Lecture: k-means & mean-shift clustering

Juan Carlos Niebles and Ranjay Krishna Stanford Vision and Learning Lab

Stanford University

Lecture 11 -1 26-Oct-17

Recap: Image Segmentation

• Goal: identify groups of pixels that go together

Stanford University

Lecture 11 -2 26-Oct-17

Recap: Gestalt Theory

- Gestalt: whole or group
 - Whole is greater than sum of its parts
 - Relationships among parts can yield new properties/features
- Psychologists identified series of factors that predispose set of elements to be grouped (by human visual system)

"I stand at the window and see a house, trees, sky. Theoretically I might say there were 327 brightnesses and nuances of colour. Do I have "327"? No. I have sky, house, and trees."

> Max Wertheimer (1880-1943)

Untersuchungen zur Lehre von der Gestalt, *Psychologische Forschung*, Vol. 4, pp. 301-350, 1923 http://psy.ed.asu.edu/~classics/Wertheimer/Forms/forms.htm

Stanford University

Lecture 11 -3

26-Oct-17

Recap: Gestalt Factors

• These factors make intuitive sense, but are very difficult to translate into algorithms.

Stanford University

Lecture 11 -4 26-Oct-17

What will we learn today?

- K-means clustering
- Mean-shift clustering

Reading: [FP] Chapters: 14.2, 14.4

D. Comaniciu and P. Meer, <u>Mean Shift: A Robust Approach toward Feature</u> <u>Space Analysis</u>, PAMI 2002.

Stanford University

Lecture 11 -5 26-Oct-17

What will we learn today?

- K-means clustering
- Mean-shift clustering

Reading: [FP] Chapters: 14.2, 14.4

D. Comaniciu and P. Meer, <u>Mean Shift: A Robust Approach toward Feature</u> <u>Space Analysis</u>, PAMI 2002.

Stanford University

Lecture 11 -6

26-Oct-17

Image Segmentation: Toy Example

- These intensities define the three groups.
- We could label every pixel in the image according to which of these primary intensities it is.
 - i.e., segment the image based on the intensity feature.
- What if the image isn't quite so simple?

Slide credit: Kristen Grauman

Stanford University

Lecture 11 -7 26-Oct-17

Lecture 11 -9

26-Oct-17

- Now how to determine the three main intensities that define our groups?
- We need to cluster.

Slide credit: Kristen Grauman

Stanford University

- Goal: choose three "centers" as the representative intensities, and label every pixel according to which of these centers it is nearest to.
- Best cluster centers are those that minimize Sum of Square Distance (SSD) between all points and their nearest cluster center c_i:

$$SSD = \sum_{clusteri} \sum_{x \in clusteri} (x - c_i)^2$$

Clustering for Summarization

Goal: cluster to minimize variance in data given clusters

– Preserve information

Cluster center Data

$$c^*, \ \delta^* = \arg \min_{c,\delta} \frac{1}{N} \sum_{j}^{N} \sum_{i}^{K} \delta_{ij} \left(c_i - x_j\right)^2$$

Whether x_j is assigned to c_i

Stanford University

Lecture 11 -11 Slide. Dect 7 Joiem

Clustering

- With this objective, it is a "chicken and egg" problem:
 - If we knew the *cluster centers*, we could allocate points to groups by assigning each to its closest center.

 If we knew the group memberships, we could get the centers by computing the mean per group.

- 1. Initialize (t = 0): cluster centers $c_1, ..., c_K$
- 2. Compute δ^t : assign each point to the closest center

$$\delta^{t}$$
 denotes the set of assignment for each x_{j} to cluster c_{i} at iteration t
 $\delta^{t} = \operatorname*{argmin}_{\delta} \frac{1}{N} \sum_{j}^{N} \sum_{i}^{K} \delta_{ij}^{t-1} (c_{i}^{t-1} - x_{j})^{2}$

1. Computer c^{t} : update cluster centers as the mean of the points

$$c^{t} = \underset{c}{\operatorname{argmin}} \frac{1}{N} \sum_{j}^{N} \sum_{i}^{K} \delta_{ij}^{t} \left(c_{i}^{t-1} x_{j} \right)^{2}$$

1. Update t = t + 1, Repeat Step 2-3 till stopped

- 1. Initialize (t = 0): cluster centers $c_1, ..., c_K$
 - Commonly used: random initialization
 - Or greedily choose K to minimize residual
- 2. Compute δ^t : assign each point to the closest center
 - Typical distance measure:
 - Euclidean $sim(x, x') = x^T x'$
 - **Cosine** $sim(x, x') = x^T x' / (||x|| \cdot ||x'||)$
 - Others
- 1. Computer c^{t} : update cluster centers as the mean of the points

Lecture 11 - 14

$$c^{t} = \underset{c}{\operatorname{argmin}} \frac{1}{N} \sum_{j}^{N} \sum_{i}^{K} \delta_{ij}^{t} \left(c_{i}^{t-1} x_{j} \right)^{2}$$

- 2. Update t = t + 1, Repeat Step 2-3 till stopped
 - C^{t} doesn't change anymore.

• Java demo:

http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/AppletKM.html

Lecture 11 -15

- Converges to a *local minimum* solution
 - Initialize multiple runs

• Better fit for spherical data

• Need to pick K (# of clusters)

Stanford University

Lecture 11 -16 26-Oct-17

Segmentation as Clustering

Original image

2 clusters

3 clusters

Lecture 11 -17 26-Oct-17

Stanford University

K-Means++

- Can we prevent arbitrarily bad local minima?
- 1. Randomly choose first center.
- 2. Pick new center with prob. proportional to $(x-c_i)^2$
 - (Contribution of x to total error)
- 3. Repeat until K centers.
- Expected error = $O(\log K)^*$ optimal

Arthur & Vassilvitskii 2007

Stanford University

Lecture 11 -18 26-Oct-17

Feature Space

- Depending on what we choose as the *feature space*, we can group pixels in different ways.
- Grouping pixels based on intensity similarity

• Feature space: intensity value (1D)

Slide credit: Kristen Grauman

Stanford University

Lecture 11 -19 26-Oct-17

Feature Space

- Depending on what we choose as the *feature space*, we can group pixels in different ways. R=255
- Grouping pixels based on color similarity

Lecture 11 - 20

G=200

26-Oct-17

Slide credit: Kristen Grauman

Stanford University

Feature Space

- Depending on what we choose as the *feature space*, we can group pixels in different ways.
- Grouping pixels based on texture similarity

Filter bank of 24 filters

• Feature space: filter bank responses (e.g., 24D)

Slide credit: Kristen Grauman

Stanford University

Lecture 11 -21 26-Oct-17

Smoothing Out Cluster Assignments

• Assigning a cluster label per pixel may yield outliers:

Original

Labeled by cluster center's intensity

• How can we ensure they are spatially smooth?

Slide credit: Kristen Grauman

Stanford University

Lecture 11 -22 26-Oct-17

Segmentation as Clustering

- Depending on what we choose as the *feature space*, we can group pixels in different ways.
- Grouping pixels based on intensity+position similarity

 \Rightarrow Way to encode both *similarity* and *proximity*.

Slide credit: Kristen Grauman

Stanford University

Lecture 11 -23 26-Oct-17

K-Means Clustering Results

- K-means clustering based on intensity or color is essentially vector quantization of the image attributes
 - Clusters don't have to be spatially coherent

K-Means Clustering Results

- K-means clustering based on intensity or color is essentially vector quantization of the image attributes
 - Clusters don't have to be spatially coherent
- Clustering based on (r,g,b,x,y) values enforces more spatial coherence

Stanford University

Lecture 11 -25 26-Oct-17

How to evaluate clusters?

Generative

– How well are points reconstructed from the clusters?

- Discriminative
 - How well do the clusters correspond to labels?
 - Can we correctly classify which pixels belong to the panda?
 - Note: unsupervised clustering does not aim to be discriminative as we don't have the labels.

Lecture 11 -26 Slide Slide

How to choose the number of clusters?

Try different numbers of clusters in a validation set and look at performance.

We can plot the objective function values for k equals 1 to 6...

The abrupt change at k = 2, is highly suggestive of two clusters in the data. This technique for determining the number of clusters is known as "knee finding" or "elbow finding".

Stanford University

Lecture 11 -27 Slide Dect 17 Joie

K-Means pros and cons

- Pros
 - Finds cluster centers that minimize conditional variance (good representation of data)
 - Simple and fast, Easy to implement
- Cons
 - Need to choose K
 - Sensitive to outliers
 - Prone to local minima
 - All clusters have the same parameters (e.g., distance measure is nonadaptive)
 - *Can be slow: each iteration is O(KNd) for N d-dimensional points
- Usage
 - Unsupervised clustering
 - Rarely used for pixel segmentation

Stanford University

Lecture 11 -28

26-Oct-17

What will we learn today?

- K-means clustering
- Mean-shift clustering

Reading: [FP] Chapters: 14.2, 14.4

D. Comaniciu and P. Meer, <u>Mean Shift: A Robust Approach toward Feature</u> <u>Space Analysis</u>, PAMI 2002.

Stanford University

Lecture 11 -29 26-Oct-17

Mean-Shift Segmentation

• An advanced and versatile technique for clusteringbased segmentation

http://www.caip.rutgers.edu/~comanici/MSPAMI/msPamiResults.html

D. Comaniciu and P. Meer, <u>Mean Shift: A Robust Approach toward Feature Space Analysis</u>, PAMI 2002.

Stanford University

Lecture 11 -30 26-Oct-17

Mean-Shift Algorithm

• Iterative Mode Search

- 1. Initialize random seed, and window W
- 2. Calculate center of gravity (the "mean") of W:
- 3. Shift the search window to the mean
- 4. Repeat Step 2 until convergence

$$\sum_{x \in W} x H(x)$$

Stanford University

Lecture 11 -31 26-Oct-17

Slide by Y. Ukrainitz & B. Sarel

Stanford University

Lecture 11 -32 26-Oct-17

Slide by Y. Ukrainitz & B. Sarel

Stanford University

Lecture 11 -33 26-Oct-17

Stanford University

Lecture 11 -34 26-

26-Oct-17

Stanford University

Lecture 11 -35 26-Oct-17

Stanford University

Lecture 11 -36 26-Oct-17

Mean-Shift

Stanford University

Lecture 11 - 37

26-Oct-17

Mean-Shift

Slide by Y. Ukrainitz & B. Sarel

Stanford University

Lecture 11 -38 26-Oct-17

Slide by Y. Ukrainitz & B. Sarel

Real Modality Analysis

Stanford University

Lecture 11 -40 26-Oct-17

Mean-Shift Clustering

- Cluster: all data points in the attraction basin of a mode
- Attraction basin: the region for which all trajectories lead to the same mode

Lecture 11 - 41

26-Oct-17

Slide by Y. Ukrainitz & B. Sarel

Stanford University

Mean-Shift Clustering/Segmentation

- Find features (color, gradients, texture, etc)
- Initialize windows at individual pixel locations
- Perform mean shift for each window until convergence
- Merge windows that end up near the same "peak" or mode

26-Oct-17

Stanford University

Mean-Shift Segmentation Results

http://www.caip.rutgers.edu/~comanici/MSPAMI/msPamiResults.html

Stanford University

Lecture 11 -43 26-Oct-17

More Results

Stanford University

Lecture 11 -44 2<u>6-Oct-17</u>

More Results

Stanford University

Lecture 11 -45 26-Oct-17

Problem: Computational Complexity

• Many computations will be redundant.

Stanford University

•

Lecture 11 -46 26-Oct-17

Speedups: Basin of Attraction

Stanford University

Lecture 11 -47 2<u>6-Oct-17</u>

Speedups

Stanford University

Lecture 11 -48 26-Oct-17

Technical Details

Given n data points $\mathbf{x}_i \in \mathbb{R}^d$, the multivariate kernel density estimate using a radially symmetric kernel¹ (e.g., Epanechnikov and Gaussian kernels), $K(\mathbf{x})$, is given by,

$$\hat{f}_K = \frac{1}{nh^d} \sum_{i=1}^n K\left(\frac{\mathbf{x} - \mathbf{x}_i}{h}\right),\tag{1}$$

where h (termed the *bandwidth* parameter) defines the radius of kernel. The radially symmetric kernel is defined as,

$$K(\mathbf{x}) = c_k k(\|\mathbf{x}\|^2), \tag{2}$$

where c_k represents a normalization constant.

Comaniciu & Meer, 2002

Stanford University

Lecture 11 -49 26-Oct-17

Technical Details

where g(x) = -k'(x) denotes the derivative of the selected kernel profile.

- Term1: this is proportional to the density estimate at x (similar to equation 1 from the previous slide).
- Term2: this is the mean-shift vector that points towards the direction of maximum density.

Comaniciu & Meer, 2002

Stanford University

Lecture 11 -50 26-Oct-17

Technical Details

Finally, the mean shift procedure from a given point x_t is:

1. Computer the mean shirt vector m:

$$\left[\frac{\sum\limits_{i=1}^{n}\mathbf{x}_{i}g\left(\left\|\frac{\mathbf{x}-\mathbf{x}_{i}}{h}\right\|^{2}\right)}{\sum\limits_{i=1}^{n}g\left(\left\|\frac{\mathbf{x}-\mathbf{x}_{i}}{h}\right\|^{2}\right)}-\mathbf{x}\right]$$

2. Translate the density window:

$$\mathbf{x}_i^{t+1} = \mathbf{x}_i^t + \mathbf{m}(\mathbf{x}_i^t).$$

3. Iterate steps 1 and 2 until convergence.

$$\nabla f(\mathbf{x}_i) = 0.$$

Comaniciu & Meer, 2002

Stanford University

Lecture 11 -51 26-Oct-17

Summary Mean-Shift

- <u>Pros</u>
 - General, application-independent tool
 - Model-free, does not assume any prior shape (spherical, elliptical, etc.) on data clusters
 - Just a single parameter (window size h)
 - h has a physical meaning (unlike k-means)
 - Finds variable number of modes
 - Robust to outliers
- <u>Cons</u>
 - Output depends on window size
 - Window size (bandwidth) selection is not trivial
 - Computationally (relatively) expensive (~2s/image)
 - Does not scale well with dimension of feature space

Lecture 11 -52 26-Oct-17

What will we have learned today

- K-means clustering
- Mean-shift clustering

Reading: [FP] Chapters: 14.2, 14.4

D. Comaniciu and P. Meer, <u>Mean Shift: A Robust Approach toward Feature</u> <u>Space Analysis</u>, PAMI 2002.

Stanford University

Lecture 11 -53 26-Oct-17