Lecture:
Edge Detection

Juan Carlos Niebles and Ranjay Krishna
Stanford Vision and Learning Lab
Continuing from last lecture

• Linear Systems
• Convolution
• Correlation
Linear Systems (filters)

\[f[n, m] \rightarrow \text{System } S \rightarrow g[n, m] \]

- **Linear filtering:**
 - Form a new image whose pixels are a weighted sum of original pixel values
 - Use the same set of weights at each point

- **S** is a linear system (function) iff it *satisfies*

\[S[\alpha f_i[n, m] + \beta f_j[h, m]] = \alpha S[f_i[n, m]] + \beta S[f_j[h, m]] \]

superposition property
2D impulse function

• 1 at [0,0].
• 0 everywhere else
LSI (linear *shift invariant*) systems

Impulse response

\[\delta_2[n, m] \rightarrow S \rightarrow h[n, m] \]

\[\delta_2[n - k, m - l] \rightarrow S\ (SI) \rightarrow h[n - k, m - l] \]
Why are convolutions flipped?

Let’s first represent \(f[0,0] \) as a sum of deltas:

\[
f[0,0] = f[0,0] \times 1 = f[0,0] \times \delta[0,0]
\]

\[
= \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k, l] \times \delta[k, l]
\]

Or

\[
= \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k, l] \times \delta[-k, -l]
\]
Why are convolutions flipped?

Let’s first represent $f[1,1]$ as a sum of deltas:

$$f[1,1] = f[1,1] \times 1$$

$$= f[1,1] \times \delta[0,0]$$

$$= \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k, l] \times \delta[1 - k, 1 - l]$$
Why are convolutions flipped?

Now for the general case, let’s write $f[n, m]$ as a sum of deltas:

$$f[n, m] = f[n, m] \times 1$$
$$= f[n, m] \times \delta[0,0]$$

$$= \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k, l] \times \delta[n - k, m - l]$$
Why are convolutions flipped?

- Now, let’s pass this function through a linear shift invariant (LSI) system:

\[f[n, m] \xrightarrow{S} S[f[n,m]] \]

\[S[f[n,m]] = S[\sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k, l] \times \delta[n - k, m - l]] \]

Let’s apply the superposition property here:

\[= \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k, l] S[\delta[n - k, m - l]] \]
Why are convolutions flipped?

Copying the equation from the previous slide:
\[S[f[n,m]] = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k, l] S[\delta[n - k, m - l]] \]

Finally, we know what happens when we pass a delta function through a system right? We can use that here:
\[S[f[n,m]] = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k, l] h[n - k, m - l] \]

And this is how we get our flipped convolution function
Convolution

\[f * h = \sum_{k} \sum_{l} f(k, l) h(-k, -l) \]

\[f = \text{Image} \]
\[h = \text{Kernel} \]

\[
\begin{array}{ccc}
 h_7 & h_8 & h_9 \\
 h_4 & h_5 & h_6 \\
 h_1 & h_2 & h_3 \\
\end{array}
\]

\[
\begin{array}{ccc}
 h_1 & h_2 & h_3 \\
 h_4 & h_5 & h_6 \\
 h_7 & h_8 & h_9 \\
\end{array}
\]

X – flip

Y – flip

\[
f * h = f_1 h_9 + f_2 h_8 + f_3 h_7 + f_4 h_6 + f_5 h_5 + f_6 h_4 + f_7 h_3 + f_8 h_2 + f_9 h_1
\]
2D convolution example

Input

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
</tbody>
</table>

Kernel

<table>
<thead>
<tr>
<th>-1</th>
<th>-2</th>
<th>-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Output

<table>
<thead>
<tr>
<th>-13</th>
<th>-20</th>
<th>-17</th>
</tr>
</thead>
<tbody>
<tr>
<td>-18</td>
<td>-24</td>
<td>-18</td>
</tr>
<tr>
<td>13</td>
<td>20</td>
<td>17</td>
</tr>
</tbody>
</table>

Slide credit: Song Ho Ahn
2D convolution example

\[
\begin{align*}
= x[-1,-1] \cdot h[1,1] + x[0,-1] \cdot h[0,1] + x[1,-1] \cdot h[-1,1] \\
+ x[-1,0] \cdot h[1,0] + x[0,0] \cdot h[0,0] + x[1,0] \cdot h[-1,0] \\
+ x[-1,1] \cdot h[1,-1] + x[0,1] \cdot h[0,-1] + x[1,1] \cdot h[-1,-1] \\
= 0 \cdot 1 + 0 \cdot 2 + 0 \cdot 1 + 0 \cdot 0 + 1 \cdot 0 + 2 \cdot 0 + 0 \cdot (-1) + 4 \cdot (-2) + 5 \cdot (-1) = -13
\end{align*}
\]
2D convolution example

\[\begin{array}{ccc}
1 & 2 & 1 \\
0 & 1 & 2 & 0 & 0 \\
-1 & -2 & -1 & 6 \\
7 & 8 & 9
\end{array} \]

\[\begin{align*}
= x[0,-1] \cdot h[1,1] &+ x[1,-1] \cdot h[0,1] &+ x[2,-1] \cdot h[-1,1] \\
+ x[0,0] \cdot h[1,0] &+ x[1,0] \cdot h[0,0] &+ x[2,0] \cdot h[-1,0] \\
+ x[0,1] \cdot h[1,-1] &+ x[1,1] \cdot h[0,-1] &+ x[2,1] \cdot h[-1,-1] \\
= 0 \cdot 1 + 0 \cdot 2 + 0 \cdot 1 + 1 \cdot 0 + 2 \cdot 0 + 3 \cdot 0 + 4 \cdot (-1) + 5 \cdot (-2) + 6 \cdot (-1) &= -20
\end{align*}\]
2D convolution example

\[\begin{align*}
 & = x[1,-1] \cdot h[1,1] + x[2,-1] \cdot h[0,1] + x[3,-1] \cdot h[-1,1] \\
 & \quad + x[1,0] \cdot h[1,0] + x[2,0] \cdot h[0,0] + x[3,0] \cdot h[-1,0] \\
 & \quad + x[1,1] \cdot h[1,-1] + x[2,1] \cdot h[0,-1] + x[3,1] \cdot h[-1,-1] \\
 & = 0 \cdot 1 + 0 \cdot 2 + 0 \cdot 1 + 2 \cdot 0 + 3 \cdot 0 + 0 \cdot 0 + 5 \cdot (-1) + 6 \cdot (-2) + 0 \cdot (-1) = -17
\end{align*}\]
2D convolution example

\[\begin{align*}
&= x[-1,0] \cdot h[1,1] + x[0,0] \cdot h[0,1] + x[1,0] \cdot h[-1,1] \\
&\quad + x[-1,1] \cdot h[1,0] + x[0,1] \cdot h[0,0] + x[1,1] \cdot h[-1,0] \\
&\quad + x[-1,2] \cdot h[1,-1] + x[0,2] \cdot h[0,-1] + x[1,2] \cdot h[-1,-1] \\
&= 0 \cdot 1 + 1 \cdot 2 + 2 \cdot 1 + 0 \cdot 0 + 4 \cdot 0 + 5 \cdot 0 + 0 \cdot (-1) + 7 \cdot (-2) + 8 \cdot (-1) = -18
\end{align*}\]
2D convolution example

\[
\begin{align*}
&= x[0,0] \cdot h[1,1] + x[1,0] \cdot h[0,1] + x[2,0] \cdot h[1,-1] \\
&\quad + x[0,1] \cdot h[1,0] + x[1,1] \cdot h[0,0] + x[2,1] \cdot h[1,-1] \\
&\quad + x[0,2] \cdot h[1,-1] + x[1,2] \cdot h[0,-1] + x[2,2] \cdot h[1,-1] \\
&= 1 \cdot 1 + 2 \cdot 2 + 3 \cdot 1 + 4 \cdot 0 + 5 \cdot 0 + 6 \cdot 0 + 7 \cdot (-1) + 8 \cdot (-2) + 9 \cdot (-1) = -24
\end{align*}
\]
2D convolution example

\[
\begin{align*}
\text{Output} &= x[1,0] \cdot h[1,1] + x[2,0] \cdot h[0,1] + x[3,0] \cdot h[-1,1] \\
&+ x[1,1] \cdot h[1,0] + x[2,1] \cdot h[0,0] + x[3,1] \cdot h[-1,0] \\
&+ x[1,2] \cdot h[1,-1] + x[2,2] \cdot h[0,-1] + x[3,2] \cdot h[-1,-1] \\
&= 2 \cdot 1 + 3 \cdot 2 + 0 \cdot 1 + 5 \cdot 0 + 6 \cdot 0 + 0 \cdot 0 + 8 \cdot (-1) + 9 \cdot (-2) + 0 \cdot (-1) = -18
\end{align*}
\]
(Cross) correlation (symbol: ⋆⋆)

Cross correlation of two 2D signals $f[n,m]$ and $g[n,m]$

\[f[n, m] \ast \ast h[n, m] = \sum_{k} \sum_{l} f[k, l] h[n - k, m - l] \]
(Cross) correlation – example
(Cross) correlation – example

\[f \rightarrow g = f + \text{noise} \rightarrow g > 0.5 \]
(Cross) correlation – example

- f
- $g = f + \text{noise}$
- $r > 0.5$

numpy's correlate

Courtesy of J. Fessler
(Cross) correlation – example

\[dc(y_1, y_2) = \frac{y_1^T y_2}{|y_1||y_2|} \]
Convolution vs. (Cross) Correlation

Convolution

Cross-correlation

Convolution: $f * h$

Cross-correlation: $f ** h$
Cross Correlation Application: Vision system for TV remote control
- uses template matching

properties

• Commutative property:

\[f \ast\ast h = h \ast\ast f \]

• Associative property:

\[(f \ast\ast h_1) \ast\ast h_2 = f \ast\ast (h_1 \ast\ast h_2) \]

• Distributive property:

\[f \ast\ast (h_1 + h_2) = (f \ast\ast h_1) + (f \ast\ast h_2) \]

The order doesn’t matter! \[h_1 \ast\ast h_2 = h_2 \ast\ast h_1 \]
properties

• Shift property:
\[f[n, m] \ast \ast \delta_2[n - n_0, m - m_0] = f[n - n_0, m - m_0] \]

• Shift-invariance:
\[g[n, m] = f[n, m] \ast \ast h[n, m] \]
\[\implies f[n - l_1, m - l_1] \ast \ast h[n - l_2, m - l_2] \]
\[= g[n - l_1 - l_2, m - l_1 - l_2] \]
Convolution vs. (Cross) Correlation

• A **convolution** is an integral that expresses the amount of overlap of one function as it is shifted over another function.
 – convolution is a filtering operation

• **Correlation** compares the *similarity of two sets of data*. Correlation computes a measure of similarity of two input signals as they are shifted by one another. The correlation result reaches a maximum at the time when the two signals match best.
 – correlation is a measure of relatedness of two signals
What we will learn today

• Edge detection
• Image Gradients
• A simple edge detector
• Sobel edge detector
• Canny edge detector
• Hough Transform

Some background reading:
Forsyth and Ponce, Computer Vision, Chapter 8
What we will learn today

• Edge detection
• Image Gradients
• A simple edge detector
• Sobel edge detector
• Canny edge detector
• Hough Transform

Some background reading:
Forsyth and Ponce, Computer Vision, Chapter 8
(A) Cave painting at Chauvet, France, about 30,000 B.C.;
(B) Aerial photograph of the picture of a monkey as part of the Nazca Lines geoglyphs, Peru, about 700 – 200 B.C.;
(C) Shen Zhou (1427-1509 A.D.): Poet on a mountain top, ink on paper, China;
(D) Line drawing by 7-year old I. Lleras (2010 A.D.).
Hubel & Wiesel, 1960s
We know edges are special from human (mammalian) vision studies

Hubel & Wiesel, 1960s
We know edges are special from human (mammalian) vision studies.

Figure 4.14
Complementary-part images. From an original intact image (left column), two complemen-
Edge detection

- **Goal:** Identify sudden changes (discontinuities) in an image
 - Intuitively, most semantic and shape information from the image can be encoded in the edges
 - More compact than pixels

- **Ideal:** artist’s line drawing (but artist is also using object-level knowledge)

Source: D. Lowe
Why do we care about edges?

• Extract information, recognize objects

• Recover geometry and viewpoint

Source: J. Hayes
Origins of edges

- surface normal discontinuity
- depth discontinuity
- surface color discontinuity
- illumination discontinuity

Source: D. Hoiem
Closeup of edges

Surface normal discontinuity

Source: D. Hoiem
Closeup of edges

Depth discontinuity

Source: D. Hoiem
Closeup of edges

Surface color discontinuity

Source: D. Hoiem
What we will learn today

• Edge detection
• Image Gradients
• A simple edge detector
• Sobel edge detector
• Canny edge detector
• Hough Transform
Derivatives in 1D

\[
\frac{df}{dx} = \lim_{\Delta x \to 0} \frac{f(x) - f(x - \Delta x)}{\Delta x} = f'(x) = f_x
\]
Derivatives in 1D - example

\[y = x^2 + x^4 \]

\[\frac{dy}{dx} = 2x + 4x^3 \]
Derivatives in 1D - example

\[y = x^2 + x^4 \quad \quad y = \sin x + e^{-x} \]

\[\frac{dy}{dx} = 2x + 4x^3 \quad \quad \frac{dy}{dx} = \cos x + (-1)e^{-x} \]

Slide credit: Dr Mubarak
Discrete Derivative in 1D

\[
\frac{df}{dx} = \lim_{\Delta x \to 0} \frac{f(x) - f(x - \Delta x)}{\Delta x} = f'(x)
\]

\[
\frac{df}{dx} = \frac{f(x) - f(x - 1)}{1} = f'(x)
\]

\[
\frac{df}{dx} = f(x) - f(x - 1) = f''(x)
\]
Types of Discrete derivative in 1D

Backward \[\frac{df}{dx} = f(x) - f(x-1) = f''(x) \]

Forward \[\frac{df}{dx} = f(x) - f(x+1) = f''(x) \]

Central \[\frac{df}{dx} = f(x+1) - f(x-1) = f''(x) \]
1D discrete derivative filters

• Backward filter:
 \[f(x) - f(x-1) = f'(x) \]

• Forward:
 \[f(x) - f(x+1) = f'(x) \]

• Central:
 \[f(x+1) - f(x-1) = f'(x) \]
1D discrete derivative filters

• Backward filter: \[[0 \quad 1 \quad -1] \]

\[f(x) - f(x-1) = f'(x) \]
1D discrete derivative filters

• Backward filter: \[[0 \quad 1 \quad -1] \]
 \[f(x) - f(x-1) = f'(x) \]

• Forward: \[[-1 \quad 1 \quad 0] \]
 \[f(x) - f(x+1) = f'(x) \]
1D discrete derivative example

\[f(x) = 10 \quad 15 \quad 10 \quad 10 \quad 25 \quad 20 \quad 20 \quad 20 \]

\[f'(x) = 0 \quad 5 \quad -5 \quad 0 \quad 15 \quad -5 \quad 0 \quad 0 \]
Discrete derivate in 2D

Given function

\[f(x, y) \]
Discrete derivative in 2D

Given function

\[f(x, y) \]

Gradient vector

\[\nabla f(x, y) = \begin{bmatrix} \frac{\partial f(x, y)}{\partial x} \\ \frac{\partial f(x, y)}{\partial y} \end{bmatrix} = \begin{bmatrix} f_x \\ f_y \end{bmatrix} \]
Discrete derivative in 2D

Given function

\[f(x, y) \]

Gradient vector

\[\nabla f(x, y) = \begin{bmatrix} \frac{\partial f(x, y)}{\partial x} \\ \frac{\partial f(x, y)}{\partial y} \end{bmatrix} = \begin{bmatrix} f_x \\ f_y \end{bmatrix} \]

Gradient magnitude

\[|\nabla f(x, y)| = \sqrt{f_x^2 + f_y^2} \]

Gradient direction

\[\theta = \tan^{-1} \left(\frac{\frac{\partial f}{\partial y}}{\frac{\partial f}{\partial x}} \right) \]
2D discrete derivative filters

What does this filter do?

\[
\frac{1}{3} \begin{bmatrix}
 -1 & 0 & 1 \\
 -1 & 0 & 1 \\
 -1 & 0 & 1 \\
\end{bmatrix}
\]
2D discrete derivative filters

What about this filter?

\[
\frac{1}{3} \begin{bmatrix}
-1 & 0 & 1 \\
-1 & 0 & 1 \\
-1 & 0 & 1 \\
\end{bmatrix}
\quad \frac{1}{3} \begin{bmatrix}
1 & 1 & 1 \\
0 & 0 & 0 \\
-1 & -1 & -1 \\
\end{bmatrix}
\]
2D discrete derivative - example

\[
I = \begin{bmatrix}
10 & 10 & 20 & 20 & 20 \\
10 & 10 & 20 & 20 & 20 \\
10 & 10 & 20 & 20 & 20 \\
10 & 10 & 20 & 20 & 20 \\
10 & 10 & 20 & 20 & 20 \\
\end{bmatrix}
\]
2D discrete derivative - example

What happens when we apply this filter?

\[
I = \begin{bmatrix}
10 & 10 & 20 & 20 & 20 \\
10 & 10 & 20 & 20 & 20 \\
10 & 10 & 20 & 20 & 20 \\
10 & 10 & 20 & 20 & 20 \\
10 & 10 & 20 & 20 & 20 \\
\end{bmatrix}
\]

\[
\frac{1}{3} \begin{bmatrix}
1 & 1 & 1 \\
0 & 0 & 0 \\
-1 & -1 & -1 \\
\end{bmatrix}
\]
2D discrete derivative - example

What happens when we apply this filter?

\[I = \begin{bmatrix}
10 & 10 & 20 & 20 & 20 \\
10 & 10 & 20 & 20 & 20 \\
10 & 10 & 20 & 20 & 20 \\
10 & 10 & 20 & 20 & 20 \\
10 & 10 & 20 & 20 & 20 \\
\end{bmatrix} \]

\[\frac{1}{3} \begin{bmatrix}
1 & 1 & 1 \\
0 & 0 & 0 \\
-1 & -1 & -1 \\
\end{bmatrix} \]

\[I_y = \begin{bmatrix}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
\end{bmatrix} \]
2D discrete derivative - example

Now let’s try the other filter!

\[
I = \begin{bmatrix}
10 & 10 & 20 & 20 & 20 \\
10 & 10 & 20 & 20 & 20 \\
10 & 10 & 20 & 20 & 20 \\
10 & 10 & 20 & 20 & 20 \\
10 & 10 & 20 & 20 & 20 \\
10 & 10 & 20 & 20 & 20 \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
-1 & 0 & 1 \\
-1 & 0 & 1 \\
-1 & 0 & 1 \\
\end{bmatrix}
\]

\[
\frac{1}{3}
\]
2D discrete derivative - example

What happens when we apply this filter?

\[
I = \begin{bmatrix}
10 & 10 & 20 & 20 & 20 \\
10 & 10 & 20 & 20 & 20 \\
10 & 10 & 20 & 20 & 20 \\
10 & 10 & 20 & 20 & 20 \\
10 & 10 & 20 & 20 & 20 \\
\end{bmatrix}
\]

\[
I_x = \begin{bmatrix}
0 & 0 & 0 & 0 & 0 \\
0 & 10 & 10 & 0 & 0 \\
0 & 10 & 10 & 0 & 0 \\
0 & 10 & 10 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
\end{bmatrix}
\]
3x3 image gradient filters

\[
\frac{1}{3} \begin{bmatrix}
-1 & 0 & 1 \\
-1 & 0 & 1 \\
-1 & 0 & 1 \\
\end{bmatrix}
\quad \frac{1}{3} \begin{bmatrix}
1 & 1 & 1 \\
0 & 0 & 0 \\
-1 & -1 & -1 \\
\end{bmatrix}
\]
What we will learn today

• Edge detection
• Image Gradients
• A simple edge detector
• Sobel edge detector
• Canny edge detector
• Hough Transform
Characterizing edges

- An edge is a place of rapid change in the image intensity function.
Image gradient

• The gradient of an image: \(\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right] \)

\[\nabla f = [\partial f/\partial x, 0] \quad \text{and} \quad \nabla f = [0, \partial f/\partial y] \]

The gradient vector points in the direction of most rapid increase in intensity.

The gradient direction is given by \(\theta = \tan^{-1} \left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x} \right) \)

• how does this relate to the direction of the edge?

The edge strength is given by the gradient magnitude

\[\| \nabla f \| = \sqrt{\left(\frac{\partial f}{\partial x} \right)^2 + \left(\frac{\partial f}{\partial y} \right)^2} \]

Source: Steve Seitz
Finite differences: example

- Which one is the gradient in the x-direction? How about y-direction?
Intensity profile

Source: D. Hoiem
Effects of noise

- Consider a single row or column of the image
 - Plotting intensity as a function of position gives a signal

Where is the edge?

Source: S. Seitz
Effects of noise
Effects of noise

• Finite difference filters respond strongly to noise
 – Image noise results in pixels that look very different from their neighbors
 – Generally, the larger the noise the stronger the response

• What is to be done?
Effects of noise

• Finite difference filters respond strongly to noise
 – Image noise results in pixels that look very different from their neighbors
 – Generally, the larger the noise the stronger the response

• What is to be done?
 – Smoothing the image should help, by forcing pixels different to their neighbors (=noise pixels?) to look more like neighbors

Source: D. Forsyth
Smoothing with different filters

• Mean smoothing

\[
\begin{bmatrix}
1 \\
1 \\
1
\end{bmatrix}
\times
\begin{bmatrix}
1 & 1 & 1
\end{bmatrix}
\]

• Gaussian (smoothing * derivative)

\[
\begin{bmatrix}
1 \\
2 \\
1
\end{bmatrix}
\times
\begin{bmatrix}
1 & 2 & 1
\end{bmatrix}
\]
Smoothing with different filters

Mean	Gaussian	Median
3x3 | 5x5 | 7x7

Slide credit: Steve Seitz
Solution: smooth first

- To find edges, look for peaks in $\frac{d}{dx}(f * g)$

Source: S. Seitz
Derivative theorem of convolution

- This theorem gives us a very useful property:

\[
\frac{d}{dx} (f * g) = f * \frac{d}{dx} g
\]

- This saves us one operation:

Source: S. Seitz
Derivative of Gaussian filter

2D-gaussian

* [1 0 -1] = x - derivative
Derivative of Gaussian filter

- x-direction
- y-direction
Derivative of Gaussian filter
Tradeoff between smoothing at different scales

- Smoothed derivative removes noise, but blurs edge. Also finds edges at different “scales”.

Source: D. Forsyth
Designing an edge detector

• Criteria for an “optimal” edge detector:
 – **Good detection**: the optimal detector must minimize the probability of false positives (detecting spurious edges caused by noise), as well as that of false negatives (missing real edges)
Designing an edge detector

• Criteria for an “optimal” edge detector:
 – **Good detection**: the optimal detector must minimize the probability of false positives (detecting spurious edges caused by noise), as well as that of false negatives (missing real edges)
 – **Good localization**: the edges detected must be as close as possible to the true edges
Designing an edge detector

- Criteria for an “optimal” edge detector:
 - **Good detection**: the optimal detector must minimize the probability of false positives (detecting spurious edges caused by noise), as well as that of false negatives (missing real edges)
 - **Good localization**: the edges detected must be as close as possible to the true edges
 - **Single response**: the detector must return one point only for each true edge point; that is, minimize the number of local maxima around the true edge
What we will learn today

• Edge detection
• Image Gradients
• A simple edge detector
• Sobel Edge detector
• Canny edge detector
• Hough transform
Sobel Operator

- uses two 3×3 kernels which are convolved with the original image to calculate approximations of the derivatives
- one for horizontal changes, and one for vertical

\[
G_x = \begin{bmatrix}
+1 & 0 & -1 \\
+2 & 0 & -2 \\
+1 & 0 & -1
\end{bmatrix}
\quad \quad
G_y = \begin{bmatrix}
+1 & +2 & +1 \\
0 & 0 & 0 \\
-1 & -2 & -1
\end{bmatrix}
\]
Sobel Operation

- Smoothing + differentiation

\[G_x = \begin{bmatrix} +1 & 0 & -1 \\ +2 & 0 & -2 \\ +1 & 0 & -1 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \begin{bmatrix} +1 & 0 & -1 \end{bmatrix} \]

Gaussian smoothing differentiation
Sobel Operation

• Magnitude:

\[G = \sqrt{G_x^2 + G_y^2} \]

• Angle or direction of the gradient:

\[\Theta = \arctan\left(\frac{G_y}{G_x}\right) \]
Sobel Filter example
Sobel Filter Problems

- Poor Localization (Trigger response in multiple adjacent pixels)
- Thresholding value favors certain directions over others
 - Can miss oblique edges more than horizontal or vertical edges
 - False negatives
What we will learn today

• Edge detection
• Image Gradients
• A simple edge detector
• Sobel Edge detector
• Canny edge detector
• Hough Transform
Canny edge detector

• This is probably the most widely used edge detector in computer vision

• Theoretical model: step-edges corrupted by additive Gaussian noise

• Canny has shown that the first derivative of the Gaussian closely approximates the operator that optimizes the product of signal-to-noise ratio and localization

Canny edge detector

• Suppress Noise
• Compute gradient magnitude and direction
• Apply Non-Maximum Suppression
 – Assures minimal response
• Use hysteresis and connectivity analysis to detect edges
Example

• original image
Derivative of Gaussian filter

x-direction

y-direction

\[
\begin{bmatrix}
1 & 0 & -1 \\
2 & 0 & -2 \\
1 & 0 & -1 \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
1 & 2 & 1 \\
0 & 0 & 0 \\
-1 & -2 & -1 \\
\end{bmatrix}
\]
Compute gradients (DoG)

X-Derivative of Gaussian Y-Derivative of Gaussian Gradient Magnitude

Source: J. Hayes
Get orientation at each pixel

\[\theta = \tan^{-1}\left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x} \right) \]
Compute gradients (DoG)

X - Derivative of Gaussian
Y - Derivative of Gaussian
Gradient Magnitude
Canny edge detector

• Suppress Noise
• Compute gradient magnitude and direction
• Apply Non-Maximum Suppression
 – Assures minimal response
Non-maximum suppression

• Edge occurs where gradient reaches a maxima
• Suppress non-maxima gradient even if it passes threshold
• Only eight angle directions possible
 – Suppress all pixels in each direction which are not maxima
 – Do this in each marked pixel neighborhood
Remove spurious gradients

$|\nabla G|(x, y)$ is the gradient at pixel (x, y)

$\nabla G = (\frac{\partial G}{\partial x}, \frac{\partial G}{\partial y})$

\[
M(x, y) = \begin{cases}
|\nabla G|(x, y) & \text{if } |\nabla G|(x, y) > |\nabla G|(x', y') \\
& \text{and } |\nabla G|(x, y) > |\nabla G|(x'', y'') \\
0 & \text{otherwise}
\end{cases}
\]

x' and x'' are the neighbors of x along normal direction to an edge

Alper Yilmaz, Mubarak Shah Fall 2012, UCF
Non-maximum suppression

• Edge occurs where gradient reaches a maxima
• Suppress non-maxima gradient even if it passes threshold
• Only eight angle directions possible
 – Suppress all pixels in each direction which are not maxima
 – Do this in each marked pixel neighborhood
Non-maximum suppression

At q, we have a maximum if the value is larger than those at both p and at r. Interpolate to get these values.

Source: D. Forsyth
Non-max Suppression

Before

After
Canny edge detector

• Suppress Noise
• Compute gradient magnitude and direction
• Apply Non-Maximum Suppression
 – Assures minimal response
• Use hysteresis and connectivity analysis to detect edges
Assume the marked point is an edge point. Then we construct the tangent to the edge curve (which is normal to the gradient at that point) and use this to predict the next points (here either r or s).

Source: D. Forsyth
Hysteresis thresholding
Hysteresis thresholding

• Avoid streaking near threshold value
• Define two thresholds: Low and High
 – If less than Low, not an edge
 – If greater than High, strong edge
 – If between Low and High, weak edge
Hysteresis thresholding

If the gradient at a pixel is

• above High, declare it as an ‘strong edge pixel’
• below Low, declare it as a “non-edge-pixel”
• between Low and High
 – Consider its neighbors iteratively then declare it an “edge pixel” if it is connected to an ‘strong edge pixel’ directly or via pixels between Low and High
Hysteresis thresholding

strong edge pixel

weak but connected edge pixels

strong edge pixel

Source: S. Seitz
Final Canny Edges
Canny edge detector

1. Filter image with x, y derivatives of Gaussian
2. Find magnitude and orientation of gradient
3. Non-maximum suppression:
 - Thin multi-pixel wide “ridges” down to single pixel width
4. Thresholding and linking (hysteresis):
 - Define two thresholds: low and high
 - Use the high threshold to start edge curves and the low threshold to continue them
Effect of σ (Gaussian kernel spread/size)

The choice of σ depends on desired behavior

- large σ detects large scale edges
- small σ detects fine features

Source: S. Seitz
Gradients (e.g. Canny)

Color

Texture

Combined

Human
45 years of boundary detection

Source: Arbelaez, Maire, Fowlkes, and Malik. TPAMI 2011 (pdf)
What we will learn today

• Edge detection
• Image Gradients
• A simple edge detector
• Sobel Edge detector
• Canny edge detector
• Hough Transform
Intro to Hough transform

- The Hough transform (HT) can be used to detect lines.
- It was introduced in 1962 (Hough 1962) and first used to find lines in images a decade later (Duda 1972).
- The goal is to find the location of lines in images.
- **Caveat**: Hough transform can detect lines, circles and other structures ONLY if their parametric equation is known.
- It can give robust detection under noise and partial occlusion.
Prior to Hough transform

- Assume that we have performed some edge detection, and a thresholding of the edge magnitude image.
- Thus, we have some pixels that may partially describe the boundary of some objects.
Detecting lines using Hough transform

• We wish to find sets of pixels that make up straight lines.
• Regard a point \((x_i, y_i)\) and a straight line \(y_i = a \cdot x_i + b\)
 – There are many lines passing through the point \((x_i, y_i)\).
 – Common to them is that they satisfy the equation for some set of parameters \((a, b)\)
Detecting lines using Hough transform

• This equation can obviously be rewritten as follows:
 – \(b = -a \cdot x_i + y_i \)
 – We can now consider \(x \) and \(y \) as parameters
 – \(a \) and \(b \) as variables.

• This is a line in \((a, b)\) space parameterized by \(x \) and \(y \).
 – So: a single point in \(x_1, y_1 \)-space gives a line in \((a,b)\) space.
 – Another point \((x_2, y_2)\) will give rise to another line \((a,b)\) space.
Detecting lines using Hough transform

One point in \((x,y)\) gives a line in the \((a,b)\)-plane

\((x,y)\)-space

\((a,b)\)-space
Detecting lines using Hough transform
Detecting lines using Hough transform

• Two points \((x_1, y_1)\) and \((x_2, y_2)\) define a line in the \((x, y)\) plane.

• These two points give rise to two different lines in \((a, b)\) space.

• In \((a, b)\) space these lines will intersect in a point \((a', b')\)

• All points on the line defined by \((x_1, y_1)\) and \((x_2, y_2)\) in \((x, y)\) space will parameterize lines that intersect in \((a', b')\) in \((a, b)\) space.
Algorithm for Hough transform

• Quantize the parameter space \((a, b)\) by dividing it into cells
• This quantized space is often referred to as the accumulator cells.
• Count the number of times a line intersects a given cell.
 – For each pair of points \((x_1, y_1)\) and \((x_2, y_2)\) detected as an edge, find the intersection \((a', b')\) in \((a, b)\) space.
 – Increase the value of a cell in the range
 \([a_{\min}, a_{\max}],[b_{\min}, b_{\max}]\) that \((a', b')\) belongs to.
 – Cells receiving more than a certain number of counts (also called ‘votes’) are assumed to correspond to lines in \((x,y)\) space.
Output of Hough transform

• Here are the top 20 most voted lines in the image:
Other Hough transformations

• We can represent lines as polar co-ordinates instead of:
 – $y = a \times x + b$

• Polar coordinate representation:
 – $x \times \cos \theta + y \times \sin \theta = \rho$

• Can you figure out the relationship between
 – $(a \ b)$ and $(\rho \ \theta)$?
Other Hough transformations

• Note that lines in \((x\ y)\) space are not lines in \((\rho\ \theta)\) space, unlike \((a\ b)\) space.

• A horizontal line will have \(\theta=0\) and \(\rho\) equal to the intercept with the \(y\)-axis.

• A vertical line will have \(\theta=90\) and \(\rho\) equal to the intercept with the \(x\)-axis.
Example video

- https://youtu.be/4zHbl-fFlI?t=3m35s
Concluding remarks

• Advantages:
 – Conceptually simple.
 – Easy implementation
 – Handles missing and occluded data very gracefully.
 – Can be adapted to many types of forms, not just lines
Concluding remarks

• Advantages:
 – Conceptually simple.
 – Easy implementation
 – Handles missing and occluded data very gracefully.
 – Can be adapted to many types of forms, not just lines

• Disadvantages:
 – Computationally complex for objects with many parameters.
 – Looks for only one single type of object
 – Can be “fooled” by “apparent lines”.
 – The length and the position of a line segment cannot be determined.
 – Co-linear line segments cannot be separated.
What we will learn today

- Edge detection
- Image Gradients
- A simple edge detector
- Sobel Edge detector
- Canny edge detector
- Hough Transform