Lecture: Pixels and Filters

Juan Carlos Niebles and Ranjay Krishna

 Stanford Vision Lab
Announcements

- HW1 due Monday
- HW2 is out
- Class notes - Make sure to find the source and cite the images you use.

What we will learn today?

- Image sampling and quantization
- Image histograms
- Images as functions
- Linear systems (filters)
- Convolution and correlation

Some background reading:
Forsyth and Ponce, Computer Vision, Chapter 7

What we will learn today?

- Image sampling and quantization
- Image histograms
- Images as functions
- Linear systems (filters)
- Convolution and correlation

Some background reading:
Forsyth and Ponce, Computer Vision, Chapter 7

Types of Images

Binary

Types of Images

Binary

Types of Images

Binary

Gray Scale

Color

Binary image representation

Grayscale image representation

Color Image - one channel

Slide credit: Ulas Bagci

Color image representation

Slide credit: Ulas Bagci
Lecture 4- 11
6-Oct-16

Images are sampled

What happens when we zoom into the images we capture?

Errors due Sampling

Slide credit: Ulas Bagci
Stanford University
Lecture 4- 13
6-Oct-16

Resolution

is a sampling parameter, defined in dots per inch (DPI) or equivalent measures of spatial pixel density, and its standard value for recent screen technologies is 72 dpi

Slide credit: Ulas Bagci

Images are Sampled and Quantized

- An image contains discrete number of pixels
- A simple example
- Pixel value:
- "grayscale" (or "intensity"): [0,255]

Images are Sampled and Quantized

- An image contains discrete number of pixels
- A simple example
- Pixel value:
- "grayscale"
(or "intensity"): [0,255]
- "color"

$$
\begin{aligned}
& \text { - RGB: [R, G, B] } \\
& \text { - Lab: }[L, a, b] \\
& - \text { HSV: }[H, S, V]
\end{aligned}
$$

$$
[213,60,67]
$$

[249, 215, 203]

With this loss of information (from sampling and quantization),

Can we still use images for useful tasks?

What we will learn today?

- Image sampling and quantization
- Image histograms
- Images as functions
- Linear systems (filters)
- Convolution and correlation

Some background reading:
Forsyth and Ponce, Computer Vision, Chapter 7

Histogram

- Histogram of an image provides the frequency of the brightness (intensity) value in the image.

$$
\begin{aligned}
& \text { def histogram(im): } \\
& \qquad \begin{array}{l}
h=\text { np.zeros(255) } \\
\text { for row in im.shape[0]: } \\
\text { for col in im.shape[1]: } \\
\text { val }=\text { im }[\text { row, col }] \\
h[v a l]+=1
\end{array}
\end{aligned}
$$

Histogram

- Histogram captures the distribution of gray levels in the image.
- How frequently each gray level occurs in the image

Histogram

Count: 10192
Mean: 133.711
StdDev: 55.391
Min: 9
Max: 255
Mode: 178 (180)

Count: 10192
Mean: 104.637
StdDev: 89.862
Min: 11
Max: 254
Mode: 23 (440)

Slide credit: Dr. Mubarak Shah
Lecture 4- 21
6-Oct-16

Histogram - use case

Histogram - another use case

Slide credit: Dr. Mubarak Shah
Lecture 4- 23
6-Oct-16

What we will learn today?

- Image sampling and quantization
- Image histograms
- Images as functions
- Linear systems (filters)
- Convolution and correlation

Some background reading:
Forsyth and Ponce, Computer Vision, Chapter 7

Images as discrete functions

- Images are usually digital (discrete):
- Sample the 2D space on a regular grid
- Represented as a matrix of integer values

\mathfrak{j}								
\dot{i}	62	79	23	119	120	05	4	0
	10	10	9	62	12	78	34	0
	10	58	197	46	46	0	0	48
	176	135	5	188	191	68	0	49
	2	1	1	29	26	37	0	77
	0	89	144	147	187	102	62	208
	255	252	0	166	123	62	0	31
	166	63	127	17	1	0	99	30

Images as coordinates

Cartesian coordinates

Images as functions

- An Image as a function f from R^{2} to R^{M} :
- $f(x, y)$ gives the intensity at position (x, y)
- Defined over a rectangle, with a finite range: $f:[a, b] \times[c, d] \rightarrow[0,255]$

Domain range support

Stanford University
Lecture 4- 27
6-Oct-16

Images as functions

- An Image as a function f from R^{2} to R^{M} :
- $f(x, y)$ gives the intensity at position (x, y)
- Defined over a rectangle, with a finite range:

$$
f:[\underbrace{a, b] \times[c, d}_{\substack{\text { Domain } \\ \text { support }}}] \rightarrow \underbrace{[0,255]}_{\text {range }}
$$

- A color image: $f(x, y)=\left[\begin{array}{l}r(x, y) \\ g(x, y) \\ b(x, y)\end{array}\right]$

Histograms are a type of image function

What we will learn today?

- Image sampling and quantization
- Image histograms
- Images as functions
- Linear systems (filters)
- Convolution and correlation

Some background reading:
Forsyth and Ponce, Computer Vision, Chapter 7

Systems and Filters

Filtering:

- Forming a new image whose pixel values are transformed from original pixel values

Goals:

- Goal is to extract useful information from images, or transform images into another domain where we can modify/enhance image properties
- Features (edges, corners, blobs...)
- super-resolution; in-painting; de-noising

System and Filters

- we define a system as a unit that converts an input function $f[n, m]$ into an output (or response) function $g[n, m]$, where (n, m) are the independent variables.
- In the case for images, (n, m) represents the spatial position in the image.
$f[n, m] \rightarrow$ System $\mathcal{S} \rightarrow g[n, m]$

Salt and pepper noise

In-painting

Images as coordinates

Cartesian coordinates

2D discrete-space systems (filters)

S is the system operator, defined as a mapping or assignment of a member of the set of possible outputs $g[n, m]$ to each member of the set of possible inputs $f[n, m]$.

$$
\begin{gathered}
f[n, m] \rightarrow \text { System } \mathcal{S} \rightarrow g[n, m] \\
g=\mathcal{S}[f], \quad g[n, m]=\mathcal{S}\{f[n, m]\} \\
f[n, m] \xrightarrow{\mathcal{S}} g[n, m]
\end{gathered}
$$

Filter example \#1: Moving Average

2D DS moving average over a 3×3 window of neighborhood

$$
\begin{aligned}
& g[n, m]=\frac{1}{9} \sum_{k=n-1}^{n+1} \sum_{l=m-1}^{m+1} f[k, l] \\
& =\frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} f[n-k, m-l]
\end{aligned}
$$

Filter example \#1: Moving Average

$$
F[x, y]
$$

$$
G[x, y]
$$

	A					

$$
(f * h)[m, n]=\sum_{k, l} f[k, l] h[m-k, n-l]
$$

Filter example \#1: Moving Average

$$
F[x, y]
$$

$$
G[x, y]
$$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

	0	10							

$$
(f * h)[m, n]=\sum_{k, l} f[k, l] h[m-k, n-l]
$$

Stanford University
Lecture 4- 38
6-Oct-16

Filter example \#1: Moving Average

$$
F[x, y]
$$

$$
G[x, y]
$$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

-	${ }^{10} 20$				

$$
(f * h)[m, n]=\sum_{k, l} f[k, l] h[m-k, n-l]
$$

Filter example \#1: Moving Average

$$
F[x, y]
$$

$$
G[x, y]
$$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
	0	0	0	90	90	90	90	90	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

$$
(f * h)[m, n]=\sum_{k, l} f[k, l] h[m-k, n-l]
$$

Stanford University
Lecture 4- 40
6-Oct-16

Filter example \#1: Moving Average

$$
F[x, y]
$$

$$
G[x, y]
$$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

	0	10	20	30	30				

$$
(f * h)[m, n]=\sum_{k, l} f[k, l] h[m-k, n-l]
$$

Stanford University
Lecture 4- 41
6-Oct-16

Filter example \#1: Moving Average
$F[x, y]$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

$$
(f * h)[m, n]=\sum_{k, l} f[k, l] h[m-k, n-l]
$$

Stanford University
Lecture 4- 42
6-Oct-16

Filter example \#1: Moving Average

In summary:

- This filter "Replaces" each pixel with an average of its neighborhood.
- Achieve smoothing effect $h[\cdot, \cdot]$
(remove sharp features)

Filter example \#1: Moving Average

Filter example \#2: Image Segmentation

- Image segmentation based on a simple threshold:

$$
g[n, m]=\left\{\begin{array}{cl}
255, & f[n, m]>100 \\
0, & \text { otherwise }
\end{array}\right.
$$

Properties of systems

- Amplitude properties:
- Additivity

$$
S\left[f_{i}[n, m]+f_{j}[n, m]\right]=S\left[f_{i}[n, m]\right]+S\left[f_{j}[n, m]\right]
$$

Properties of systems

- Amplitude properties:
- Additivity

$$
S\left[f_{i}[n, m]+f_{j}[n, m]\right]=S\left[f_{i}[n, m]\right]+S\left[f_{j}[n, m]\right]
$$

- Homogeneity

$$
\left.S\left[\alpha f_{i}[n, m]\right]=\alpha S\left[f_{i}[n, m]\right]\right]
$$

Properties of systems

- Amplitude properties:
- Additivity

$$
S\left[f_{i}[n, m]+f_{j}[n, m]\right]=S\left[f_{i}[n, m]\right]+S\left[f_{j}[n, m]\right]
$$

- Homogeneity

$$
\left.S\left[\alpha f_{i}[n, m]\right]=\alpha S\left[f_{i}[n, m]\right]\right]
$$

- Superposition

$$
S\left[\alpha f_{i}[n, m]+\beta f_{j}[n, m]\right]=\alpha S\left[f_{i}[n, m]\right]+\beta S\left[f_{j}[n, m]\right]
$$

Properties of systems

- Amplitude properties:
- Additivity

$$
S\left[f_{i}[n, m]+f_{j}[n, m]\right]=S\left[f_{i}[n, m]\right]+S\left[f_{j}[n, m]\right]
$$

- Homogeneity

$$
\left.S\left[\alpha f_{i}[n, m]\right]=\alpha S\left[f_{i}[n, m]\right]\right]
$$

- Superposition

$$
S\left[\alpha f_{i}[n, m]+\beta f_{j}[n, m]\right]=\alpha S\left[f_{i}[n, m]\right]+\beta S\left[f_{j}[n, m]\right]
$$

- Stability

$$
|f[n, m]| \leq k \Longrightarrow|g[n, m]| \leq c k
$$

Properties of systems

- Amplitude properties:
- Additivity

$$
S\left[f_{i}[n, m]+f_{j}[n, m]\right]=S\left[f_{i}[n, m]\right]+S\left[f_{j}[n, m]\right]
$$

- Homogeneity

$$
\left.S\left[\alpha f_{i}[n, m]\right]=\alpha S\left[f_{i}[n, m]\right]\right]
$$

- Superposition

$$
S\left[\alpha f_{i}[n, m]+\beta f_{j}[n, m]\right]=\alpha S\left[f_{i}[n, m]\right]+\beta S\left[f_{j}[n, m]\right]
$$

- Stability

$$
|f[n, m]| \leq k \Longrightarrow|g[n, m]| \leq c k
$$

- Invertibility

$$
S^{-1}\left[S\left[f_{i}[n, m]\right]\right]=f[n, m]
$$

Properties of systems

- Spatial properties
- Causality

$$
\text { for } n<n_{0}, m<m_{0} \text {, if } f[n, m]=0 \Longrightarrow g[n, m]=0
$$

- Shift invariance:

$$
f\left[n-n_{0}, m-m_{0}\right] \xrightarrow{\mathcal{S}} g\left[n-n_{0}, m-m_{0}\right]
$$

Is the moving average system is shift invariant?

$$
\begin{array}{cc}
f[n, m] \xrightarrow{\mathcal{S}} g[n, m]=\frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} f[n-k, m-l] \\
F[x, y] & G[x, y]
\end{array}
$$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

	0	10	20	30	30	30	20	10	
	0	20	40	60	60	60	40	20	
	0	30	60	90	90	90	60	30	
	0	30	50	80	80	90	60	30	
	0	30	50	80	80	90	60	30	
	10	20	30	50	50	60	40	20	
	10	10	10	0	0	0	0	0	

Is the moving average system is shift invariant?

$$
\begin{aligned}
& f[n, m] \xrightarrow{\mathcal{S}} g[n, m]=\frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} f[n-k, m-l] \\
& f\left[n-n_{0}, m-m_{0}\right] \\
& \stackrel{\mathcal{S}}{\longrightarrow} \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} f\left[\left(n-n_{0}\right)-k,\left(m-m_{0}\right)-l\right] \\
& \quad=g\left[n-n_{0}, m-m_{0}\right] \quad \text { Yes! }
\end{aligned}
$$

Is the moving average system is casual?

$$
\begin{array}{cr}
f[n, m] \xrightarrow{\mathcal{S}} g[n, m]=\frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} f[n-k, m-l] \\
F[x, y] & G[x, y]
\end{array}
$$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

	0	10	20	30	30	30	20	10	
	0	20	40	60	60	60	40	20	
	0	30	60	90	90	90	60	30	
	0	30	50	80	80	90	60	30	
	0	30	50	80	80	90	60	30	
	0	20	30	50	50	60	40	20	
	10	20	30	30	30	30	20	10	
10	10	10	0	0	0	0	0		

for $n<n_{0}, m<m_{0}$, if $f[n, m]=0 \Longrightarrow g[n, m]=0$

Linear Systems (filters)

$$
f[n, m] \rightarrow \text { System } \mathcal{S} \rightarrow g[n, m]
$$

- Linear filtering:
- Form a new image whose pixels are a weighted sum of original pixel values
- Use the same set of weights at each point
- \mathbf{S} is a linear system (function) iff it S satisfies

$$
S\left[\alpha f_{i}[n, m]+\beta f_{j}[h, m]\right]=\alpha S\left[f_{i}[n, m]\right]+\beta S\left[f_{j}[h, m]\right]
$$

superposition property

$$
\begin{gathered}
\text { Linear Systems (filters) } \\
f[n, m] \rightarrow \text { System } \mathcal{S} \rightarrow g[n, m]
\end{gathered}
$$

- Is the moving average a linear system?
- Is thresholding a linear system?
- f1[n,m] +f2[n,m] > T
- $f 1[n, m]<T$

No!

- f2[n,m]<T

2D impulse function

- 1 at $[0,0]$.
- 0 everywhere else

LSI (linear shift invariant) systems

Impulse response

$$
\delta_{2}[n, m] \rightarrow \mathcal{S} \rightarrow h[n, m]
$$

$\delta_{2}[n-k, m-l] \rightarrow \mathcal{S}(\mathrm{SI}) \rightarrow h[n-k, m-l]$

LSI (linear shift invariant) systems

Example: impulse response of the 3 by 3 moving average filter:

$$
\begin{aligned}
& h[n, m]=\frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} \delta_{2}[n-k, m-l] \\
& =\left[\begin{array}{lll}
1 / 9 & 1 / 9 & 1 / 9 \\
1 / 9 & 1 / 9 & 1 / 9 \\
1 / 9 & \frac{1}{1 / 9} & 1 / 9
\end{array}\right]
\end{aligned}
$$

Filter example \#1: Moving Average

- 2D DS moving average over a 3×3 window of neighborhood

$$
\begin{array}{r}
g[n, m]=\frac{1}{9} \sum_{k=n-1}^{n+1} \sum_{l=m-1}^{m+1} f[k, l] \\
=\frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} f[n-k, m-l]
\end{array}
$$

$$
(f * h)[m, n]=\frac{1}{9} \sum_{k, l} f[k, l] h[m-k, n-l]
$$

LSI (linear shift invariant) systems

A simple LSI is one that shifts the pixels of an image:

$$
f[n, m]=\sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k, l] \delta_{2}[n-k, m-l]
$$

shifting property of the delta function

LSI (linear shift invariant) systems

A simple LSI is one that shifts the pixels of an image:
shifting property of the delta function

Remember the superposition property:

$$
S\left[\alpha f_{i}[n, m]+\beta f_{j}[h, m]\right]=\alpha S\left[f_{i}[n, m]\right]+\beta S\left[f_{j}[h, m]\right]
$$

superposition property

LSI (linear shift invariant) systems

With the superposition property, any LSI system can be represented as a weighted sum of such shifting systems:

$$
\begin{aligned}
& \alpha_{1} \sum_{k} \sum_{l} f[k, l] \delta_{2,1}[k-n, l-m] \\
& +\alpha_{2} \sum_{k} \sum_{l} f[k, l] \delta_{2,2}[k-n, l-m] \\
& +\alpha_{3} \sum_{k} \sum_{l} f[k, l] \delta_{2,3}[k-n, l-m] \\
& +\ldots
\end{aligned}
$$

LSI (linear shift invariant) systems

Rewriting the above summation:

$$
\begin{aligned}
\sum_{k} \sum_{l} f[k, l] & \left(\alpha_{1} \delta_{2,1}[k-n, l-m]\right. \\
& +\alpha_{2} \delta_{2,2}[k-n, l-m] \\
& +\alpha_{3} \delta_{2,3}[k-n, l-m] \\
& +\ldots)
\end{aligned}
$$

LSI (linear shift invariant) systems

We define the filter of a LSI as:

$$
\begin{aligned}
h[k, l]= & \alpha_{1} \delta_{2,1}[k, l-m] \\
& +\alpha_{2} \delta_{2,2}[k-n, l-m] \\
& +\alpha_{3} \delta_{2,3}[k-n, l-m] \\
& +\ldots
\end{aligned}
$$

$$
f[n, m] * h[n, m]=\sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k, l] h[n-k, m-l]
$$

What we will learn today?

- Images as functions
- Linear systems (filters)
- Convolution and correlation

Some background reading:
Forsyth and Ponce, Computer Vision, Chapter 7

1D Discrete convolution (symb*)

We are going to convolve a function f with a filter h.

$$
g[n]=\sum_{k} f[k] h[n-k]
$$

1D Discrete convolution (symb*)

We are going to convolve a function f with a filter h.

$$
g[n]=\sum_{k} f[k] h[n-k]
$$

We first need to calculate $h[n-k, m-I]$

Discrete convolution (symbol: *)

We are going to convolve a function f with a filter h.

Discrete convolution (symbol: *)

We are going to convolve a function f with a filter h.

Discrete convolution (symbol: *)

We are going to convolve a function f with a filter h.

Discrete convolution (symbol: *)

We are going to convolve a function f with a filter h.

Discrete convolution (symbol: *)

We are going to convolve a function f with a filter h.

Discrete convolution (symbol: *)

We are going to convolve a function f with a filter h.

Discrete convolution (symbol: *)

In summary, the steps for discrete convolution are:

- Fold $\mathrm{h}[\mathrm{k}, \mathrm{l}]$ about origin to form $\mathrm{h}[-\mathrm{k}]$
- Shift the folded results by n to form $h[n-k]$
- Multiply $\mathrm{h}[\mathrm{n}-\mathrm{k}]$ by $\mathrm{f}[\mathrm{k}]$
- Sum over all k
- Repeat for every n

$$
g[n]=\sum_{k} f[k][h-k]
$$

2D convolution

2D convolution is very similar to 1 D .

- The main difference is that we now have to iterate over 2 axis instead of 1 .

2D convolution

2D convolution is very similar to 1 D .

- The main difference is that we now have to iterate over 2 axis instead of 1 .

2D convolution

2D convolution is very similar to 1 D .

- The main difference is that we now have to iterate over 2 axis instead of 1 .

Assume we have a filter(h[,]) that is 3×3. and an image ($f[$,$]) that is$ 7×7.

2D convolution

2D convolution is very similar to 1 D .

- The main difference is that we now have to iterate over 2 axis instead of 1 .

2D convolution

2D convolution is very similar to 1 D .

- The main difference is that we now have to iterate over 2 axis instead of 1 .

2D convolution

2D convolution is very similar to 1 D .

- The main difference is that we now have to iterate over 2 axis instead of 1 .

LSI (linear shift invariant) systems

An LSI system is completely specified by its impulse response.
shifting property of the delta function

$$
\begin{aligned}
& f[n, m]=\sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k, l] \delta_{2}[n-k, m-l] \\
& \rightarrow \mathcal{S} \mathrm{LSI} \rightarrow \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k, l] h[n-k, m-l]
\end{aligned}
$$

Discrete convolution

$$
f[n, m] * h[n, m]
$$

2D convolution example

1	2	3
4	5	6
7	8	9

Input
m

-13	-20	-17
-18	-24	-18
13	20	17

Output

2D convolution example

1	2	1	
0	${ }^{0} 1$	${ }^{0}$	3
-1	${ }^{-2} 4$	${ }^{-1} 5$	6
	7	8	9

$$
\begin{aligned}
= & x[-1,-1] \cdot h[1,1]+x[0,-1] \cdot h[0,1]+x[1,-1] \cdot h[-1,1] \\
& +x[-1,0] \cdot h[1,0]+x[0,0] \cdot h[0,0]+x[1,0] \cdot h[-1,0] \\
& +x[-1,1] \cdot h[1,-1]+x[0,1] \cdot h[0,-1]+x[1,1] \cdot h[-1,-1] \\
= & 0 \cdot 1+0 \cdot 2+0 \cdot 1+0 \cdot 0+1 \cdot 0+2 \cdot 0+0 \cdot(-1)+4 \cdot(-2)+5 \cdot(-1)=-13
\end{aligned}
$$

-13	-20	-17
-18	-24	-18
13	20	17

Output
Stanford University
Lecture 4-
84
6-Oct-16

2D convolution example

$$
\begin{aligned}
= & x[0,-1] \cdot h[1,1]+x[1,-1] \cdot h[0,1]+x[2,-1] \cdot h[-1,1] \\
& +x[0,0] \cdot h[1,0]+x[1,0] \cdot h[0,0]+x[2,0] \cdot h[-1,0] \\
& +x[0,1] \cdot h[1,-1]+x[1,1] \cdot h[0,-1]+x[2,1] \cdot h[-1,-1] \\
= & 0 \cdot 1+0 \cdot 2+0 \cdot 1+1 \cdot 0+2 \cdot 0+3 \cdot 0+4 \cdot(-1)+5 \cdot(-2)+6 \cdot(-1)=-20
\end{aligned}
$$

-13	-20	-17
-18	-24	-18
13	20	17

Output
Stanford University
Lecture 4-
85
6-Oct-16

2D convolution example

$$
\begin{aligned}
= & x[1,-1] \cdot h[1,1]+x[2,-1] \cdot h[0,1]+x[3,-1] \cdot h[-1,1] \\
& +x[1,0] \cdot h[1,0]+x[2,0] \cdot h[0,0]+x[3,0] \cdot h[-1,0] \\
& +x[1,1] \cdot h[1,-1]+x[2,1] \cdot h[0,-1]+x[3,1] \cdot h[-1,-1] \\
= & 0 \cdot 1+0 \cdot 2+0 \cdot 1+2 \cdot 0+3 \cdot 0+0 \cdot 0+5 \cdot(-1)+6 \cdot(-2)+0 \cdot(-1)=-17
\end{aligned}
$$

-13	-20	-17
-18	-24	-18
13	20	17

Output
Stanford University
Lecture 4-
86
6-Oct-16

2D convolution example

1	2	1	1
	1	3	3
0	0	0	5
	4	5	6
-1	-2	-1	
		7	8

$$
\begin{aligned}
= & x[-1,0] \cdot h[1,1]+x[0,0] \cdot h[0,1]+x[1,0] \cdot h[-1,1] \\
& +x[-1,1] \cdot h[1,0]+x[0,1] \cdot h[0,0]+x[1,1] \cdot h[-1,0] \\
& +x[-1,2] \cdot h[1,-1]+x[0,2] \cdot h[0,-1]+x[1,2] \cdot h[-1,-1] \\
= & 0 \cdot 1+1 \cdot 2+2 \cdot 1+0 \cdot 0+4 \cdot 0+5 \cdot 0+0 \cdot(-1)+7 \cdot(-2)+8 \cdot(-1)=-18
\end{aligned}
$$

-13	-20	-17
-18	-24	-18
13	20	17

Output

2D convolution example

$$
\begin{aligned}
= & x[0,0] \cdot h[1,1]+x[1,0] \cdot h[0,1]+x[2,0] \cdot h[-1,1] \\
& +x[0,1] \cdot h[1,0]+x[1,1] \cdot h[0,0]+x[2,1] \cdot h[-1,0] \\
& +x[0,2] \cdot h[1,-1]+x[1,2] \cdot h[0,-1]+x[2,2] \cdot h[-1,-1] \\
= & 1 \cdot 1+2 \cdot 2+3 \cdot 1+4 \cdot 0+5 \cdot 0+6 \cdot 0+7 \cdot(-1)+8 \cdot(-2)+9 \cdot(-1)=-24
\end{aligned}
$$

-13	-20	-17
-18	-24	-18
13	20	17

Output

2D convolution example

$$
\begin{aligned}
= & x[1,0] \cdot h[1,1]+x[2,0] \cdot h[0,1]+x[3,0] \cdot h[-1,1] \\
& +x[1,1] \cdot h[1,0]+x[2,1] \cdot h[0,0]+x[3,1] \cdot h[-1,0] \\
& +x[1,2] \cdot h[1,-1]+x[2,2] \cdot h[0,-1]+x[3,2] \cdot h[-1,-1] \\
= & 2 \cdot 1+3 \cdot 2+0 \cdot 1+5 \cdot 0+6 \cdot 0+0 \cdot 0+8 \cdot(-1)+9 \cdot(-2)+0 \cdot(-1)=-18
\end{aligned}
$$

-13	-20	-17
-18	-24	-18
13	20	17

Output

Convolution in 2D - examples

Convolution in 2D - examples

Original

$\bullet 0$	$\bullet 0$	$\bullet 0$
$\bullet 0$	$\bullet 1$	$\bullet 0$
$\bullet 0$	$\bullet 0$	$\bullet 0$

\square
(no change)

Convolution in 2D - examples

Original

Convolution in 2D - examples

Original

Shifted right
By 1 pixel

Convolution in 2D - examples

Original

Convolution in 2D - examples

Original

Blur (with a box filter)

Convolution in 2D - examples

Original

$\bullet 0$	$\bullet 0$	$\bullet 0$				
$\bullet 0$	$\bullet 2$	$\bullet 0$				
$\bullet 0$	$\bullet 0$	$\bullet 0$	$\quad-\frac{1}{9}$	$\bullet 1$	$\bullet 1$	$\bullet 1$
:---:	:---:	:---:				
$\bullet 1$	$\bullet 1$	$\bullet 1$				
$\bullet 1$	$\bullet 1$	$\bullet 1$				

- What does blurring take away?

$=$

- Let's add it back:

$+\mathrm{a}$

Convolution in 2D Sharpening filter

$\bullet 0$	$\bullet 0$	$\bullet 0$
$\bullet 0$	$\bullet 2$	$\bullet 0$
$\bullet 0$	$\bullet 0$	$\bullet 0$

$=\frac{1}{9}$| $\bullet 1$ | $\bullet 1$ | $\bullet 1$ |
| :--- | :--- | :--- |
| $\bullet 1$ | $\bullet 1$ | $\bullet 1$ |
| $\bullet 1$ | $\bullet 1$ | $\bullet 1$ |

Original

Sharpening filter: Accentuates differences with local average

Image support and edge effect

-A computer will only convolve finite support signals.

- That is: images that are zero for n, m outside some rectangular region
- numpy's convolution performs 2D DS convolution of finite-support signals.

Image support and edge effect

-A computer will only convolve finite support signals.

- What happens at the edge?

- zero "padding"
- edge value replication
- mirror extension
- More (beyond the scope of this class)
-> Matlab conv2 uses
zero-padding

What we will learn today?

- Image sampling and quantization
- Image histograms
- Images as functions
- Linear systems (filters)
- Convolution and correlation

Some background reading:
Forsyth and Ponce, Computer Vision, Chapter 7

(Cross) correlation (symbol: **)

Cross correlation of two 2 D signals $\mathrm{f}[\mathrm{n}, \mathrm{m}]$ and $\mathrm{g}[\mathrm{n}, \mathrm{m}]$

$$
\begin{aligned}
& r_{f g}[k, l] \triangleq \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} f[n, m] g^{*}[n-k, m-l] \\
& =\sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} f[n+k, m+l] g^{*}[n, m], \quad k, l \in \mathbb{Z} \\
& \quad(k, l) \text { is called the lag }
\end{aligned}
$$

- Equivalent to a convolution without the flip

$$
r_{f g}[n, m]=f[n, m] * g^{*}[-n,-m]
$$

(Cross) correlation - example

(Cross) correlation - example

(Cross) correlation - example

Stanford University
Lecture 4- 106
6-Oct-16

(Cross) correlation - example

Stanford University
Lecture 4- 107
6-Oct-16

Convolution vs. (Cross) Correlation

Convolution

Cross Correlation Application: Vision system for TV remote control

- uses template matching

Figure from "Computer Vision for Interactive Computer Graphics," W.Freeman et al, IEEE Computer Graphics and Applications, 1998 copyright 1998, IEEE

properties

- Associative property:

$$
\left(f * * h_{1}\right) * * h_{2}=f * *\left(h_{1} * * h_{2}\right)
$$

- Distributive property:

$$
f * *\left(h_{1}+h_{2}\right)=\left(f * * h_{1}\right)+\left(f * * h_{2}\right)
$$

The order doesn't matter! $h_{1} * * h_{2}=h_{2} * * h_{1}$

properties

- Shift property:
$f[n, m] * * \delta_{2}\left[n-n_{0}, m-m_{0}\right]=f\left[n-n_{0}, m-m_{0}\right]$
- Shift-invariance:

$$
\begin{aligned}
& g[n, m]=f[n, m] * h[n, m] \\
& \qquad \begin{array}{l}
\Longrightarrow f\left[n-l_{1}, m-l_{1}\right] * *\left[n-l_{2}, m-l_{2}\right]
\end{array} \quad=g\left[n-l_{1}-l_{2}, m-l_{1}-l_{2}\right]
\end{aligned}
$$

Convolution vs. (Cross) Correlation

- A convolution is an integral that expresses the amount of overlap of one function as it is shifted over another function.
- convolution is a filtering operation
- Correlation compares the similarity of two sets of data. Correlation computes a measure of similarity of two input signals as they are shifted by one another. The correlation result reaches a maximum at the time when the two signals match best .
- correlation is a measure of relatedness of two signals

What we have learned today?

- Image sampling and quantization
- Image histograms
- Images as functions
- Linear systems (filters)
- Convolution and correlation

