Linear systems and Convolutions

Ranjay Krishna Stanford Vision and Learning Lab

Stanford University

10-Oct-17

Linear Systems (filters)

$$f[n,m] \to \operatorname{System} \mathcal{S} \to g[n,m]$$

- Linear filtering:
 - Form a new image whose pixels are a weighted sum of original pixel values
 - Use the same set of weights at each point
- **S** is a linear system (function) iff it *S* satisfies

 $S[\alpha f_i[n,m] + \beta f_j[h,m]] = \alpha S[f_i[n,m]] + \beta S[f_j[h,m]]$

superposition property

2D impulse function

- 1 at [0,0].
- 0 everywhere else

LSI (linear *shift invariant*) systems

Impulse response

$$\delta_2[n,m] \to \mathbb{S} \to h[n,m]$$

$$\delta_2[n-k,m-l] \to \mathcal{S}(SI) \to h[n-k,m-l]$$

Let's first represent f[0,0] as a sum of deltas: $f[0,0] = f[0,0] \times 1$ $= f[0,0] \times \delta[0,0]$ $= \sum_{l} \sum_{l} f[k,l] \times \delta[k,l]$ $k = -\infty l = -\infty$ Or ∞ ∞ $= \sum \int f[k,l] \times \delta[-k,-l]$

 $k = -\infty l = -\infty$

Stanford University

Let's first represent f[1,1] as a sum of deltas:

$$f[1,1] = f[1,1] \times 1$$

= $f[1,1] \times \delta[0,0]$
= $\sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k,l] \times \delta[1-k,1-l]$

Stanford University

10-Oct-17

Now for the general case, let's write f[n,m] as a sum of deltas:

$$f[n,m] = f[n,m] \times 1$$

= $f[n,m] \times \delta[0,0]$
= $\sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k,l] \times \delta[n-k,m-l]$

Stanford University

 Now, let's pass this function through a linear shift invariant (LSI) system:

$$f[n,m] \xrightarrow{S} S[f[n,m]]$$

S[f[n,m]] = S[$\sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k,l] \times \delta[n-k,m-l]$]

Let's apply the superposition property here:

$$= \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k,l] S[\delta[n-k,m-l]]$$

Copying the equation from the previous slide: $S[f[n,m]] = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k,l] S[\delta[n-k,m-l]]$

Finally, we know what happens when we pass a delta function through a system right? We can use that here: $S[f[n,m]] = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k,l] h[n-k,m-l]$

And this is how we get our flipped convolution function