman
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Segmentation as Clustering

 Depending on what we choose as the feature space,
we can group pixels in different ways.

* Grouping pixels based on
intensity+position similarity

¢ Intensity

X
—> Way to encode both similarity and proximity.

Slide credit: Kristen Grauman
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K-Means Clustering Results

* K-means clustering based on intensity or color is

essentially vector quantization of the image
attributes

— Clusters don’t have to be spatially coherent

Image Intensity-based clusters Color-based clusters
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Image source: Forsyth & Ponce

\_/

tanford University 26-Oct-17



K-Means Clustering Results

* K-means clustering based on intensity or color is

essentially vector quantization of the image
attributes

— Clusters don’t have to be spatially coherent

* Clustering based on (r,g,b,x,y) values enforces more
spatial coherence

Image source: Forsyth & Ponce
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How to evaluate clusters?

e Generative

— How well are points reconstructed from the clusters?

* Discriminative
— How well do the clusters correspond to labels?
e Can we correctly classify which pixels belong to the panda?

— Note: unsupervised clustering does not aim to be
discriminative as we don’t have the labels.
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How to choose the number of clusters?

Try different numbers of clusters in a validation set and look at performance.

We can plot the objective function values for k equals 1 to 6...

The abrupt change at k = 2, is highly suggestive of two clusters
in the data. This technique for determining the number of
clusters is known as “knee finding” or “elbow finding”.
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K-Means pros and cons

*  Pros

* Finds cluster centers that minimize
conditional variance (good
representation of data)

* Simple and fast, Easy to implement
* Cons

* Need to choose K

e Sensitive to outliers

* Prone to local minima

e All clusters have the same parameters
(e.g., distance measure is non-

outher

rd

outher

adaptive)
* *Can be slow: each iteration is O(KNd) %ﬂ‘égg
for N d-dimensional points 8@5’?;,08 &
e Usage %ﬁ %o
e Unsupervised clustering % é"g?
* Rarely used for pixel segmentation oo 0P

(A): Two natural clusters (B): &-means clusters
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What will we learn today?

* Mean-shift clustering

Reading: [FP] Chapters: 14.2, 14.4

D. Comaniciu and P. Meer, Mean Shift: A Robust Approach toward Feature
Space Analysis, PAMI 2002.
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Mean-Shift Segmentation

 An advanced and versatile technique for clustering-
based segmentation

Segmented "landscape 1" Segmented "landscape 2"

http://www.caip.rutgers.edu/~comanici/MSPAMI/msPamiResults.html

Slide credit: Svetlana Lazebnik

D. Comaniciu and P. Meer, Mean Shift: A Robust Approach toward Feature Space Analysis, PAMI 2002.
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12

Mean-Shift Algorithm

10} - -

| I M
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* [terative Mode Search
1. Initialize random seed, and window W
2. Calculate center of gravity (the “mean”) of W: Z a:H(:[;)
3. Shift the search window to the mean reW
4, Repeat Step 2 until convergence

Slide credit: Steve Seitz
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Mean-Shift

Region of
interest
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Mean Shift
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& vector

Slide by Y. Ukrainitz & B. Sarel
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Mean-Shift
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Slide by Y. Ukrainitz & B. Sarel
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Mean-Shift
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Slide by Y. Ukrainitz & B. Sarel
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Mean-Shift
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Slide by Y. Ukrainitz & B. Sarel
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Mean-Shift
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Slide by Y. Ukrainitz & B. Sarel
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Mean-Shift
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Slide by Y. Ukrainitz & B. Sarel
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Mean-Shift
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Slide by Y. Ukrainitz & B. Sarel
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Real Modality Analysis

0 :
O £

O =

O 2
Tessellate the space with windows Run the procedure in parallel =
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Real Modality Analysis
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The blue data points were traversed by the windows towards the mode.

Slide by Y. Ukrainitz & B. Sarel
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Mean-Shift Clustering

e Cluster: all data points in the attraction basin of a
mode

e Attraction basin: the region for which all trajectories
lead to the same mode

Slide by Y. Ukrainitz & B. Sarel
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Mean-Shift Clustering/Segmentation

 Find features (color, gradients, texture, etc)

* Initialize windows at individual pixel locations

 Perform mean shift for each window until convergence

* Merge windows that end up near the same “peak” or mode

Slide credit: Svetlana Lazebnik
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IVIean Shlft Segmentatlon Results

Slide credit: Svetlana Lazebnik

http://www.caip.rutgers.edu/~comanici/MSPAMI/msPamiResults.html
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More Results

Slide credit: Svetlana Lazebnik
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Problem: Computational Complexity

Need to shift mar‘windows...
Many computations will be redundant.

Slide credit: Bastian Leibe
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Speedups: Basin of Attraction

Slide credit: Bastian Leibe

1. @ssign all points within radius r of end point to the mode.
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Speedups

@ ®@ O

2. @@ssign all points W|.thin radius r/c of the search path to the mode -> reduce the number of
data points to search.

Slide credit: Bastian Leibe
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Technical Details

Given n data points x; € R?, the multivariate kernel density estimate using a
radially symmetric kernel® (e.g., Epanechnikov and Gaussian kernels), K (x), is given

by,
1 = X — X;

where h (termed the bandwidth parameter) defines the radius of kernel. The radially
symmetric kernel is defined as,

K (x) = cek([[x]*), (2)

where ¢, represents a normalization constant.

Comaniciu & Meer, 2002
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Technical Details

n -Zn)xz-g (I x_xi | ) -
o 2¢k 4 x —x; || = h
h ter‘nrl 1 J\‘ i:lg " -

where g(z) = —k'(z) denotes the derivative of the selected kernel profile.

Term1: this is proportional to the density estimate at x (similar to equation 1
from the previous slide).

Term2: this is the mean-shift vector that points towards the direction of
maximum density.

Comaniciu & Meer, 2002
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Technical Details

Finally, the mean shift procedure from a given point x; is:
1. Computer the mean shirt vector m:

> ([52°)
| Do (=)

— X

2. Translate the density window:

t+1

X, =Xt + m(x}).

3. Iterate steps 1 and 2 until convergence.
Vf(xz) = 0.

Comaniciu & Meer, 2002
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Summary Mean-Shift

* Pros
— General, application-independent tool

— Model-free, does not assume any prior shape (spherical,
elliptical, etc.) on data clusters

— Just a single parameter (window size h)
* h has a physical meaning (unlike k-means)
— Finds variable number of modes

— Robust to outliers

* Cons
— OQOutput depends on window size
— Window size (bandwidth) selection is not trivial
— Computationally (relatively) expensive (~2s/image)
— Does not scale well with dimension of feature space

Slide credit: Svetlana Lazebnik
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What will we have learned today

* K-means clustering
* Mean-shift clustering

Reading: [FP] Chapters: 14.2, 14.4

D. Comaniciu and P. Meer, Mean Shift: A Robust Approach toward Feature
Space Analysis, PAMI 2002.
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