
Lecture #06: Edge Detection

Winston Wang, Antonio Tan-Torres, Hesam Hamledari
Department of Computer Science

Stanford University
Stanford, CA 94305

{wwang13, tantonio}@cs.stanford.edu; hesamh@stanford.edu

1 Introduction

This lecture covers edge detection, Hough transformations, and RANSAC. The detection of edges
provides meaningful semantic information that facilitate the understanding of an image. This can
help analyzing the shape of elements, extracting image features, and understanding changes in the
properties of depicted scenes such as discontinuity in depth, type of material, and illumination,
to name a few. We will explore the application of Sobel and Canny edge detection techniques.
The next section introduces the Hough transform, used for the detection of parametric models in
images;for example, the detection of linear lines, defined by two parameters, is made possible by
the Hough transform. Furthermore, this technique can be generalized to detect other shapes (e.g.,
circles). However, as we will see, the use of Hough transform is not effective in fitting models with a
high number of parameters. To address this model fitting problem, the random sampling consensus
(RANSAC) is introduced in the last section; this non-deterministic approach repeatedly samples
subsets of data, uses them to fit the model, and classifies the remaining data points as "inliers" or
"outliers" depending on how well they can be explained by the fitted model (i.e., their proximity to
the model). The result is used for a final selection of data points used in achieving the final model fit.
A general comparison of RANSAC and Hough transform is also provided in the last section.

2 Edge Detection

2.1 Motivation for Edge Detection

Edge detection is extremely relevant for mammalian eyes. Certain neurons within the brain are adept
at recognizing straight lines. The information from these neurons is put together in the brain for
recognition of objects. In fact, edges are so useful for recognition in humans, line drawings are
almost as recognizable as the original image (Fig. 1).We would like to be able to extract information,
recognize objects, and recover the geometry and viewpoint of an image.

Computer Vision: Foundations and Applications (CS 131, 2017), Stanford University.

Fig. 1. Certain areas of the brain react to edges; the line drawings are as recognizable as the
original image; image source: [4]

2.2 Edge Basics

There are four possible sources of edges in an image: surface normal discontinuity (surface changes
direction sharply), depth discontinuity (one surface behind another), surface color discontinuity
(single surface changes color), illumination discontinuity (shadows/lighting). These discontinuities
are demonstrated in the Fig.2a; different types of edges can be seen in Fig.2b:

Fig. 2. Different types of edges due to discontinuities in surface color, surface depth, and
surface normal (source: lecture notes)

Edges occur in images when the magnitude of the gradient is high

2

2.3 Finding the Gradient

In order to find the gradient, we must first find the derivatives in both the x and y directions

2.3.1 Discrete Derivatives

df(x)

dx
= lim
δx→0

f(x)− f(x− δx)
δx

= f ′(x)

df(x)

dx
=
f(x)− f(x− 1

1
= f ′(x)

df(x)

dx
= f(x)− f(x− 1) = f ′(x)

It is also possible to take the derivative three different ways

• Backward: f ′(x) = f(x)− f(x− 1)

• Forward: f ′(x) = f(x+ 1)− f(x)

• Central: f ′(x) = (x+1)−f(x−1)
2

Each of these can also be represented as a filter (convoluting the filter with the image gives the
derivative)

• Backward: f ′(x) = f(x)− f(x− 1)→ [0, 1,−1]

• Forward: f ′(x) = f(x)− f(x+ 1)→ [−1, 1, 0]

• Central: f ′(x) = f(x+ 1)− f(x− 1)→ [1, 0,−1]

The gradient (∇f) can be calculated as follows:

∇f(x, y) =

[
∂f(x,y)
∂x

∂f(x,y)
∂y

]

=

[
fx
fy

]
We can also calculate the magnitude and the angle of the gradient:

|∇f(x, y)| =
√
f2x + f2y

θ = tan−1 (fy/fx)

2.4 Reducing noise

Noise will interfere with the gradient, making it impossible to find edges using the simple method,
even though the edges are still detectable to the eye. The solution is to first smooth the image.
Let f be the image and g be the smoothing kernel. Thus, in order to find the smoothed gradient, we
must calculate (1D example):

d

dx
(f ∗ g)

By the derivative theorem of convolution:

d

dx
(f ∗ g) = f ∗ d

dx
g

This simplification saves us one operation. Smoothing removes noise but blurs edges. Smoothing
with different kernel sizes can detect edges at different scales

3

2.5 Sobel Noise Detector

This algorithm utilizes 2 3× 3 kernels which, once convolved with the image, approximate the x and
y derivatives of the original image.

Gx =

[
1 0 −1
2 0 −2
1 0 −1

]
Gy =

[
1 2 1
0 0 0
−1 −2 −1

]
These matrices represent the result of smoothing and differentiation

Gx =

[
1 0 −1
2 0 −2
1 0 −1

]
=

[
1
2
1

]
[1 0 −1]

The Sobel Filter has many problems, including poor localization. The Sobel Filter also favors
horizontal and vertical edges over oblique edges

2.6 Canny Edge Detector

The Canny Edge Detector has five algorithmic steps:

• Suppress noise
• Compute gradient magnitude and direction
• Apply non-maximum suppression
• Hysteresis thresholding
• Connectivity analysis to detect edges

2.6.1 Suppress noise

We can both suppress noise and compute the derivatives in the x and y directions using a method
similar to the Sobel filter.

2.6.2 Compute gradient magnitude and direction

From above,

|∇f(x, y)| =
√
f2x + f2y

θ = tan−1 (fy/fx)

2.6.3 Apply non-maximum suppression

The purpose of this portion of the algorithm is to make sure the edges are specific. Thus, we assume
that the edge occurs when the gradient reaches a maximum. We suppress any pixels that have a
non-maximum gradient.
Basically, if the pixel is not the largest of the three pixels in the direction and opposite the direction
of its gradient, it is set to 0. Furthermore, all gradients are rounded to the nearest 45◦

2.6.4 Hysteresis thresholding

All remaining pixels are subjected to hysteresis thresholding. This part uses two values, for the high
and low thresholds. Every pixel with a value above the high threshold is marked as a strong edge.
Every pixel below the low threshold is set to 0. Every pixel between the two thresholds is marked as
a weak edge

2.6.5 Connectivity analysis to detect edges

The final step is connecting the edges. All strong edge pixels are edges. For weak edge pixels, only
the weak edge pixels that are linked to strong edge pixels are edges. The part uses BFS or DFS to
find all the edges.

4

3 Hough Transforms

3.1 Intro to Hough Transform

Hough Transform is a way to detect particular structures in images, namely lines. However, Hough
transform can be used to detect any structure whose paramteric equation is known. It gives a robust
detector under noise and partial occlusion.

3.2 Goal of Hough Transform for detecting lines

Hough transform can be used to detect lines in images. To do this, we want to locate sets of pixels
that make up straight lines in the image. This works to detect lines in an image after an edge detector
is applied to get the pixels of just the edges (and thus we find which sets of those pixels make up
straight lines).

3.3 Detecting lines using Hough Transform in a,b space

Say we have a xi, yi. There are infinite lines that could pass through this point. We can define a line
that passes through this pixel xi, yi as

yi = a ∗ xi + b

. Using this, we can transform each pixel into a, b space by re-writing this equation as:

b = −a ∗ xi + yi

This equation represents a line in a, b space, and each a, b point on the line represents a possible line
passing through our point xi, yi.

Thus, for each pixel xi, yi in our set of edge pixels, we transform it into a, b space to get a line.

Fig. 3. The transformation from the original space to the Hough space; source: lecture slides

The intersection of lines in a, b space represent the a, b values that compromise a line yi = a ∗ xi + b
passing through those points. Example: Say we have two points x1, y1 = (1, 1), and x2, y2 = (2, 3).
We transform these points into a, b space with the lines b = −a ∗ 1 + 1 and b = −a ∗ 2 + 3. Solving
for the intersection of these two lines gives us a = 2 and b = −1. This intersection point in (a, b)
space gives us the values for the line that goes through both points in x, y space.

5

Fig. 4. The lines passing through a point in the original space; source: lecture slides

3.4 Accumulator Cells

In order to get the "best" lines, we quantize the a, b space into cells. For each line in our a, b space,
we add a "vote" or a count to each cell that it passes through. We do this for each line, so at the end,
the cells with the most "votes" have the most intersections and therefore should correspond to real
lines in our image.

The algorithm for Hough transform in a, b space is as follows:

6

Fig. 5. The Hough transform algorithm; source: lecture slides

3.5 Hough transform in ρ, θ space

A problem with using a, b space to represent lines is that they are limited and cannot represent vertical
lines. To solve this, we use polar coordinates to represent lines. For a pixel xi, yi, we transform it
using the equation:

x ∗ cos θ + y ∗ sin θ = ρ

In ρ, θ space, points are not represented as lines but instead as sine wave-like functions.

Fig. 6. The Hough transform in ρ, θ space; source: lecture slides

The intersection of these functions in ρ, θ space still correspond to the ρ, θ that comprise a line
passing through those points.

So, for each pixel xi, yi we transform it into a function in ρ, θ space. We apply the same accumulator
cell algorithm to count the most intersections of functions.

7

In this case, we quantize our ρ, θ space into cells, and add a "vote" to each cell that our function
passes through. The cells with the most votes are the most likely real lines in our image.

3.6 Concluding Remarks

Advantages of the Hough Transform is that it is conceptually simple (just transforming and finding
intersection in Hough space). It is also fairly easy to implement, and it can handle missing and
occluded data well. Another advantage is that it can find other structures other than lines, as long as
the structure has a parametric equation.

Some disadvantages include that it gets more computationally complex the more parameters you
have. It can also only look for one kind of structure (so not lines and circles together). The length
and the position of a line segment can also not be detected by this. It can be fooled by "apparent"
lines, and co-linear line segments cannot be separated.

4 RANSAC

With the increase in model complexity (i.e., the number of parameters), the Hough transform loses its
effectiveness; this section elaborates on the design of the RAndom Sample Consensus (RANSAC)
technique [1] which provides a computationally efficient means of fitting models in images. We begin
with an introduction of the RANSAC’s basic idea and then introduce its algorithm.

4.1 Introduction to RANSAC Basics

The RANSAC algorithm is used for estimating the parameters of models in images (i.e., model
fitting). The basic idea behind RANSAC is to solve the fitting problem many times using randomly
selected minimal subsets of the data and choosing the best performing fit. To achieve this, RANSAC
tries to iteratively identify the data points that correspond to model we are trying to fit.

Fig. 7a illustrates an example where a linear model (i.e., 2 parameters) is to be fitted to the data; while
the majority of data points fit a linear model, the two points in the top right corner can significantly
affect the accuracy of overall fit (if they are included in the fit). The RANSAC algorithm aims to
address this challenge by identifying the "inliers" and "outliers" in the data.

RANSAC randomly selects samples of the data, with the assumption that if enough samples are
chosen, there will be a low probability that at all samples provides a bad fit.

Fig. 7. a) the outliers are detected by RANSAC to improve parameter estimation; b) RANSAC
application for image stitching; sources([3]and Derek Hoiem)

8

4.2 Applications

The RANSAC algorithm can be used to estimate parameters of different models; this is proven
beneficial in image stitching (Fig. 6b), outlier detection, lane detection (linear model estimation), and
stereo camera calculations.

4.3 The Algorithm

The RANSAC algorithm iteratively samples nominal subsets of the original data (e.g., 2 points for
line estimation); the model is fitted to each sample, and the number of "inliers" corresponding to this
fit is calculated; this includes the data points that are close to the fitted model. The points closer than
a threshold (e.g., 2 standard deviation, or a pre-determined number of pixels) are considered "inliers".
The fitted model is considered good if a big fraction of the data is considered as "inliers" for that fit.
In the case of a good fit, the model is re-fitted using all the inliers, and the outliers are discarded. This
process is repeated, and model estimates with a big enough fraction of inliers (e.g., bigger than a
pre-specified threshold) are compared to choose the best-performing fit. Fig. 8 illustrates this process
for a linear model and its three samples. The third sample (Fig. 8c) provides the best fit as it includes
the most number of inliers.

Fig. 8. The demonstration of the RANSAC algorithm for a linear model estimation and three
random samples; source([3])

Fig. 9. The pseudocode for RANSAC; source([2])

9

The RANSAC is detailed in Fig. 9. The major steps included in the RANSAC loop:

1. Randomly select a seed group from data.
2. Perform parameter estimation using the selected seed group.
3. Identify the inliers (points close to the estimated model).
4. (If there exists a sufficiently large number of inliers,)re-estimate the model using all inliers.
5. repeat steps 1-4 and finally keep the estimate with most inliers and best fit.

4.4 How Many Samples are Needed?

The RANSAC is a non-deterministic model fitting approach; this means that the number of samples
need to be large enough to provide a high confidence estimate of parameters. The number of required
samples depends on 1) the number of fitted parameters and 2) the amount of noise. Fig. 10 lists the
minimum number of samples needed based on p=0.99 and variations of sample size (i.e., the number
of parameters) and the fraction of outliers (i.e., noise). More samples are needed for estimating bigger
models and noisier data. A large enough number of samples (k) need to be chosen such that a low
probability of only seeing bad samples (Pf) is guaranteed:

Pf = (1−Wn)k = 1− p
where W and n are respectively the fraction of inliers and the number of points needed for model
fitting. The minimum number of samples:

k =
log(1− p)
log(1−Wn)

Fig. 10. The number of samples for different choices of noise population and model size;
source: David Lowe)

4.5 Advantages, Limitations, and Considerations

The advantages of the RANSAC lie in its simple implementation and wide application range in the
model fitting domain. Other advantages include its computational efficiency; the sampling approach
provides a better alternative to solving the problem for all possible combinations of features.

In some cases, it’d be more efficient to use the Hough transform instead of the RANSAC:

10

1. The number of parameters are small; for example, linear model estimation (2 parameters)
can be achieved efficiently using Hough transform, while image stitching requires a more
computationally frugal approach such as RANSAC.

2. If the noise population is high; as we saw earlier, increase in noise requires a more extensive
sampling approach (higher number of samples), increasing computation cost. Increased noise
reduces the chances of correct parameter estimation and the accuracy of inlier classification.

The poor performance in highly noisy data is a primary limitation of the RANSAC; this is espcially
crucial as real-world problems have high rate of outliers.

References
[1] Martin A Fischler and Robert C Bolles. Random sample consensus: a paradigm for model fitting with

applications to image analysis and automated cartography. Communications of the ACM, 24(6):381–395,
1981.

[2] David Forsyth and Jean Ponce. Computer vision: a modern approach. Upper Saddle River, NJ; London:
Prentice Hall, 2011.

[3] Simon JD Prince. Computer vision: models, learning, and inference. Cambridge University Press, 2012.

[4] Dirk B. Walther, Barry Chai, Eamon Caddigan, Diane M. Beck, and Li Fei-Fei. Simple line drawings suffice
for functional mri decoding of natural scene categories. Proceedings of the National Academy of Sciences,
108(23):9661—-9666, 2011.

11

	Introduction
	Edge Detection
	Motivation for Edge Detection
	Edge Basics
	Finding the Gradient
	Discrete Derivatives

	Reducing noise
	Sobel Noise Detector
	Canny Edge Detector
	Suppress noise
	Compute gradient magnitude and direction
	Apply non-maximum suppression
	Hysteresis thresholding
	Connectivity analysis to detect edges

	Hough Transforms
	Intro to Hough Transform
	Goal of Hough Transform for detecting lines
	Detecting lines using Hough Transform in a,b space
	Accumulator Cells
	Hough transform in , space
	Concluding Remarks

	RANSAC
	Introduction to RANSAC Basics
	Applications
	The Algorithm
	How Many Samples are Needed?
	Advantages, Limitations, and Considerations

