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Announcements

• HW1	due	Monday
• HW2	is	out
• Class	notes	– Make	sure	to	find	the	source	and	
cite	the	images	you	use.

6-Oct-162
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What	we	will	learn	today?

• Image	sampling	and	quantization
• Image	histograms
• Images	as	functions
• Linear	systems	(filters)
• Convolution	and	correlation

6-Oct-163

Some	background	reading:
Forsyth	and	Ponce,	Computer	Vision,	Chapter	7
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What	we	will	learn	today?

• Image	sampling	and	quantization
• Image	histograms
• Images	as	functions
• Linear	systems	(filters)
• Convolution	and	correlation

6-Oct-164

Some	background	reading:
Forsyth	and	Ponce,	Computer	Vision,	Chapter	7
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Types	of	Images

6-Oct-165
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Types	of	Images

6-Oct-166



Lecture 4-Stanford University

Types	of	Images

6-Oct-167
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Binary	image	representation

6-Oct-168

Slide	credit:	Ulas Bagci
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Grayscale	image	representation

6-Oct-169

Slide	credit:	Ulas Bagci
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Color	Image	- one	channel

6-Oct-1610

Slide	credit:	Ulas Bagci
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Color	image	representation

6-Oct-1611

Slide	credit:	Ulas Bagci
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Images	are	sampled

What	happens	when	we	zoom	into	the	images	
we	capture?

6-Oct-1612
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Errors	due	Sampling

6-Oct-1613

Slide	credit:	Ulas Bagci
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Resolution

is	a	sampling parameter,	defined	in	dots	per	
inch	(DPI)	or	equivalent	measures	of	spatial	
pixel	density,	and	its	standard	value	for	recent	
screen	technologies	is	72	dpi

6-Oct-1614

Slide	credit:	Ulas Bagci
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• An	image	contains	discrete	number	of	pixels
– A	simple	example
– Pixel	value:

• “grayscale”	
(or	“intensity”):	[0,255]

15

Images	are	Sampled	and	Quantized

231

75

148

6-Oct-16
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• An	image	contains	discrete	number	of	pixels
– A	simple	example
– Pixel	value:

• “grayscale”	
(or	“intensity”):	[0,255]
• “color”

– RGB:	[R,	G,	B]
– Lab:	[L,	a,	b]
– HSV:	[H,	S,	V]

16

Images	are	Sampled	and	Quantized

[249,	215,	203]

[90,	0,	53]

[213,	60,	67]

6-Oct-16
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With	this	loss	of	information	(from	
sampling	and	quantization),	

Can	we	still	use	images	for	useful	
tasks?

6-Oct-1617
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What	we	will	learn	today?

• Image	sampling	and	quantization
• Image	histograms
• Images	as	functions
• Linear	systems	(filters)
• Convolution	and	correlation

6-Oct-1618

Some	background	reading:
Forsyth	and	Ponce,	Computer	Vision,	Chapter	7
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Histogram

• Histogram	of	an	image	provides	the	frequency	
of	the	brightness	(intensity)	value	in	the	
image.	

6-Oct-1619

def histogram(im):
h	=	np.zeros(255)
for	row	in	im.shape[0]:

for	col	in	im.shape[1]:
val =	im[row,	col]
h[val]	+=	1
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Histogram

• Histogram	captures	the	distribution	of	gray	
levels	in	the	image.	

• How	frequently	each	gray	level	occurs	in	the	
image

6-Oct-1620
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Histogram

6-Oct-1621

Slide	credit:	Dr.	Mubarak	Shah
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Histogram	– use	case

6-Oct-1622

Slide	credit:	Dr.	Mubarak	Shah
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Histogram	– another	use	case

6-Oct-1623

Slide	credit:	Dr.	Mubarak	Shah
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What	we	will	learn	today?

• Image	sampling	and	quantization
• Image	histograms
• Images	as	functions
• Linear	systems	(filters)
• Convolution	and	correlation

6-Oct-1624

Some	background	reading:
Forsyth	and	Ponce,	Computer	Vision,	Chapter	7
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• Images	are	usually	digital	(discrete):
– Sample the	2D	space	on	a	regular	grid

• Represented	as	a	matrix	of	integer	values
pixel

Images	as	discrete	functions
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Cartesian	coordinates

Images	as	coordinates

Notation	for	
discrete	
functions
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Images	as	functions
• An	Image	as	a	function f from	R2 to	RM:

• f( x, y ) gives	the	intensity at	position	( x, y ) 
• Defined	over	a	rectangle,	with	a	finite	range:

f: [a,b] x [c,d ] à [0,255]
Domain
support

range



Lecture 4-Stanford University 6-Oct-1628

Images	as	functions
• An	Image	as	a	function f from	R2 to	RM:

• f( x, y ) gives	the	intensity at	position	( x, y ) 
• Defined	over	a	rectangle,	with	a	finite	range:

f: [a,b] x [c,d ] à [0,255]

( , )
( , ) ( , )

( , )

r x y
f x y g x y

b x y

é ù
ê ú= ê ú
ê úë û

• A	color	image:	

Domain
support

range
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Histograms	are	a	type	of	image	
function

6-Oct-1629
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What	we	will	learn	today?

• Image	sampling	and	quantization
• Image	histograms
• Images	as	functions
• Linear	systems	(filters)
• Convolution	and	correlation

6-Oct-1630

Some	background	reading:
Forsyth	and	Ponce,	Computer	Vision,	Chapter	7
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Systems	and	Filters
Filtering:

– Forming	a	new	image	whose	pixel	values	are	
transformed	from	original	pixel	values

Goals:	
• Goal	is	to	extract	useful	information	from	

images,	or	transform	images	into	another	
domain	where	we	can	modify/enhance	image	
properties
• Features	(edges,	corners,	blobs…)
• super-resolution;	in-painting;	de-noising
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System	and	Filters

• we	define	a	system	as	a	unit	that	converts	an	
input	function	f[n,m] into	an	output	(or	
response)	function	g[n,m],	where	(n,m)	are	
the	independent	variables.
– In	the	case	for	images,	(n,m)	represents	the	
spatial	position	in	the	image.

6-Oct-1632
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Super-resolution
De-noising

In-painting

Bertam
io
et	al	
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Cartesian	coordinates

Images	as	coordinates

Notation	for	
discrete	
functions
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2D	discrete-space	systems	(filters)

6-Oct-1635

S	is	the	system	operator,	defined	as	a	mapping	or	
assignment	of	a	member	of	the	set	of	possible	
outputs	g[n,m]	to	each	member	of	the	set	of	
possible	inputs	f[n,m].
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Filter	example	#1:	Moving	Average

2D	DS	moving	average	over	a	3	× 3	window	of	
neighborhood

6-Oct-1636

111

111

111

h
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Courtesy	of	S.	Seitz( f ∗h)[m,n]= f [k, l]
k,l
∑ h[m− k,n− l]

Filter	example	#1:	Moving	Average
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Filter	example	#1:	Moving	Average

( f ∗h)[m,n]= f [k, l]
k,l
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Filter	example	#1:	Moving	Average

( f ∗h)[m,n]= f [k, l]
k,l
∑ h[m− k,n− l]
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Filter	example	#1:	Moving	Average

( f ∗h)[m,n]= f [k, l]
k,l
∑ h[m− k,n− l]
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0 10 20 30 30

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

Filter	example	#1:	Moving	Average

( f ∗h)[m,n]= f [k, l]
k,l
∑ h[m− k,n− l]
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Source: S. Seitz

Filter	example	#1:	Moving	Average

( f ∗h)[m,n]= f [k, l]
k,l
∑ h[m− k,n− l]
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In	summary:
• This	filter	“Replaces”	each	
pixel	with	an	average	of	its	
neighborhood.

• Achieve	smoothing	effect	
(remove	sharp	features)

111

111

111

h[⋅ , ⋅ ]

Filter	example	#1:	Moving	Average
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Filter	example	#1:	Moving	Average



Lecture 4-Stanford University 6-Oct-1645

• Image	segmentation	based	on	a	simple	
threshold:

Filter	example	#2:	Image	Segmentation

255,
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Properties	of	systems

6-Oct-1646

• Amplitude	properties:
– Additivity
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Properties	of	systems

6-Oct-1647

• Amplitude	properties:
– Additivity

– Homogeneity
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Properties	of	systems

6-Oct-1648

• Amplitude	properties:
– Additivity

– Homogeneity

– Superposition
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Properties	of	systems

6-Oct-1649

• Amplitude	properties:
– Additivity

– Homogeneity

– Superposition

– Stability
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Properties	of	systems

6-Oct-1650

• Amplitude	properties:
– Additivity

– Homogeneity

– Superposition

– Stability

– Invertibility
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Properties	of	systems

6-Oct-1651

• Spatial	properties
– Causality

– Shift	invariance:
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Is	the	moving	average	system	is	shift	invariant?	

6-Oct-1652
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Is	the	moving	average	system	is	shift	invariant?	

6-Oct-1653

Yes!



Lecture 4-Stanford University

Is	the	moving	average	system	is	casual?	

6-Oct-1654
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Linear	Systems	(filters)

6-Oct-1655

• Linear	filtering:
– Form	a	new	image	whose	pixels	are	a	weighted	sum	of	
original	pixel	values

– Use	the	same	set	of	weights	at	each	point

• S is	a	linear	system	(function)	iff it	S	satisfies

superposition	property
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• Is	the	moving	average	a	linear	system?

• Is	thresholding a	linear	system?
– f1[n,m]	+	f2[n,m]	>	T
– f1[n,m]	<	T
– f2[n,m]<T

6-Oct-1656

Linear	Systems	(filters)

No!
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2D	impulse	function

• 1	at	[0,0].
• 0	everywhere	else

6-Oct-1657
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LSI	(linear	shift	invariant)	systems

6-Oct-1658

Impulse	response



Lecture 4-Stanford University

LSI	(linear	shift	invariant)	systems

6-Oct-1659

111

111

111

h

Example:	impulse	response	of	the	3	by	3	moving	
average	filter:
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Filter	example	#1:	Moving	Average

• 2D	DS	moving	average	over	a	3	× 3	window	of	
neighborhood

6-Oct-1660

111

111

111
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LSI	(linear	shift	invariant)	systems

6-Oct-1661

A	simple	LSI	is	one	that	shifts	the	pixels	of	an	
image:

shifting	property	of	the	delta	function
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LSI	(linear	shift	invariant)	systems

6-Oct-1662

A	simple	LSI	is	one	that	shifts	the	pixels	of	an	
image:

Remember	the	superposition	property:

shifting	property	of	the	delta	function

superposition	property
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LSI	(linear	shift	invariant)	systems

6-Oct-1663

With	the	superposition	property,	any	LSI	system	
can	be	represented	as	a	weighted	sum	of	such	
shifting	systems:
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LSI	(linear	shift	invariant)	systems

6-Oct-1664

Rewriting	the	above	summation:
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LSI	(linear	shift	invariant)	systems

6-Oct-1665

We	define	the	filter	of	a	LSI	as:

f [n,m] ⇤ h[n,m]
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What	we	will	learn	today?

• Images	as	functions
• Linear	systems	(filters)
• Convolution	and	correlation

6-Oct-1666

Some	background	reading:
Forsyth	and	Ponce,	Computer	Vision,	Chapter	7
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1D	Discrete	convolution	(symbol:					)	

6-Oct-1667

We	are	going	to	convolve	a	function	f with	a	filter	h.

h[k,l] f[k,l]
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1D	Discrete	convolution	(symbol:					)	

6-Oct-1668

We	are	going	to	convolve	a	function	f with	a	filter	h.

We	first	need	to	calculate	h[n-k,	m-l]

h[k]

h[-k]

h[n-k]
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Discrete	convolution	(symbol:					)	

6-Oct-1669

We	are	going	to	convolve	a	function	f with	a	filter	h.

f[k]

h[-2-k]

g[-2]
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Discrete	convolution	(symbol:					)	

6-Oct-1670

We	are	going	to	convolve	a	function	f with	a	filter	h.

f[k]

h[-1-k]

g[-1]
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Discrete	convolution	(symbol:					)	

6-Oct-1671

We	are	going	to	convolve	a	function	f with	a	filter	h.

f[k]

h[-k]

g[0]
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Discrete	convolution	(symbol:					)	

6-Oct-1672

We	are	going	to	convolve	a	function	f with	a	filter	h.

f[k]

h[1-k]

g[1]
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Discrete	convolution	(symbol:					)	

6-Oct-1673

We	are	going	to	convolve	a	function	f with	a	filter	h.

f[k]

h[2-k]

g[2]
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Discrete	convolution	(symbol:					)	

6-Oct-1674

We	are	going	to	convolve	a	function	f with	a	filter	h.

f[k]

h[n-k]

g[n]
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Discrete	convolution	(symbol:					)	

6-Oct-1675

In	summary,	the	steps	for	discrete	convolution	are:
• Fold	h[k,l]	about	origin	to	form	h[−k]
• Shift	the	folded	results	by	n	to	form	h[n	−	k]
• Multiply	h[n	−	k]	by	f[k]
• Sum	over	all	k
• Repeat	for	every	n

n
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2D	convolution

6-Oct-1676

2D	convolution	is	very	similar	to	1D.
• The	main	difference	is	that	we	now	have	to	iterate	over	2	axis	instead	of	1.

n

Assume	we	have	a	filter(h[,])	that	
is	3x3.	and	an	image	(f[,])	that	is	
7x7.

f [n,m] ⇤ h[n,m]
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2D	convolution

6-Oct-1677

2D	convolution	is	very	similar	to	1D.
• The	main	difference	is	that	we	now	have	to	iterate	over	2	axis	instead	of	1.

n

Assume	we	have	a	filter(h[,])	that	
is	3x3.	and	an	image	(f[,])	that	is	
7x7.

f [n,m] ⇤ h[n,m]
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2D	convolution

6-Oct-1678

2D	convolution	is	very	similar	to	1D.
• The	main	difference	is	that	we	now	have	to	iterate	over	2	axis	instead	of	1.

n

Assume	we	have	a	filter(h[,])	that	
is	3x3.	and	an	image	(f[,])	that	is	
7x7.

f [n,m] ⇤ h[n,m]
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2D	convolution

6-Oct-1679

2D	convolution	is	very	similar	to	1D.
• The	main	difference	is	that	we	now	have	to	iterate	over	2	axis	instead	of	1.

n

Assume	we	have	a	filter(h[,])	that	
is	3x3.	and	an	image	(f[,])	that	is	
7x7.

f [n,m] ⇤ h[n,m]
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2D	convolution

6-Oct-1680

2D	convolution	is	very	similar	to	1D.
• The	main	difference	is	that	we	now	have	to	iterate	over	2	axis	instead	of	1.

n

Assume	we	have	a	filter(h[,])	that	
is	3x3.	and	an	image	(f[,])	that	is	
7x7.

f [n,m] ⇤ h[n,m]
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2D	convolution

6-Oct-1681

2D	convolution	is	very	similar	to	1D.
• The	main	difference	is	that	we	now	have	to	iterate	over	2	axis	instead	of	1.

Assume	we	have	a	filter(h[,])	that	
is	3x3.	and	an	image	(f[,])	that	is	
7x7.

f [n,m] ⇤ h[n,m]
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LSI	(linear	shift	invariant)	systems

6-Oct-1682

An	LSI	system	is	completely	specified	by	its	
impulse	response.

superposition

shifting	property	of	the	delta	function

Discrete	convolution

f [n,m] ⇤ h[n,m]
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2D	convolution	example
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Slide	credit:	Song	Ho	Ahn
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2D	convolution	example
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Slide	credit:	Song	Ho	Ahn
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2D	convolution	example

6-Oct-1685
Slide	credit:	Song	Ho	Ahn
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2D	convolution	example
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Slide	credit:	Song	Ho	Ahn
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2D	convolution	example
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Slide	credit:	Song	Ho	Ahn
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2D	convolution	example
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Slide	credit:	Song	Ho	Ahn
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2D	convolution	example

6-Oct-1689
Slide	credit:	Song	Ho	Ahn
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Convolution	in	2D	- examples
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•0•0•0

•0•1•0

•0•0•0

Original

?=

Co
ur
te
sy
	o
f	D

	Lo
w
e

*



Lecture 4-Stanford University

Convolution	in	2D	- examples
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Convolution	in	2D	- examples
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Convolution	in	2D	- examples
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Shifted right
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Convolution	in	2D	- examples
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Convolution	in	2D	- examples
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box filter)
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Convolution	in	2D	- examples
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•1•1•1
•1•1•1
•1•1•1

•0•0•0
•0•2•0
•0•0•0 - = ?

(Note that filter sums to 1)
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• What	does	blurring	take	away?

original smoothed (5x5)

–

detail

=

sharpened

=

• Let’s	add	it	back:

original detail

+ a
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Convolution	in	2D	–
Sharpening filter

6-Oct-1698

•1•1•1
•1•1•1
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•0•0•0
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Sharpening	filter: Accentuates	differences	with	local	average
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Image	support	and	edge	effect
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•A	computer	will	only	convolve	finite	support	
signals.	

• That	is:	images	that	are	zero	for	n,m outside	some	
rectangular	region

• numpy’s convolution	performs	2D	DS	convolution	of	
finite-support	signals.

N1	×M1

N2	×M2	
(N1	+	N2	−	1)	× (M1	+M2	−	1)* =
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Image	support	and	edge	effect

6-Oct-16100

•A	computer	will	only	convolve	finite	support	
signals.	
• What	happens	at	the	edge?

f
h

•	zero	“padding”
•	edge	value	replication
•	mirror	extension
•	more	(beyond	the	scope	of	this	class)

->	Matlab conv2	uses	
zero-padding
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Slide	credit:	Wolfram	Alpha
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What	we	will	learn	today?

• Image	sampling	and	quantization
• Image	histograms
• Images	as	functions
• Linear	systems	(filters)
• Convolution	and	correlation

6-Oct-16102

Some	background	reading:
Forsyth	and	Ponce,	Computer	Vision,	Chapter	7
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(Cross)	correlation	(symbol:								)		
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Cross	correlation	of	two	2D	signals	f[n,m]	and	g[n,m]

• Equivalent	to	a	convolution	without	the	flip

(k,	l)	is	called	the	lag

(g*	is	defined	as	the	complex	conjugate	of	g.	In	this	class,	g(n,m)	are	real	numbers,	hence	g*=g.)	

rfg[n,m] = f [n,m] ⇤ g⇤[�n,�m]
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(Cross)	correlation	– example
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Courtesy	of	J.	Fessler
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(Cross)	correlation	– example

6-Oct-16105

Courtesy	of	J.	Fessler
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(Cross)	correlation	– example
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numpy’s
correlate

Courtesy	of	J.	Fessler
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(Cross)	correlation	– example
Left Right

scanline
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Convolution	vs.	(Cross)	Correlation

f*h f**h
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Figure from “Computer Vision for Interactive Computer Graphics,” W.Freeman et al, IEEE Computer Graphics and Applications, 
1998 copyright 1998, IEEE

Cross Correlation Application: 
Vision system for TV remote 
control

- uses template matching

6-Oct-16109
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properties
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•	Associative	property:

•	Distributive	property:

The	order	doesn’t	matter!
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properties
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•	Shift	property:

•	Shift-invariance:
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Convolution	vs.	(Cross)	Correlation
• A	convolution is	an	integral	that	expresses	the	amount	
of	overlap	of	one	function	as	it	is	shifted	over	another	
function.	
– convolution	is	a	filtering	operation

• Correlation compares	the	similarity of	two sets	of	
data.	Correlation	computes	a	measure	of	similarity	of	
two	input	signals	as	they	are	shifted	by	one	another.	
The	correlation	result	reaches	a	maximum	at	the	time	
when	the	two	signals	match	best	.
– correlation	is	a	measure	of	relatedness	of	two	signals

6-Oct-16112
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What	we	have	learned	today?

• Image	sampling	and	quantization
• Image	histograms
• Images	as	functions
• Linear	systems	(filters)
• Convolution	and	correlation

6-Oct-16113


