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1 Image Sampling and Quantization

1.1 Image Types

Binary Images contain pixels that are either black (0) or white (1).

Grayscale Images have a wider range of intensity than black and white. Each pixel is a shade of
gray with pixel values ranging between 0 (black) and 255 (white).

Color Images have multiple color channels; each color image can be represented in different color
models (e.g., RGB, LAB, HSV). For example, an image in the RGB model consists of red, green,
and blue channel. Each pixel in a channel has intensity values ranging from 0-255. Please note that
this range depends on the choice of color model. A 3D tensor usually represents color images (Width
x Length x 3), where the 3 channels can represent the color model such as RGB (Red-Green-Blue),
LAB (Lightness-A-B), and HSV (Hue-Saturation-Value).

1.2 Sampling and Resolution

Images are samples: they are not continuous; they consist of discrete pixels of a certain size and
density. This can lead to errors (or graininess) because pixel intensities can only be measured with a
certain resolution and must be approximated.

Resolution is a sampling parameter, defined in dots per inch (DPI). The standard DPI value for
screens is 72 DPI.

Pixels are quantized (i.e, all pixels (or channels of a pixel) have one of a set numbers of values
(usually [0, 255]). Quantization and sampling loses information due to a finite precision.

2 Image Histograms

Histograms measure the frequency of brightness within the image: how many times does a particular
pixel value appear in an image.
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Figure 1: Illustrations of different pixel densities. Taken from the accompanying lecture slides. (Slide
14, slide credit Ulas Bagci)

Figure 2: The image is sampled at two vertical positions, sampling a patch of sky and sampling a
patch of grass. The corresponding histograms are shown to the right. Adapted from the accompanying
lecture slide (Slide 23, slide credit Dr. Mubarak Shah

Histograms help us detect particular features in images, for example:

• Sky: smooth coloration denotes consistency in image, consistent with the image of a sky.

• Grass: a jagged histogram shows wide ranging variety in coloration, consistent with the
shadows of a grass field.

• Faces: the color composition of a face will be displayed in a histogram.

An image histogram measures the frequency of certain grayscale intensities in an image. Histograms
can be used to provide a quantifiable description of what things look like; this can be used as input to
classifiers.

3 Images as Functions

Most images that we deal with in computer vision are digital, which means that they are discrete
representations of the photographed scenes. This discretization is achieved through the sampling
of 2-dimensional space onto a regular grid, eventually producing a representation of the image as a
matrix of integer values.

When dealing with images, we can imagine the image matrix as infinitely tall and wide. However,
the displayed image is only a finite subset of this infinite matrix. Having employed such definition of
images, we can write them as coordinates in a matrix

. . .
... . . .

f [−1, 1] f [0, 1] f [1, 1]
. . . f [−1, 0] f [0, 0] f [0, 1] . . .

f [−1,−1] f [0,−1] f [1,−1] . . .

. . .
...

. . .
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f [n,m] S g[n,m]

Figure 3: Graphical representation of a system’s mapping of f to g

An Image can also be treated as a function f : R2 → RN . When we do so, f [n,m] where f [n,m] is
the intensity of a pixel at position (m, n). Note that we use square brackets, rather than the typical
parentheses, to denote discrete functions.

When we treat an image as a function, it is defined over a rectangle with finite range. For example, the
following function f returns the (grayscale) intensity of a single pixel in an image located between a
and b horizontally and c and d vertically.

f : [a, b]× [c, d]→ [0, 255] (Grayscale Pixel Intensity)

The set of values [a, b]× [c, d] is known as the domain support, and contains all values that are valid
inputs to the function f , while [0, 255] (in this case) is the range defining the set of possible outputs.

An Image can also be treated as a function mapping R2 → R3. For example the RGB intensities of a
given pixel can be written as the function g below

g[x, y] =

[
r[x, y]
g[x, y]
b[x, y]

]
(Color Pixel Intensity)

where r, g, b : [a, b]× [c, d]→ [0, 255].

4 Linear Systems (Filters)

The term filtering refers to a process that forms a new image, the pixel values of which are trans-
formations of the original pixel values. In general, the purpose in applying filters is the extraction
of useful information (e.g., edge detection) or the adjustment of an image’s visual properties (e.g.,
de-noising).

Filters are examples of systems, which are units that convert an input function f [m,n] to an output
(or response) function g[m,n] where m,n are the independent variables. When dealing with images,
m,n are the representation of a spatial position in the image.

Notationally, S is referred to as the system operator, which maps a member of the set of possible
outputs g[m,n] to a member of the set of possible inputs f [m,n]. When using notation involving S ,
we can write that

S[g] = f

S {f [m,n]} = g[m,n]

f [m,n]
S−→ g[m,n]

4.1 Examples of Filters

Moving Average

One intuitive example of a filter is the moving average. This filter sets the value of a pixel to be the
average of its neighboring pixels (e.g., the nine pixels in a 3× 3 radius, when applying a 3× 3 filter).
Mathematically, we can represent this as

g[m,n] =
1

9

1∑
i=−1

1∑
j=−1

f [m− i, n− j] (Weighted Average)

This weighted average filter serves to smooth out the sharper edges of the image, creating a blurred
or smoothed effect.
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Image Segmentation

We can also use filters to perform rudimentary image segmentation based on a simple threshold
system. In this case, the filter sets the value of a pixel either to an extremely high or an extremely low
value, depending on whether or not it meets the threshold t. Mathematically, we write this as

g[m,n] =

{
255 f [m,n] ≥ t
0 otherwise

(Threshold)

This basic image segmentation filter divides an image’s pixels into binary classifications of bright
regions and dark regions, depending on whether or not the f [m,n] ≥ t.

4.2 Properties of Systems

When discussing specific systems, it is useful to describe their properties. The following includes
a list of properties that a system may possess. However, not all systems will have all (or any) of
these properties. In other words, these are potential characteristics of individual systems, not traits of
systems in general.

Amplitude Properties

• Additivity: A system is additive if it satisfies the equation

S[fi[m,n] + fj [m,n]] = S[fi[m,n]] + S[fj [m,n]]

• Homogeneity: A system is homogeneous if it satisfies the equation

S[αfi[n,m]] = αS[fi[n,m]

• Superposition: A system has the property of superposition if it satisfies the equation

S[αfi[n,m]] + βfj [n,m]] = αS[fi[n,m]] + βSfj [n,m]]

• Stability: A system is stable if it satisfies the inequality

|f [n,m]| ≤ k =⇒ |g[n,m]| ≤ ck

for some c.
• Invertibility: A system is invertible if it satisfies the equation

S−1[S[f [n,m]]] = f [n,m]

Spatial Properties

• Causality: A system is causal if for m < m0 and n < n0

f [m,n] = 0 =⇒ g[m,n] = 0

• Shift Invariance: A system is shift invariant if

f [m−m0, n− n0]
S−→ g[m−m0, n− n0]

4.3 Linear Systems

A linear system is a system that satisfies the property of superposition. When we employ a linear
system for filtering; we create a new image whose pixels are weighted sums of the original pixel
values, using the same set of weights for each pixel. A linear shift-invariant system is a linear system
that is also shift invariant.

Linear systems also have what is known as an impulse response. To determine the impulse response
of a system S, consider first δ2[m,n]. This is a function defined as follows

δ2[m,n] =

{
1 m = 0andn = 0

0 otherwise
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The impulse response r is then simply
r = S[δ2]

A simple linear shift-invariant system is a system that shifts the pixels of an image, based on the
shifting property of the delta function.

f [m,n] =

∞∑
i=−∞

∞∑
j=−∞

f [i, j]δ2[m− i, n− j]

We can then use the superposition property to write any linear shift-invariant system as a weighted
sum of such shifting system

α1

∞∑
i=−∞

∞∑
j=−∞

f [i, j]δ2,1[m− i, n− j] + α2,2

∞∑
i=−∞

∞∑
j=−∞

f [i, j]δ2,3[m− i, n− j] + . . .

We then define the filter h of a linear shift-invariant system as

h[m,n] = α1δ2,1[m− i, n− j] + α2δ2,2[m− i, n− j] + . . .

Impulse response (for all linear systems) Delta[n,m] function: has value that is 1 specifically at one
pixel, gives back a response, h[n,m] A shifted delta function gives back a shifted response

Linear shift invariant systems (LSI) Example: a moving average filter is a summation of impulse
responses

• Systems that satisfy the superposition property
• Have an impulse response: S[δ2[n,m]] = δ2[n,m]

• Discrete convolution: f [n,m] ∗ h[n,m] (multiplication of shifted-version of impulse re-
sponse by original function)

5 Convolution and Correlation

5.1 Convolution

The easiest way to think of convolution is as a system that uses information from neighboring pixels
to filter the target pixel. A good example of this is a moving average, or a box filter discussed earlier.

Convolution is represented by *, for example:
f [n,m]*h[n,m] represents a function being multiplied by a shifted impulse response

Convolution allows us to compute the output of passing any input signal through a system simply
by considering the impulse response of the system. To understand what this means, we must first
understand how to break up a signal into a set of impulse functions.

The impulse (delta) function, δ[n], is defined to be 1 at n = 0 and 0 elsewhere. As seen in the image
below, any signal can be decomposed as the weighted sum of impulse functions.

More generally, an arbitrary signal x can be written as x[n] =
∑∞

k=−∞ x[k]δ[n− k].

The impulse response of a system, h[n], is defined as the output resulting from passing an impulse
function into a system. When a system is linear, scaling the impulse function results in the scaling of
the impulse response by the same amount. Moreover, when the system is shift-invariant, shifting the
impulse function shifts the impulse response by the same amount. The image below illustrates these
properties for a signal consisting of 3 components.

More generally, for an arbitrary input signal x[n] =
∑∞

k=−∞ x[k]δ[n − k] passed into a linear,
shift-invariant system, the output is y[n] =

∑∞
k=−∞ x[k]h[n− k], i.e. the convolution of the signal

x with the impulse response h.

Convolution can also be done in 2 dimensions. For example, when an arbitrary, 2D signal x[n,m] =∑∞
i=−∞

∑∞
j=−∞ x[i, j]δ[n− i,m− j] is passed into a linear, shift-invariant system, the output is

y[n,m] =
∑∞

i=−∞
∑∞

j=−∞ x[i, j]h[n − i,m − j], i.e. the convolution of the signal x with the
impulse response h in 2 dimensions.
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x[n] = x[0]δ[n] + x[1]δ[n− 1] + x[2]δ[n− 2]

Figure 4: An example decomposition of a signal into an impulse function. (Adapted from
http://www.songho.ca/dsp/convolution/convolution.html)

Figure 5: An impulse function is sent through a system to create an impulse response function.
Adapted from http://www.songho.ca/dsp/convolution/convolution.html

5.2 Correlation

Cross correlation is the same as convolution, except that the filter kernel is not flipped. Two-
dimensional cross correlation is represented as:
r[k, l] =

∑∞
m=−∞

∑∞
n=−∞ f [m+ k, n+ l]g[m,n]

It can be used to find known features in images by using a kernel that contains target features.
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