Lecture: RANSAC and feature detectors

Juan Carlos Niebles and Ranjay Krishna Stanford Vision and Learning Lab

Stanford University

Lecture 6 - 1 12-Oct-17

What we will learn today?

- A model fitting method for edge detection – RANSAC
- Local invariant features
 - Motivation
 - Requirements, invariances
- Keypoint localization
 - Harris corner detector

Lecture 6 - 2 1

What we will learn today

- A model fitting method for line detection – RANSAC
- Local invariant features
 - Motivation
 - Requirements, invariances
- Keypoint localization
 - Harris corner detector

Lecture 6 - 3 12-Oct-17

Fitting as Search in Parametric Space

- Choose a parametric model to represent a set of features
- Membership criterion is not local
 - Can't tell whether a point belongs to a given model just by looking at that point.
- Three main questions:
 - What model represents this set of features best?
 - Which of several model instances gets which feature?
 - How many model instances are there?
- Computational complexity is important
 - It is infeasible to examine every possible set of parameters and every possible combination of features

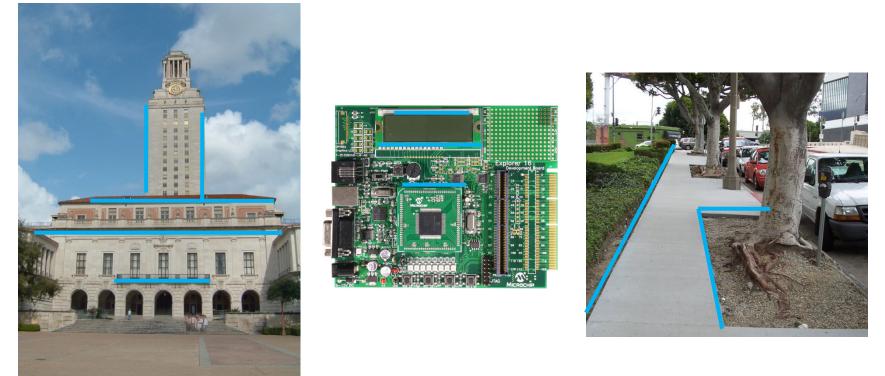
Source: L. Lazebnik

Stanford University

Lecture 6 - 4

Example: Line Fitting

 Why fit lines? Many objects characterized by presence of straight lines



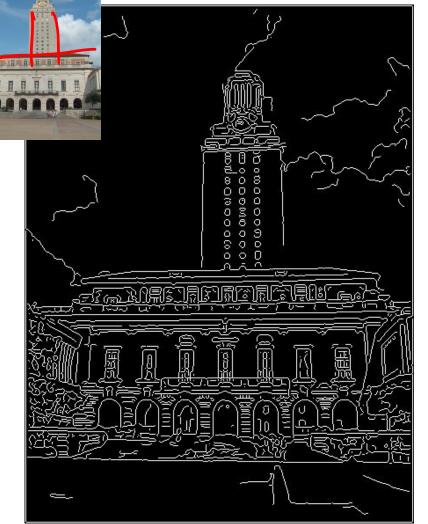
• Wait, why aren't we done just by running edge detection?

Slide credit: Kristen Grauman

Stanford University

Lecture 6 - 5

Difficulty of Line Fitting.



- Extra edge points (clutter), multiple models:
 - Which points go with which line, if any?
- Only some parts of each line detected, and some parts are missing:
 - How to find a line that bridges missing evidence?
- Noise in measured edge points, orientations:
 - How to detect true underlying parameters?

Slide credit: Kristen Grauman

Stanford University

Lecture 6 - 6

Voting

- It's not feasible to check all combinations of features by fitting a model to each possible subset.
- Voting is a general technique where we let the features vote for all models that are compatible with it.
 - Cycle through features, cast votes for model parameters.
 - Look for model parameters that receive a lot of votes.
- Noise & clutter features will cast votes too, but typically their votes should be inconsistent with the majority of "good" features.
- Ok if some features not observed, as model can span multiple fragments.

Slide credit: Kristen Grauman

RANSAC [Fischler & Bolles 1981]

- RANdom SAmple Consensus
- Approach: we want to avoid the impact of outliers, so let's look for "inliers", and use only those.
- Intuition: if an outlier is chosen to compute the current fit, then the resulting line won't have much support from rest of the points.

RANSAC [Fischler & Bolles 1981]

RANSAC loop:

- 1. Randomly select a *seed group* of points on which to base transformation estimate (e.g., a group of matches)
- 2. Compute transformation from seed group
- 3. Find *inliers* to this transformation
- 4. If the number of inliers is sufficiently large, re-compute least-squares estimate of transformation on all of the inliers
- Keep the transformation with the largest number of inliers

• Task: Estimate the best line

- How many points do we need to estimate the line?

Stanford University

Lecture 6 - 10 12-Oct-17

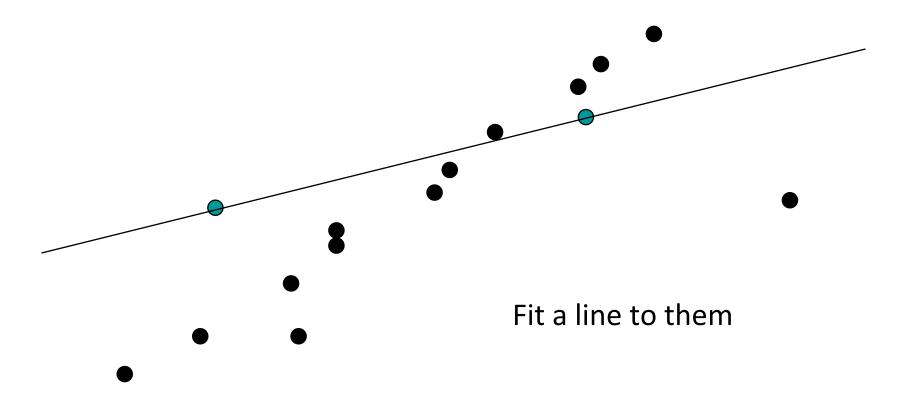
• Task: Estimate the best line



Stanford University

Lecture 6 - 11 12-Oct-17

• Task: Estimate the best line



Stanford University

Lecture 6 - 12 12-Oct-17

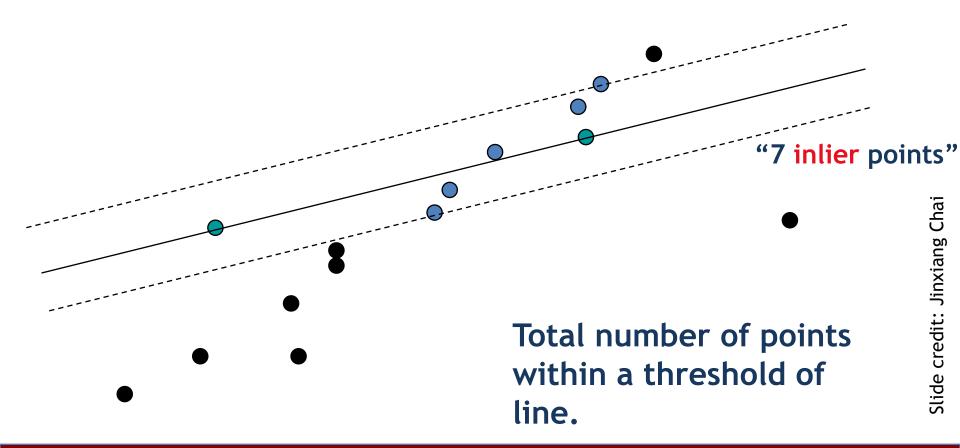
• Task: Estimate the best line



Stanford University

Lecture 6 - 13 12-Oct-17

• Task: Estimate the best line



Lecture 6 - 14 12-Oct-17

• Task: Estimate the best line

Repeat, until we get a good result.

Stanford University

Lecture 6 - 15 12-Oct-17

• Task: Estimate the best line

Repeat, until we get a good result.

"11 inlier points"

Stanford University

Lecture 6 - 16 12-Oct-17

Algorithm 15.4: RANSAC: fitting lines using random sample consensus

Determine:

- n the smallest number of points required
- k the number of iterations required
- t the threshold used to identify a point that fits well
- d the number of nearby points required
 - to assert a model fits well
- Until k iterations have occurred
 - Draw a sample of n points from the data
 - uniformly and at random
 - Fit to that set of n points
 - For each data point outside the sample
 - Test the distance from the point to the line
 - against t; if the distance from the point to the line
 - is less than t, the point is close
 - end
 - If there are *d* or more points close to the line then there is a good fit. Refit the line using all these points.

 end

Use the best fit from this collection, using the fitting error as a criterion

Stanford University

Lecture 6 - 17 12-Oct-17

RANSAC: How many samples?

- How many samples are needed?
 - Suppose *w* is fraction of inliers (points from line).
 - *n* points needed to define hypothesis (2 for lines)
 - k samples chosen.
- Prob. that a single sample of *n* points is correct: *w*^{*n*}
- Prob. that all k samples fail is: $(1 w^n)^k$
- ⇒ Choose *k* high enough to keep this below desired failure rate.

Slide credit: David Lowe

RANSAC: Computed k (p=0.99)

Sample size	Proportion of outliers						
n	5%	10%	20%	25%	30%	40%	50%
2	2	3	5	6	7	11	17
3	3	4	7	9	11	19	35
4	3	5	9	13	17	34	72
5	4	6	12	17	26	57	146
6	4	7	16	24	37	97	293
7	4	8	20	33	54	163	588
8	5	9	26	44	78	272	1177

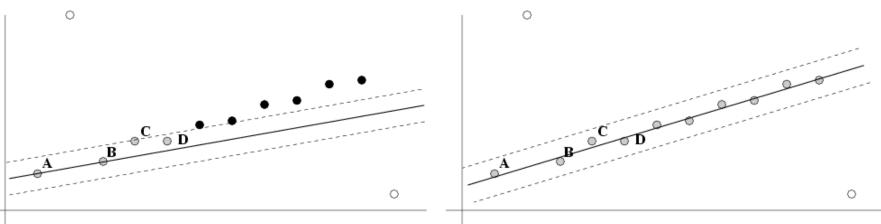
Slide credit: David Lowe

Stanford University

Lecture 6 - 19 12-Oct-17

After RANSAC

- RANSAC divides data into inliers and outliers and yields estimate computed from minimal set of inliers.
- Improve this initial estimate with estimation over all inliers (e.g. with standard least-squares minimization).
- But this may change inliers, so alternate fitting with re-classification as inlier/outlier.



Stanford University

RANSAC: Pros and Cons

• <u>Pros</u>:

- General method suited for a wide range of model fitting problems
- Easy to implement and easy to calculate its failure rate

• <u>Cons</u>:

- Only handles a moderate percentage of outliers without cost blowing up
- Many real problems have high rate of outliers (but sometimes selective choice of random subsets can help)
- A voting strategy, The Hough transform, can handle high percentage of outliers

What we will learn today?

- A model fitting method for edge detection – RANSAC
- Local invariant features
 - Motivation
 - Requirements, invariances
- Keypoint localization
 - Harris corner detector

Some background reading: Rick Szeliski, Chapter 4.1.1; David Lowe, IJCV 2004

Stanford University

Lecture 6 - 22 12-Oct-17

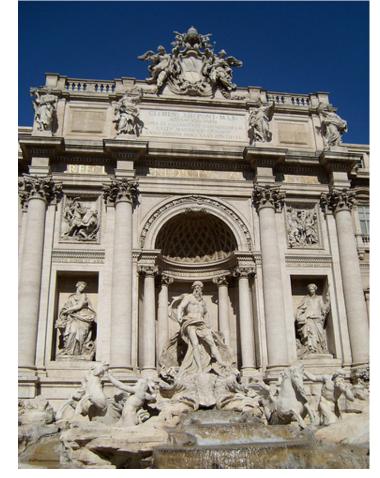
Image matching: a challenging problem

Stanford University

Lecture 6 - 23 12-Oct-17

Image matching: a challenging problem

by Diva Sian



by swashford

Stanford University

Lecture 6 - 24 12-Oct-17

Harder Case

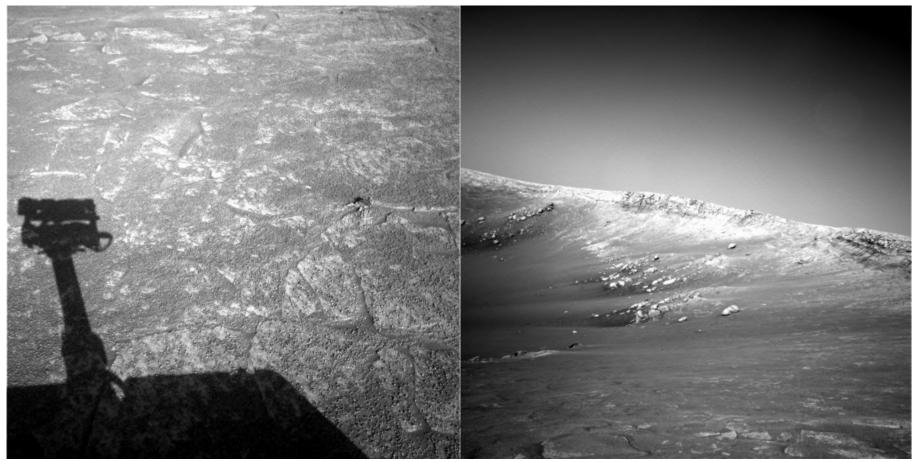
by <u>Diva Sian</u>

by <u>scgbt</u>

Stanford University

Lecture 6 - 25 12-0

Harder Still?

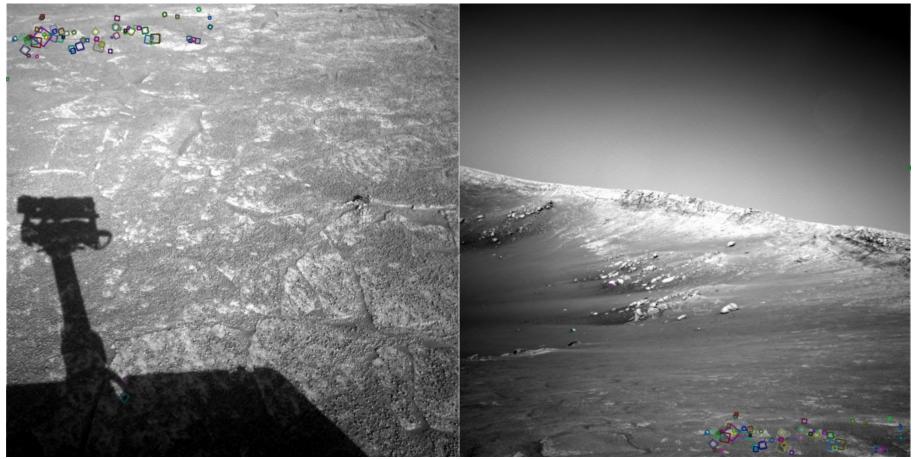


NASA Mars Rover images

Stanford University

Lecture 6 - 26 12-Oct-17

Answer Below (Look for tiny colored squares)



NASA Mars Rover images with SIFT feature matches (Figure by Noah Snavely)

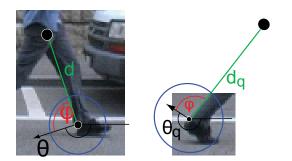
Stanford University

Lecture 6 - 27 12-Oct-17

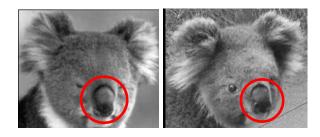
Motivation for using local features

- Global representations have major limitations
- Instead, describe and match only local regions
- Increased robustness to
 - Occlusions

- Articulation



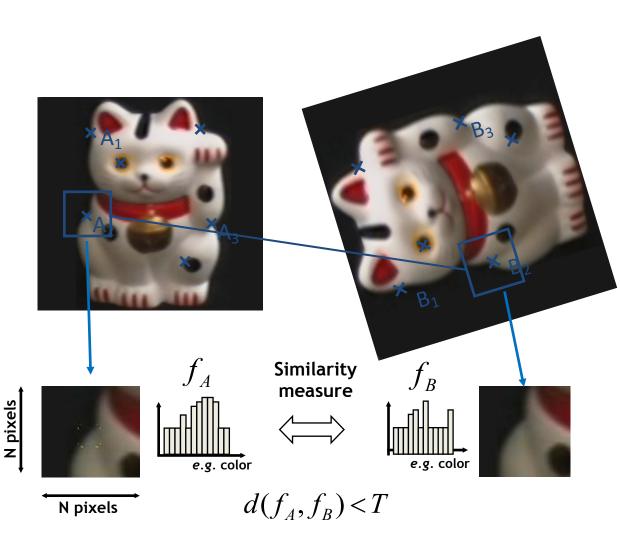
Intra-category variations



Stanford University

Lecture 6 - 28

General Approach



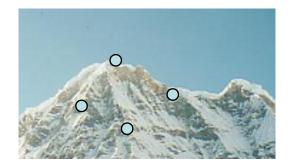
- 1. Find a set of distinctive keypoints
- 2. Define a region around each keypoint
- 3. Extract and normalize the region content
- 4. Compute a local descriptor from the normalized region
- 5. Match local descriptors

Stanford University

Common Requirements

• Problem 1:

- Detect the same point *independently* in both images



No chance to match!

We need a repeatable detector!

Stanford University

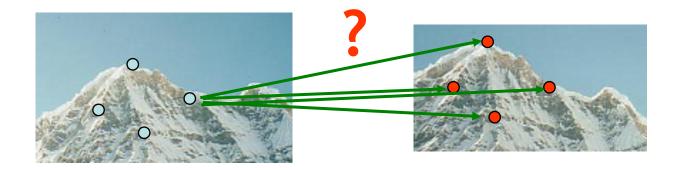
Lecture 6 - 30

Common Requirements

• Problem 1:

Detect the same point *independently* in both images

- Problem 2:
 - For each point correctly recognize the corresponding one



We need a reliable and distinctive descriptor!

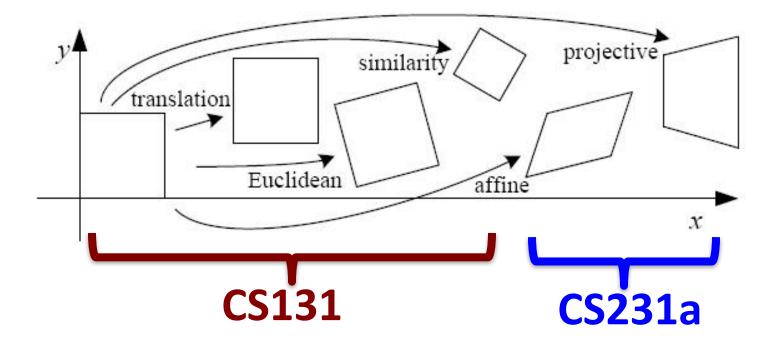
Lecture 6 - 31 12-Oct-17

Invariance: Geometric Transformations

Stanford University

Lecture 6 - 32 12-Oct-17

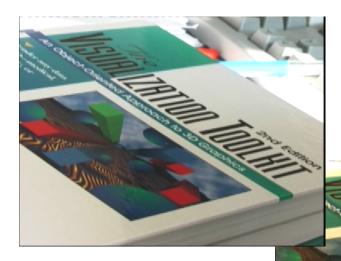
Levels of Geometric Invariance



Stanford University

Lecture 6 - 33 12-Oct-17

Invariance: Photometric Transformations



- Often modeled as a linear transformation:
 - Scaling + Offset



Stanford University

Lecture 6 - 34 12-Oct-17

Requirements

- Region extraction needs to be repeatable and accurate
 - Invariant to translation, rotation, scale changes
 - Robust or covariant to out-of-plane (≈affine) transformations
 - Robust to lighting variations, noise, blur, quantization
- Locality: Features are local, therefore robust to occlusion and clutter.
- Quantity: We need a sufficient number of regions to cover the object.
- Distinctivenes : The regions should contain "interesting" structure.
- Efficiency: Close to real-time performance.

Many Existing Detectors Available

- Hessian & Harris
- Laplacian, DoG
- Harris-/Hessian-Laplace
- Harris-/Hessian-Affine
- EBR and IBR
- **MSER** [Matas '02]
- Salient Regions [Kadir & Brady '01]
- Others...
- Those detectors have become a basic building block for • many recent applications in Computer Vision.

[Lindeberg '98], [Lowe '99]

[Beaudet '78], [Harris '88]

[Mikolajczyk & Schmid '01]

[Mikolajczyk & Schmid '04]

[Tuytelaars & Van Gool '04]

Stanford University

Lecture 6 -36 12-Oct-17

What we will learn today?

Lecture 6 - 37

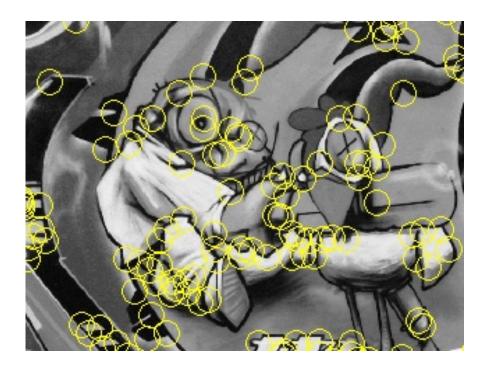
12-Oct-17

- A model fitting method for edge detection – RANSAC
- Local invariant features
 - Motivation
 - Requirements, invariances
- Keypoint localization
 - Harris corner detector

Some background reading: Rick Szeliski, Chapter 4.1.1; David Lowe, IJCV 2004

Stanford University

Keypoint Localization

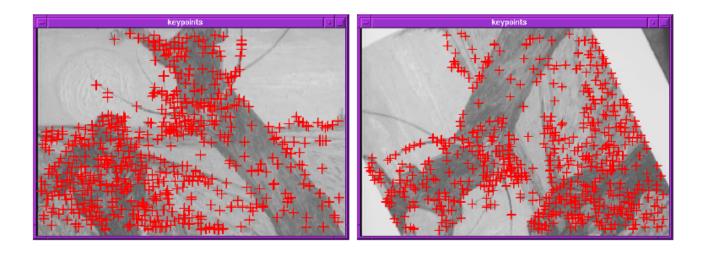


- Goals:
 - Repeatable detection
 - Precise localization
 - Interesting content
 - \Rightarrow Look for two-dimensional signal changes

Stanford University

Lecture 6 - 38

Finding Corners



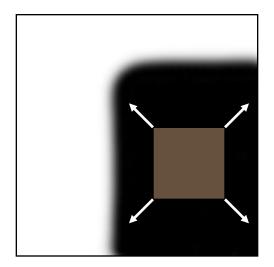
- Key property:
 - In the region around a corner, image gradient has two or more dominant directions
- Corners are *repeatable* and *distinctive*

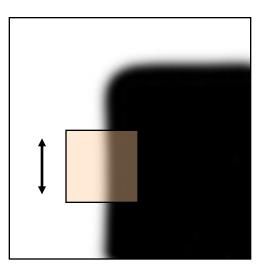
C.Harris and M.Stephens. <u>"A Combined Corner and Edge Detector."</u> Proceedings of the 4th Alvey Vision Conference, 1988.

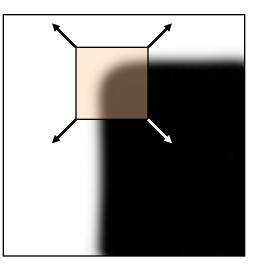
Stanford University

Corners as Distinctive Interest Points

- Design criteria
 - We should easily recognize the point by looking through a small window (*locality*)
 - Shifting the window in any direction should give a large change in intensity (good localization)





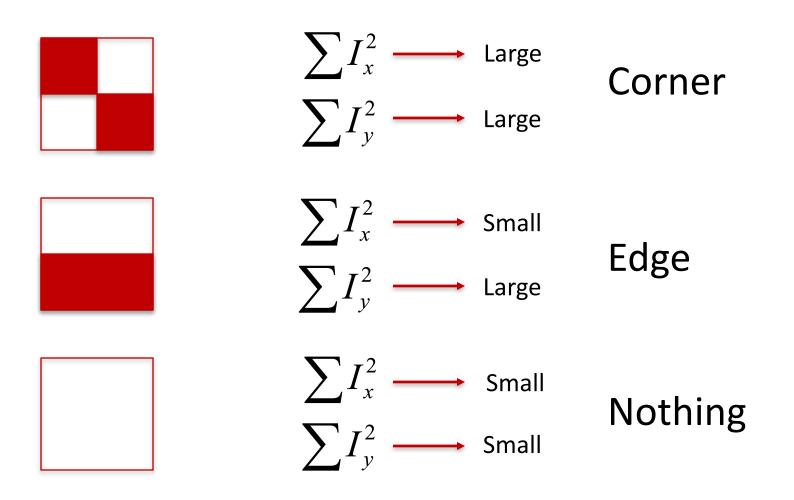


"flat" region: no change in all directions "edge": no change along the edge direction "corner": significant change in all directions

Stanford University

Lecture 6 - 40

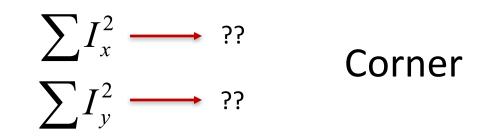
Corners versus edges



Stanford University

Lecture 6 - 41 12-Oct-17

Corners versus edges

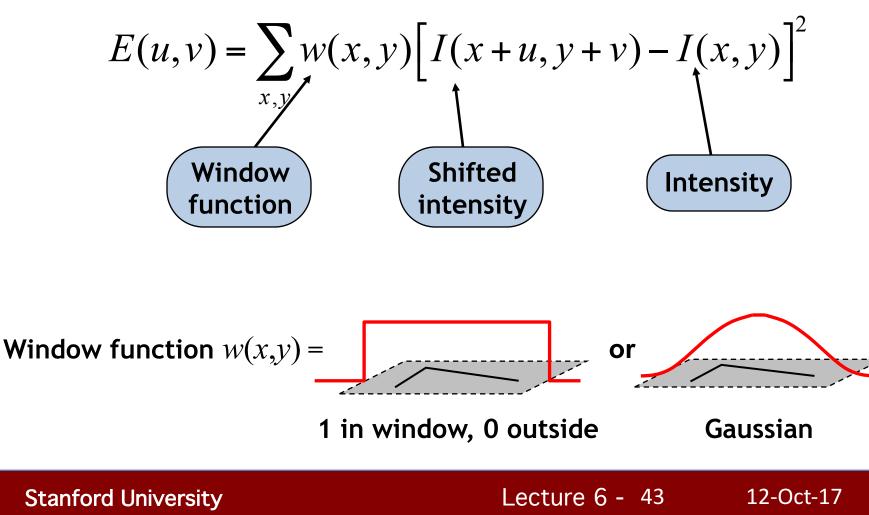


Stanford University

Lecture 6 - 42 12-Oct-17

Harris Detector Formulation

• Change of intensity for the shift [u,v]:



Harris Detector Formulation

• This measure of change can be approximated by:

$$E(u,v) \approx \begin{bmatrix} u & v \end{bmatrix} M \begin{bmatrix} u \\ v \end{bmatrix}$$

where *M* is a 2×2 matrix computed from image derivatives:

$$M = \sum_{\substack{x,y \\ y}} w(x,y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix} \text{ Gradient with respect to } x, \text{ times gradient with respect to } y$$

Sum over image region – the area we are checking for corner

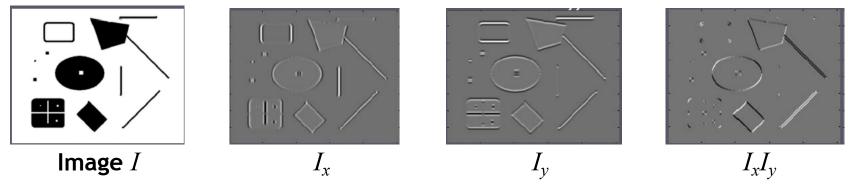
$$M = \begin{bmatrix} \sum I_x I_x & \sum I_x I_y \\ \sum I_x I_y & \sum I_y I_y \end{bmatrix} = \sum \begin{bmatrix} I_x \\ I_y \end{bmatrix} [I_x I_y]$$

Slide credit: Rick Szeliski

Stanford University

Lecture 6 - 44

Harris Detector Formulation



where *M* is a 2×2 matrix computed from image derivatives:

$$M = \sum_{\substack{x,y \\ y}} w(x,y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix} \text{ Gradient with respect to } x, \text{ times gradient with respect to } y$$

Sum over image region – the area we are checking for corner

$$= \begin{bmatrix} \sum I_x I_x & \sum I_x I_y \\ \sum I_x I_y & \sum I_y I_y \end{bmatrix} = \sum \begin{bmatrix} I_x \\ I_y \end{bmatrix} [I_x I_y]$$

Stanford University

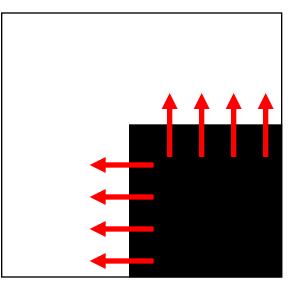
M

Lecture 6 - 45

What Does This Matrix Reveal?

• First, let's consider an axis-aligned corner:

$$M = \begin{bmatrix} \sum I_x^2 & \sum I_x I_y \\ \sum I_x I_y & \sum I_y^2 \end{bmatrix} = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}$$



12-Oct-17

Stanford University

Lecture 6 - 46

What Does This Matrix Reveal?

• First, let's consider an axis-aligned corner:

$$M = \begin{bmatrix} \sum I_x^2 & \sum I_x I_y \\ \sum I_x I_y & \sum I_y^2 \end{bmatrix} = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}$$

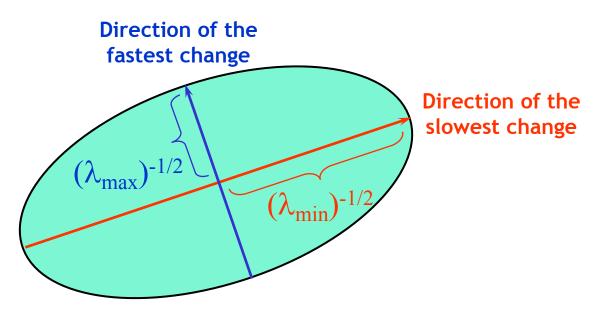
- This means:
 - Dominant gradient directions align with x or y axis
 - If either λ is close to 0, then this is not a corner, so look for locations where both are large.
- What if we have a corner that is not aligned with the image axes?

General Case

Since *M* is symmetric, we have $M = R^{-1} \begin{vmatrix} \lambda_1 & 0 \\ 0 & \lambda \end{vmatrix} R$

(Eigenvalue decomposition)

• We can visualize *M* as an ellipse with axis lengths determined by the eigenvalues and orientation determined by R

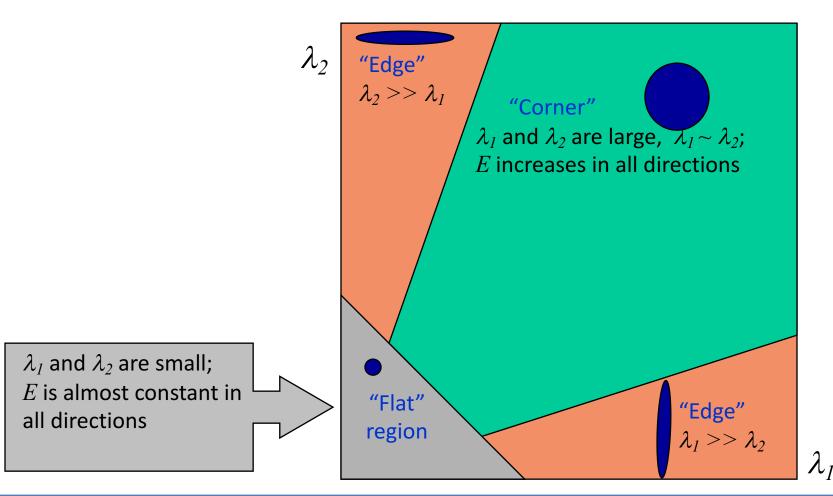


Stanford University

Lecture 6 -12-Oct-17 48

Interpreting the Eigenvalues

• Classification of image points using eigenvalues of *M*:



Lecture 6 -

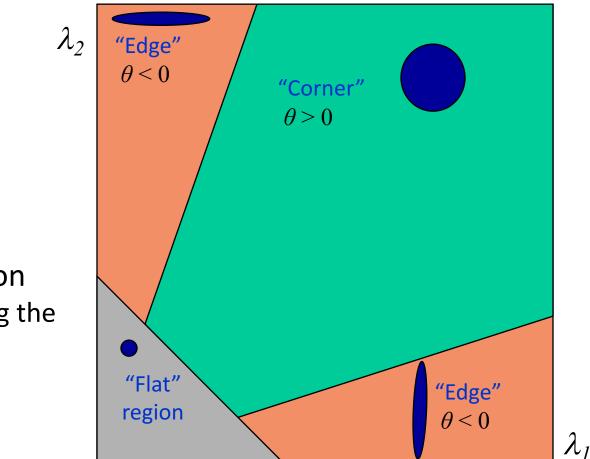
49

12-Oct-17

Stanford University

Corner Response Function

$$\theta = \det(M) - \alpha \operatorname{trace}(M)^2 = \lambda_1 \lambda_2 - \alpha (\lambda_1 + \lambda_2)^2$$



- Fast approximation
 - Avoid computing the eigenvalues
 - α: constant
 (0.04 to 0.06)

Slide credit: Kristen Grauman

Stanford University

Lecture 6 - 50

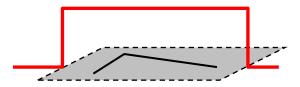
Window Function w(x,y)

$$M = \sum_{x,y} w(x,y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

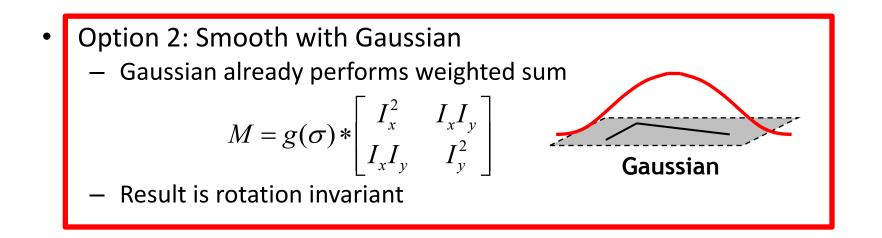
- Option 1: uniform window
 - Sum over square window

$$M = \sum_{x,y} \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

Problem: not rotation invariant



1 in window, 0 outside



Stanford University

Lecture 6 - 51 12-Oct-17

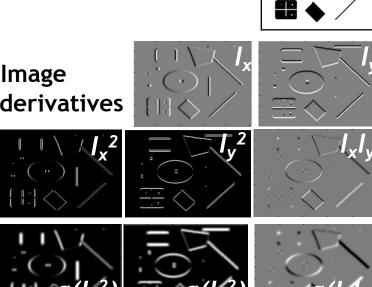
Summary: Harris Detector [Harris88]

 Compute second moment matrix (autocorrelation matrix)

$$M(\sigma_{I},\sigma_{D}) = g(\sigma_{I}) * \begin{bmatrix} I_{x}^{2}(\sigma_{D}) & I_{x}I_{y}(\sigma_{D}) \\ I_{x}I_{y}(\sigma_{D}) & I_{y}^{2}(\sigma_{D}) \end{bmatrix}$$
1. Image
derivative

2. Square of derivatives

3. Gaussian filter g(σ_l)



4. Cornerness function - two strong eigenvalues

$$\theta = \det[M(\sigma_{I}, \sigma_{D})] - \alpha[\operatorname{trace}(M(\sigma_{I}, \sigma_{D}))]^{2}$$

= $g(I_{x}^{2})g(I_{y}^{2}) - [g(I_{x}I_{y})]^{2} - \alpha[g(I_{x}^{2}) + g(I_{y}^{2})]^{2}$

5. Perform non-maximum suppression

Stanford University

Lecture 6 - 52 12-Oct-17

Harris Detector: Workflow

Stanford University

Lecture 6 - 53 12-Oct-17

Harris Detector: Workflow - computer corner responses θ



Stanford University

Lecture 6 - 54 12-Oct-17

Harris Detector: Workflow

- Take only the local maxima of θ , where θ >threshold

: . . .

· ·

. .

Stanford University

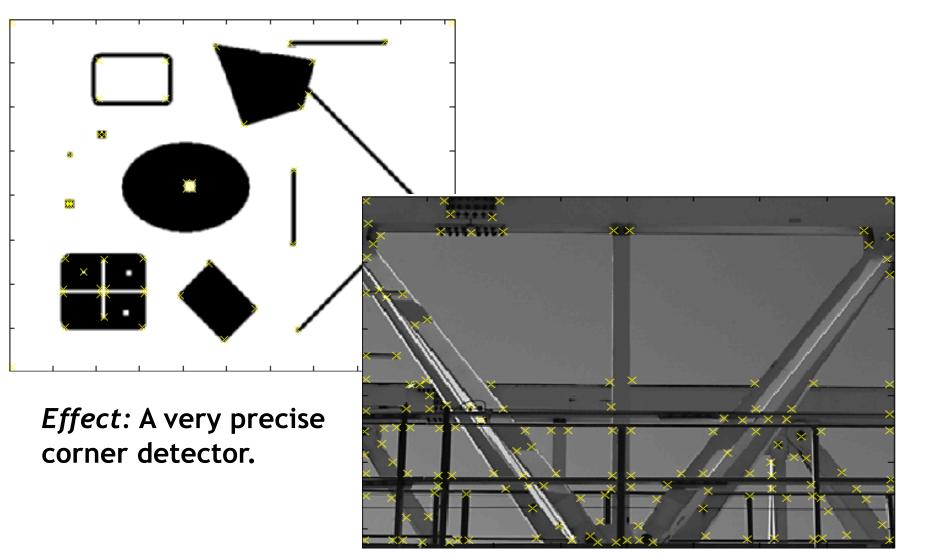
Lecture 6 - 55 12-Oct-17

Harris Detector: Workflow - Resulting Harris points

Stanford University

Lecture 6 - 56 12-Oct-17

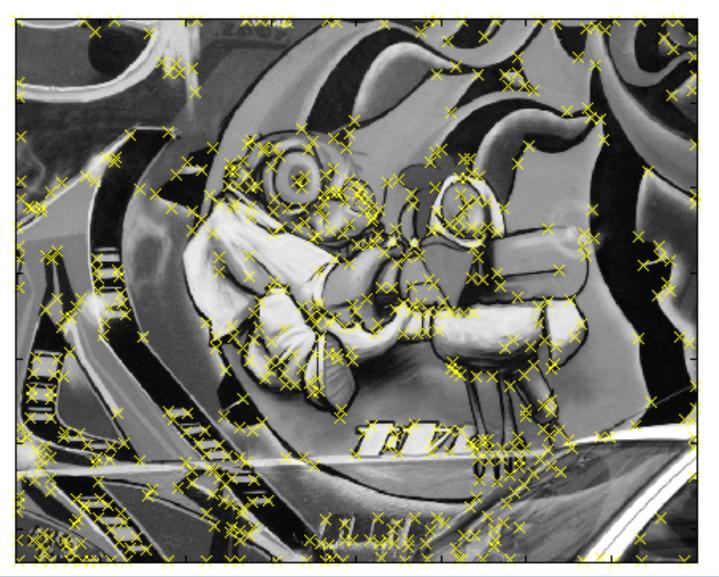
Harris Detector – Responses [Harris88]



Stanford University

Lecture 6 - 57 12-Oct-17

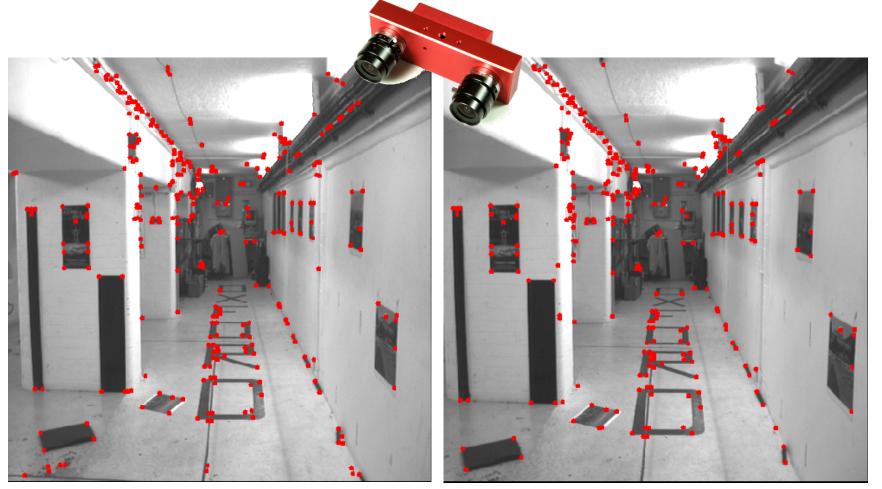
Harris Detector – Responses [Harris88]



Stanford University

Lecture 6 - 58 12-Oct-17

Harris Detector – Responses [Harris88]



• Results are well suited for finding stereo correspondences

Stanford University

Lecture 6 - 59 12-Oct-17

Harris Detector: Properties

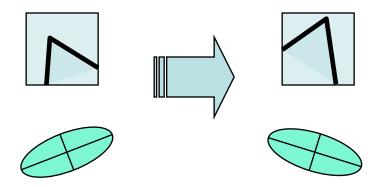
• Translation invariance?

Stanford University

Lecture 6 - 60 1

Harris Detector: Properties

- Translation invariance
- Rotation invariance?



Ellipse rotates but its shape (i.e. eigenvalues) remains the same

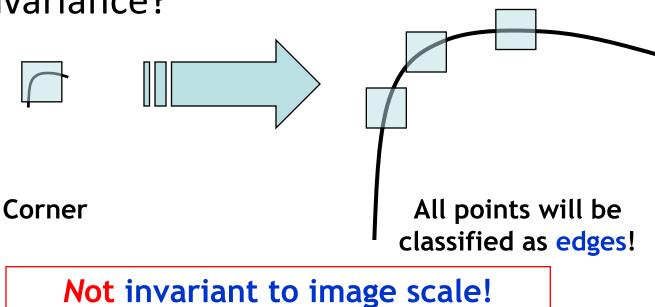
Corner response θ is invariant to image rotation

Stanford University

Lecture 6 - 61 12-Oct-17

Harris Detector: Properties

- Translation invariance
- Rotation invariance
- Scale invariance?



Stanford University

Lecture 6 - 62 12-Oct-17

What we are learned today?

- A model fitting method for edge detection – RANSAC
- Local invariant features
 - Motivation
 - Requirements, invariances
- Keypoint localization
 - Harris corner detector