Linear systems and Convolutions

Ranjay Krishna Stanford Vision and Learning Lab

Stanford University

1 10-Oct-17

Linear Systems (filters)

$$
f[n, m] \rightarrow \boxed{\text{System } \mathcal{S}} \rightarrow g[n, m]
$$

- Linear filtering:
	- $-$ Form a new image whose pixels are a weighted sum of original pixel values
	- $-$ Use the same set of weights at each point
- S is a linear system (function) iff it S satisfies

 $S[\alpha f_i[n,m] + \beta f_i[h,m]] = \alpha S[f_i[n,m]] + \beta S[f_i[h,m]]$

superposition property

2D impulse function

- 1 at $[0,0]$.
- 0 everywhere else

LSI (linear *shift invariant*) systems

Impulse response

$$
\delta_2[n,m] \to \fbox{[}\mathcal{S}\xspace] \to h[n,m]
$$

$$
\delta_2[n-k,m-l] \to \boxed{\mathcal{S}(\text{SI})} \to h[n-k,m-l]
$$

Let's first represent $f[0,0]$ as a sum of deltas: $f[0,0] = f[0,0] \times 1$ $= f[0,0] \times \delta[0,0]$ $=$ > $\int f[k, l] \times \delta[k, l]$ \sim \sim $k=-\infty$ $l=-\infty$ Or $=$ \sum_{l} $\sum_{l} f[k, l] \times \delta[-k, -l]$ ∞ ∞

 $k = -\infty$ $l = -\infty$

Stanford University

5 10-Oct-17

Let's first represent $f[1,1]$ as a sum of deltas:

$$
f[1,1] = f[1,1] \times 1
$$

= $f[1,1] \times \delta[0,0]$
=
$$
\sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k,l] \times \delta[1-k,1-l]
$$

Now for the general case, let's write $f[n, m]$ as a sum of deltas:

$$
f[n,m] = f[n,m] \times 1
$$

= $f[n,m] \times \delta[0,0]$
= $\sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k,l] \times \delta[n-k,m-l]$

• Now, let's pass this function through a linear shift invariant (LSI) system:

$$
f[n, m] \rightarrow S[f[n, m]]
$$

S[f[n, m]] = S[$\sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k, l] \times \delta[n - k, m - l]$]

Let's apply the superposition property here:

$$
= \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k, l] S[\delta[n-k, m-l]]
$$

Copying the equation from the previous slide: $S[f[n,m]] = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k,l] S[\delta[n-k,m-l]]$ $\sum_{k=-\infty}^{\infty}\sum_{l=-\infty}^{\infty}f[k,l]$ $S[\delta[n-k,m-l]]$

Finally, we know what happens when we pass a delta function through a system right? We can use that here: $S[f[n,m]] = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k,l] h[n-k,m-l]$ ∞ $k=-\infty$

And this is how we get our flipped convolution function