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What	we	will	learn	today?

• A	model	fitting	method	for	edge	detection
– RANSAC

• Local	invariant	features
– Motivation
– Requirements,	invariances

• Keypoint localization
– Harris	corner	detector
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What	we	will	learn	today

• A	model	fitting	method	for	line	detection
– RANSAC

• Local	invariant	features
– Motivation
– Requirements,	invariances

• Keypoint localization
– Harris	corner	detector
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Fitting	as	Search	in	Parametric	Space

• Choose	a	parametric	model	to	represent	a	set	of	
features

• Membership	criterion	is	not	local
– Can’t	tell	whether	a	point	belongs	to	a	given	model	just	by	
looking	at	that	point.

• Three	main	questions:
– What	model	represents	this	set	of	features	best?
– Which	of	several	model	instances	gets	which	feature?
– How	many	model	instances	are	there?

• Computational	complexity	is	important
– It	is	infeasible	to	examine	every	possible	set	of	parameters	
and	every	possible	combination	of	features

Source:	L.	Lazebnik
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Example:	Line	Fitting
• Why	fit	lines?		
Many	objects	characterized	by	presence	of	straight	lines

• Wait,	why	aren’t	we	done	just	by	running	edge	detection?
Slide credit: Kristen Grauman
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Difficulty	of	Line	Fitting
• Extra	edge	points	(clutter),
multiple	models:
– Which	points	go	with	
which	line,	if	any?

• Only	some	parts	of	each	
line	detected,	and	some	
parts	are	missing:
– How	to	find	a	line	that
bridges	missing	evidence?

• Noise	in	measured	edge	
points,	orientations:
– How	to	detect	true	underlying	
parameters?

Slide credit: Kristen Grauman
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Voting

• It’s	not	feasible	to	check	all	combinations	of	features	by	
fitting	a	model	to	each	possible	subset.

• Voting	is	a	general	technique	where	we	let	the	features	
vote	for	all	models	that	are	compatible	with	it.
– Cycle	through	features,	cast	votes	for	model	parameters.
– Look	for	model	parameters	that	receive	a	lot	of	votes.

• Noise	&	clutter	features	will	cast	votes	too,	but typically	
their	votes	should	be	inconsistent	with	the	majority	of	
“good”	features.

• Ok	if	some	features	not	observed,	as	model	can	span	
multiple	fragments.

Slide credit: Kristen Grauman
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RANSAC	[Fischler &	Bolles 1981]

• RANdom SAmple Consensus

• Approach:	we	want	to	avoid	the	impact	of	
outliers,	so	let’s	look	for	“inliers”,	and	use	only	
those.

• Intuition:	if	an	outlier	is	chosen	to	compute	
the	current	fit,	then	the	resulting	line	won’t	
have	much	support	from	rest	of	the	points.
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RANSAC	loop:
1. Randomly	select	a	seed	group of	points	on	which	to	base	

transformation	estimate	(e.g.,	a	group	of	matches)
2. Compute	transformation	from	seed	group
3. Find	inliers	to	this	transformation	
4. If	the	number	of	inliers	is	sufficiently	large,	re-compute	

least-squares	estimate	of	transformation	on	all	of	the	
inliers

• Keep	the	transformation	with	the	largest	number	of	
inliers
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RANSAC	Line	Fitting	Example

• Task:	Estimate	the	best	line
– How	many	points	do	we	need	to	estimate	the	line?

Sl
id

e 
cr

ed
it

: 
Ji

nx
ia

ng
Ch

ai

12-Oct-1710



Lecture 6 -Stanford University

RANSAC	Line	Fitting	Example

• Task:	Estimate	the	best	line

Sample	two	points
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RANSAC	Line	Fitting	Example

• Task:	Estimate	the	best	line

Fit	a	line	to	them

Sl
id

e 
cr

ed
it

: 
Ji

nx
ia

ng
Ch

ai

12-Oct-1712



Lecture 6 -Stanford University

RANSAC	Line	Fitting	Example

• Task:	Estimate	the	best	line

Total number of points 
within a threshold of 
line. Sl
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RANSAC	Line	Fitting	Example

• Task:	Estimate	the	best	line

Total number of points 
within a threshold of 
line.

“7 inlier points”
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RANSAC	Line	Fitting	Example

• Task:	Estimate	the	best	line

Repeat,	until	we	get	a	good	
result.
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RANSAC	Line	Fitting	Example

• Task:	Estimate	the	best	line

Repeat,	until	we	get	a	good	
result.

“11 inlier points”
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RANSAC:	How	many	samples?
• How	many	samples	are	needed?

– Suppose	w is	fraction	of	inliers	(points	from	line).
– n points	needed	to	define	hypothesis	(2	for	lines)
– k samples	chosen.

• Prob.	that	a	single	sample	of	n points	is	correct:

• Prob.	that	all	k samples	fail	is:	

Þ Choose	k high	enough	to	keep	this	below	desired	failure	
rate.

nw
knw )1( -

Slide credit: David Lowe
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RANSAC:	Computed	k	(p=0.99)
Sample 

size

n

Proportion of outliers 

5% 10% 20% 25% 30% 40% 50%

2 2 3 5 6 7 11 17
3 3 4 7 9 11 19 35
4 3 5 9 13 17 34 72
5 4 6 12 17 26 57 146
6 4 7 16 24 37 97 293
7 4 8 20 33 54 163 588
8 5 9 26 44 78 272 1177

Slide credit: David Lowe
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After	RANSAC
• RANSAC	divides	data	into	inliers	and	outliers	and	
yields	estimate	computed	from	minimal	set	of	inliers.

• Improve	this	initial	estimate	with	estimation	over	all	
inliers	(e.g.	with	standard	least-squares	
minimization).

• But	this	may	change	inliers,	so	alternate	fitting	with	
re-classification	as	inlier/outlier.
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RANSAC:	Pros	and	Cons

• Pros:
– General	method	suited	for	a	wide	range	of	model	fitting	
problems

– Easy	to	implement	and	easy	to	calculate	its	failure	rate
• Cons:

– Only	handles	a	moderate	percentage	of	outliers	without	
cost	blowing	up

– Many	real	problems	have	high	rate	of	outliers	(but	
sometimes	selective	choice	of	random	subsets	can	help)

• A	voting	strategy,	The	Hough	transform,	can	handle	
high	percentage	of	outliers

12-Oct-1721



Lecture 6 -Stanford University

What	we	will	learn	today?

• A	model	fitting	method	for	edge	detection
– RANSAC

• Local	invariant	features
– Motivation
– Requirements,	invariances

• Keypoint localization
– Harris	corner	detector

12-Oct-1722
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Rick	Szeliski,	Chapter	4.1.1;	David	Lowe,	IJCV	2004
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Image	matching:	
a	challenging	problem
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by Diva Sian

by swashford
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Harder	Case

by Diva Sian by scgbt
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Harder	Still?

NASA Mars Rover images
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Answer	Below	(Look	for	tiny	colored	squares)

NASA	Mars	Rover	images	with	SIFT	feature	matches
(Figure	by	Noah	Snavely) Sl
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Motivation	for	using	local	features
• Global	representations	have	major	limitations
• Instead,	describe	and	match	only	local	regions
• Increased	robustness	to

– Occlusions

– Articulation

– Intra-category	variations	
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General	Approach
N

pi
xe

ls

N pixels

Similarity 
measureAf

e.g. color

Bf

e.g. color

A1

A2 A3

Tffd BA <),(

1. Find a set of   
distinctive key-
points 

3. Extract and 
normalize the    
region content  

2. Define a region 
around each 
keypoint

4. Compute a local 
descriptor from the 
normalized region

5. Match local 
descriptors
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Common	Requirements
• Problem	1:

– Detect	the	same	point	independently in	both	images

No chance to match!

We need a repeatable detector! Sl
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Common	Requirements
• Problem	1:

– Detect	the	same	point	independently in	both	images

• Problem	2:
– For	each	point	correctly	recognize	the	corresponding	one

We need a reliable and distinctive descriptor!

?
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Invariance:	Geometric	Transformations
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Levels	of	Geometric	Invariance
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Invariance:	Photometric	Transformations

• Often	modeled	as	a	linear	
transformation:
– Scaling	+	Offset
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Requirements
• Region	extraction	needs	to	be	repeatable and	accurate

– Invariant	to	translation,	rotation,	scale	changes
– Robust or covariant	to	out-of-plane	(»affine)	transformations
– Robust to	lighting	variations,	noise,	blur,	quantization

• Locality:	Features	are	local,	therefore	robust	to	occlusion	
and	clutter.

• Quantity:	We	need	a	sufficient	number	of	regions	to	cover	
the	object.

• Distinctiveness:	The	regions	should	contain	“interesting”	
structure.

• Efficiency:	Close	to	real-time	performance.
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Many	Existing	Detectors	Available

• Hessian	&	Harris [Beaudet ‘78],	[Harris	‘88]

• Laplacian,	DoG [Lindeberg ‘98],	[Lowe	‘99]

• Harris-/Hessian-Laplace							 [Mikolajczyk &	Schmid ‘01]

• Harris-/Hessian-Affine [Mikolajczyk &	Schmid ‘04]

• EBR	and	IBR [Tuytelaars &	Van	Gool ‘04]

• MSER [Matas ‘02]

• Salient	Regions [Kadir &	Brady	‘01]	

• Others…

• Those	detectors	have	become	a	basic	building	block	for	
many	recent	applications	in	Computer	Vision.
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What	we	will	learn	today?

• A	model	fitting	method	for	edge	detection
– RANSAC

• Local	invariant	features
– Motivation
– Requirements,	invariances

• Keypoint localization
– Harris	corner	detector	

12-Oct-1737

Some	background	reading:
Rick	Szeliski,	Chapter	4.1.1;	David	Lowe,	IJCV	2004
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Keypoint Localization

• Goals:	
– Repeatable	detection
– Precise	localization
– Interesting	content
Þ Look	for	two-dimensional	signal	changes
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Finding	Corners

• Key	property:	
– In	the	region	around	a	corner,	image	gradient	has	two	
or	more	dominant	directions

• Corners	are	repeatable and	distinctive

C.Harris and M.Stephens. "A Combined Corner and Edge Detector.“
Proceedings of the 4th Alvey Vision Conference, 1988.
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Corners	as	Distinctive	Interest	Points
• Design	criteria

– We	should	easily	recognize	the	point	by	looking	through	a	
small	window	(locality)

– Shifting	the	window	in	any direction should	give	a	large	
change in	intensity	(good	localization)

“edge”:
no change along 
the edge direction

“corner”:
significant change 
in all directions

“flat” region:
no change in all 
directions Sl
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Corners	versus	edges
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Corners	versus	edges
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Harris	Detector	Formulation

• Change	of	intensity	for	the	shift	[u,v]:

E(u,v) = w(x, y) I (x +u, y + v)− I (x, y)"# $%
2

x ,y
∑

IntensityShifted 
intensity

Window 
function

orWindow function w(x,y) =

Gaussian1 in window, 0 outside
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Harris	Detector	Formulation
• This	measure	of	change	can	be	approximated	by:

where	M is	a	2´2	matrix	computed	from	image	derivatives:
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Sum	over	image	region	– the	area	we	are	
checking	for	corner
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Harris	Detector	Formulation

IxImage I IxIyIy

where	M is	a	2´2	matrix	computed	from	image	derivatives:

M

Sum	over	image	region	– the	area	we	are	
checking	for	corner

Gradient with 
respect to x, 
times gradient 
with respect to y
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What	Does	This	Matrix	Reveal?
• First,	let’s	consider	an	axis-aligned	corner:

• This	means:	
– Dominant	gradient	directions	align	with	x or	y axis
– If	either	λ is	close	to	0,	then	this	is	not	a	corner,	so	look	for	
locations	where	both	are	large.

• What	if	we	have	a	corner	that	is	not	aligned	with	the	
image	axes?	
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What	Does	This	Matrix	Reveal?
• First,	let’s	consider	an	axis-aligned	corner:

• This	means:	
– Dominant	gradient	directions	align	with	x or	y axis
– If	either	λ is	close	to	0,	then	this	is	not	a	corner,	so	look	for	
locations	where	both	are	large.

• What	if	we	have	a	corner	that	is	not	aligned	with	the	
image	axes?	
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General	Case

• Since	M is	symmetric,	we	have

• We	can	visualize	M as	an	ellipse	with	axis	lengths	determined	
by	the	eigenvalues	and	orientation	determined	by	R
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Interpreting	the	Eigenvalues
• Classification	of	image	points	using	eigenvalues	of	M:

l1

“Corner”
l1 and	l2 are	large,		l1 ~ l2;
E increases	in	all	directions

l1 and	l2 are	small;
E is	almost	constant	in	
all	directions “Edge”	

l1 >> l2

“Edge”	
l2 >> l1

“Flat”	
region
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Corner	Response	Function

• Fast	approximation
– Avoid	computing	the

eigenvalues
– α:	constant

(0.04	to	0.06)

l2

“Corner”
θ > 0

“Edge”	
θ < 0

“Edge”	
θ < 0

“Flat”	
region

θ = det(M )−α trace(M )2 = λ1λ2 −α(λ1 +λ2 )
2
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Window	Function	w(x,y)

• Option	1:	uniform	window
– Sum	over	square	window

– Problem:	not	rotation	invariant

• Option	2:	Smooth	with	Gaussian
– Gaussian	already	performs	weighted	sum

– Result	is	rotation	invariant

1 in window, 0 outside
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Summary:	Harris	Detector	[Harris88]

• Compute	second	moment	matrix
(autocorrelation	matrix)

1. Image 
derivatives

Ix Iy

2. Square of 
derivatives

Ix2 Iy2 IxIy

3. Gaussian 
filter g(sI) g(Ix2) g(Iy2) g(IxIy)

R

2

2

( ) ( )
( , ) ( )

( ) ( )
x D x y D

I D I
x y D y D

I I I
M g

I I I
s s

s s s
s s

é ù
= *ê ú

ê úë û

2 2 2 2 2 2( ) ( ) [ ( )] [ ( ) ( )]x y x y x yg I g I g I I g I g Ia= - - +

θ = det[M (σ I ,σ D )]−α[trace(M (σ I ,σ D ))]
2

4. Cornerness function – two strong eigenvalues

5. Perform non-maximum suppression
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Harris	Detector:	Workflow
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Harris	Detector:	Workflow
- computer	corner	responses	θ
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Harris	Detector:	Workflow
- Take	only	the	local	maxima	of	θ,	where	θ>threshold
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Harris	Detector:	Workflow
- Resulting	Harris	points
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Harris	Detector	– Responses	[Harris88]

Effect: A very precise 
corner detector.
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Harris	Detector	– Responses	[Harris88]
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Harris	Detector	– Responses	[Harris88]
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• Results	are	well	suited	for	finding	stereo	correspondences
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Harris	Detector:	Properties

• Translation	invariance?
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Harris	Detector:	Properties

• Translation	invariance
• Rotation	invariance?

Ellipse rotates but its shape (i.e. 
eigenvalues) remains the same

Corner response θ is invariant to image rotation
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Harris	Detector:	Properties

• Translation	invariance
• Rotation	invariance
• Scale	invariance?

Not invariant to image scale!

All points will be 
classified as edges!

Corner
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What	we	are	learned	today?

• A	model	fitting	method	for	edge	detection
– RANSAC

• Local	invariant	features
– Motivation
– Requirements,	invariances

• Keypoint localization
– Harris	corner	detector	
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