## Lecture: Pixels and Filters

### Juan Carlos Niebles and Ranjay Krishna Stanford Vision Lab

**Stanford University** 

Lecture 4- 1

9-Dec-17

### Announcements

- HW1 due Monday
- HW2 is out
- Class notes Make sure to find the source and cite the images you use.

# What we will learn today?

- Image sampling and quantization
- Image histograms
- Images as functions
- Linear systems (filters)
- Convolution and correlation

Some background reading: Forsyth and Ponce, Computer Vision, Chapter 7

### Stanford University

#### Lecture 4- 3 6-Oct-16

# What we will learn today?

- Image sampling and quantization
- Image histograms
- Images as functions
- Linear systems (filters)
- Convolution and correlation

Some background reading: Forsyth and Ponce, Computer Vision, Chapter 7

### Stanford University

#### Lecture 4- 4

6-Oct-16

# Types of Images

### **Binary**



**Stanford University** 

#### Lecture 4- 5 6-Oct-16

# Types of Images

### **Binary**

### **Gray Scale**





**Stanford University** 

Lecture 4- 6

6-Oct-16

# Types of Images

### **Binary**

### **Gray Scale**

### Color







### **Stanford University**

#### Lecture 4- 7

6-Oct-16

### Binary image representation



### Grayscale image representation



**Stanford University** 

#### Lecture 4- 9

6-0ct-16

### Color Image - one channel





Slide credit: Ulas Bagci

**Stanford University** 

Lecture 4- 10

6-Oct-16

## Color image representation





#### Slide credit: Ulas Bagci

#### **Stanford University**

#### Lecture 4- 11 6-Oct-16

### Images are sampled

# What happens when we zoom into the images we capture?



**Stanford University** 

Lecture 4- 12 6-Oct-16

# **Errors due Sampling**



Slide credit: Ulas Bagci

**Stanford University** 

#### Lecture 4- 13 6-Oct-16

# Resolution

is a **sampling** parameter, defined in dots per inch (DPI) or equivalent measures of spatial pixel density, and its standard value for recent screen technologies is 72 dpi



Slide credit: Ulas Bagci

**Stanford University** 

Lecture 4- 14 6-Oct-16

### Images are Sampled and Quantized

- An image contains discrete number of pixels
  - A simple example
  - Pixel value:
    - "grayscale"

(or "intensity"): [0,255]



#### **Stanford University**

### Lecture 4- 15 6-Oct-16

### Images are Sampled and Quantized

- An image contains discrete number of pixels
  - A simple example
  - Pixel value:
    - "grayscale"

(or "intensity"): [0,255]

- "color"
  - RGB: [R, G, B]
  - Lab: [L, a, b]
  - HSV: [H, S, V]



[90, 0, 53]

**Stanford University** 

#### Lecture 4- 16 6-Oct-16

With this loss of information (from sampling and quantization),

Can we still use images for useful tasks?

**Stanford University** 

Lecture 4- 17 6-Oct-16

# What we will learn today?

- Image sampling and quantization
- Image histograms
- Images as functions
- Linear systems (filters)
- Convolution and correlation

Some background reading: Forsyth and Ponce, Computer Vision, Chapter 7

### Stanford University

#### Lecture 4- 18 6-Oct-16

# Histogram

 Histogram of an image provides the frequency of the brightness (intensity) value in the image.

```
def histogram(im):
  h = np.zeros(255)
  for row in im.shape[0]:
     for col in im.shape[1]:
      val = im[row, col]
      h[val] += 1
```

Lecture 4- 19 6-Oct-16

# Histogram

- Histogram captures the distribution of gray levels in the image.
- How frequently each gray level occurs in the

image





6-Oct-16

20

Lecture 4-

#### Stanford University

## Histogram





Count: 10192 Mean: 133.711 StdDev: 55.391 Min: 9 Max: 255 Mode: 178 (180)



Slide credit: Dr. Mubarak Shah

#### **Stanford University**

#### Lecture 4- 21

6-0ct-16

### Histogram – use case





Slide credit: Dr. Mubarak Shah

**Stanford University** 

#### Lecture 4- 22

6-Oct-16

### Histogram – another use case



Slide credit: Dr. Mubarak Shah

**Stanford University** 

Lecture 4- 23 6-Oct-16

# What we will learn today?

- Image sampling and quantization
- Image histograms
- Images as functions
- Linear systems (filters)
- Convolution and correlation

Some background reading: Forsyth and Ponce, Computer Vision, Chapter 7

### Stanford University

#### Lecture 4- 24 6-Oct-16

### Images as discrete functions

- Images are usually **digital** (**discrete**):
  - Sample the 2D space on a regular grid
- Represented as a matrix of integer values

|     |                                        |                                                                                                            |                                                                                                                                                           | pixei                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                               |
|-----|----------------------------------------|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| j   |                                        |                                                                                                            |                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                               |
| 62  | 79                                     | 23                                                                                                         | 119                                                                                                                                                       | 120                                                                                                                                                                                                                                                                                                                        | 05                                                                                                                                                                                                                                                                                                                                                                                                          | 4                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                             |
| 10  | 10                                     | 9                                                                                                          | 62                                                                                                                                                        | 12                                                                                                                                                                                                                                                                                                                         | 78                                                                                                                                                                                                                                                                                                                                                                                                          | 34                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                             |
| 10  | 58                                     | 197                                                                                                        | 46                                                                                                                                                        | 46                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                      | 48                                                                                                                                                                            |
| 176 | 135                                    | 5                                                                                                          | 188                                                                                                                                                       | 191                                                                                                                                                                                                                                                                                                                        | 68                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                      | 49                                                                                                                                                                            |
| 2   | 1                                      | 1                                                                                                          | 29                                                                                                                                                        | 26                                                                                                                                                                                                                                                                                                                         | 37                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                      | 77                                                                                                                                                                            |
| 0   | 89                                     | 144                                                                                                        | 147                                                                                                                                                       | 187                                                                                                                                                                                                                                                                                                                        | 102                                                                                                                                                                                                                                                                                                                                                                                                         | 62                                                                                                                                                                                                                                                                                                                                                                                                     | 208                                                                                                                                                                           |
| 255 | 252                                    | 0                                                                                                          | 166                                                                                                                                                       | 123                                                                                                                                                                                                                                                                                                                        | 62                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                      | 31                                                                                                                                                                            |
| 166 | 63                                     | 127                                                                                                        | 17                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                           | 99                                                                                                                                                                                                                                                                                                                                                                                                     | 30                                                                                                                                                                            |
|     | 62<br>10<br>10<br>176<br>2<br>0<br>255 | 62     79       10     10       10     58       176     135       2     1       0     89       255     252 | 62     79     23       10     10     9       10     58     197       176     135     5       2     1     1       0     89     144       255     252     0 | 62         79         23         119           10         10         9         62           10         58         197         46           176         135         5         188           2         1         1         29           0         89         144         147           255         252         0         166 | 62         79         23         119         120           10         10         9         62         12           10         58         197         46         46           176         135         5         188         191           2         1         1         29         26           0         89         144         147         187           255         252         0         166         123 | 62       79       23       119       120       05         10       10       9       62       12       78         10       58       197       46       46       0         176       135       5       188       191       68         2       1       1       29       26       37         0       89       144       147       187       102         255       252       0       166       123       62 | j<br>62 79 23 119 120 05 4<br>10 10 9 62 12 78 34<br>10 58 197 46 46 0 0<br>176 135 5 188 191 68 0<br>2 1 1 1 29 26 37 0<br>0 89 144 147 187 102 62<br>255 252 0 166 123 62 0 |

**Stanford University** 

#### Lecture 4- 25 6-Oct-16

nival

### Images as coordinates

### Cartesian coordinates



**Stanford University** 

Lecture 4- 26 6-Oct-16

### Images as functions

- An Image as a function *f* from R<sup>2</sup> to R<sup>M</sup>:
  - f(x, y) gives the **intensity** at position (x, y)
  - Defined over a rectangle, with a finite range:



Lecture 4-

27

6-Oct-16

#### **Stanford University**

### Images as functions

- An Image as a function *f* from R<sup>2</sup> to R<sup>M</sup>:
  - f(x, y) gives the **intensity** at position (x, y)
  - Defined over a rectangle, with a finite range:

$$f: [a,b] \times [c,d] \rightarrow [0,255]$$
Domain range support

• A color image: 
$$f(x, y) = \begin{bmatrix} r(x, y) \\ g(x, y) \\ b(x, y) \end{bmatrix}$$

### **Stanford University**

### Lecture 4- 28 6-Oct-16

# Histograms are a type of image function



Stanford University

Lecture 4- 29 6-Oct-16

# What we will learn today?

- Image sampling and quantization
- Image histograms
- Images as functions
- Linear systems (filters)
- Convolution and correlation

Some background reading: Forsyth and Ponce, Computer Vision, Chapter 7

### Stanford University

#### Lecture 4- 30 6-Oct-16

# Systems and Filters

### Filtering:

 Forming a new image whose pixel values are transformed from original pixel values

### Goals:

- Goal is to extract useful information from images, or transform images into another domain where we can modify/enhance image properties
  - Features (edges, corners, blobs...)
  - super-resolution; in-painting; de-noising

## System and Filters

- we define a system as a unit that converts an input function f[n,m] into an output (or response) function g[n,m], where (n,m) are the independent variables.
  - In the case for images, (n,m) represents the spatial position in the image.

$$f[n,m] \to \operatorname{System} \mathcal{S} \to g[n,m]$$

**Stanford University** 

Lecture 4- 32 6-Oct-16

### Super-resolution

### De-noising



Salt and pepper noise

**Stanford University** 





### In-painting





6-Oct-16

Lecture 4- 33

### Images as coordinates

### Cartesian coordinates



**Stanford University** 

Lecture 4- 34 6-Oct-16

# 2D discrete-space systems (filters)

S is the **system operator**, defined as a mapping or assignment of a member of the set of possible outputs g[n,m] to each member of the set of possible inputs f[n,m].

$$\begin{aligned} f[n,m] &\to \boxed{\text{System } \mathcal{S}} \to g[n,m] \\ g &= \mathcal{S}[f], \quad g[n,m] = \mathcal{S}\{f[n,m]\} \\ f[n,m] \xrightarrow{\mathcal{S}} g[n,m] \end{aligned}$$

**Stanford University** 

### Filter example #1: Moving Average

Lecture 4-

36

2D DS moving average over a 3 × 3 window of neighborhood

$$g[n,m] = \frac{1}{9} \sum_{k=n-1}^{n+1} \sum_{l=m-1}^{m+1} f[k,l]$$
$$= \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} f[n-k,m-l]$$

6-Oct-16

Stanford University

F[x,y]

| $\square [\omega, g]$ |  |  |  |  |  |  |  |  |  |  |  |  |
|-----------------------|--|--|--|--|--|--|--|--|--|--|--|--|
|                       |  |  |  |  |  |  |  |  |  |  |  |  |
|                       |  |  |  |  |  |  |  |  |  |  |  |  |
|                       |  |  |  |  |  |  |  |  |  |  |  |  |
|                       |  |  |  |  |  |  |  |  |  |  |  |  |
|                       |  |  |  |  |  |  |  |  |  |  |  |  |
|                       |  |  |  |  |  |  |  |  |  |  |  |  |
|                       |  |  |  |  |  |  |  |  |  |  |  |  |
|                       |  |  |  |  |  |  |  |  |  |  |  |  |

G[x, y]

| 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |
|---|---|----|----|----|----|----|----|---|---|
| 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |
| 0 | 0 | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 90 | 0  | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |
| 0 | 0 | 90 | 0  | 0  | 0  | 0  | 0  | 0 | 0 |
| 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |

$$(f * h)[m,n] = \sum_{k,l} f[k,l] h[m-k,n-l]$$

**Stanford University** 

#### Lecture 4- 37 6-Oct-16

F[x,y]

G[x, y]

| 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |
|---|---|----|----|----|----|----|----|---|---|
| 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |
| 0 | 0 | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 90 | 0  | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |
| 0 | 0 | 90 | 0  | 0  | 0  | 0  | 0  | 0 | 0 |
| 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |



$$(f * h)[m,n] = \sum_{k,l} f[k,l] h[m-k,n-l]$$

**Stanford University** 

Lecture 4- 38

F[x,y]

G[x, y]

| 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |
|---|---|----|----|----|----|----|----|---|---|
| 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |
| 0 | 0 | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 90 | 0  | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |
| 0 | 0 | 90 | 0  | 0  | 0  | 0  | 0  | 0 | 0 |
| 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |



$$(f * h)[m,n] = \sum_{k,l} f[k,l] h[m-k,n-l]$$

**Stanford University** 

Lecture 4- 39

F[x, y]

G[x, y]

| 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |
|---|---|----|----|----|----|----|----|---|---|
| 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |
| 0 | 0 | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 90 | 0  | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |
| 0 | 0 | 90 | 0  | 0  | 0  | 0  | 0  | 0 | 0 |
| 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |



 $(f * h)[m,n] = \sum_{k,l} f[k,l] h[m-k,n-l]$ 

**Stanford University** 

Lecture 4- 40

F[x,y]

| G[x, | y] |
|------|----|
|------|----|

| 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |
|---|---|----|----|----|----|----|----|---|---|
| 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |
| 0 | 0 | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 90 | 0  | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |
| 0 | 0 | 90 | 0  | 0  | 0  | 0  | 0  | 0 | 0 |
| 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |



$$(f * h)[m,n] = \sum_{k,l} f[k,l] h[m-k,n-l]$$

**Stanford University** 

Lecture 4- 41

F[x, y]

| G[x, | y] |
|------|----|
|------|----|

| 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |
|---|---|----|----|----|----|----|----|---|---|
| 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |
| 0 | 0 | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 90 | 0  | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |
| 0 | 0 | 90 | 0  | 0  | 0  | 0  | 0  | 0 | 0 |
| 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |

| 0  | 10 | 20 | 30 | 30 | 30 | 20 | 10 |  |
|----|----|----|----|----|----|----|----|--|
| 0  | 20 | 40 | 60 | 60 | 60 | 40 | 20 |  |
| 0  | 30 | 60 | 90 | 90 | 90 | 60 | 30 |  |
| 0  | 30 | 50 | 80 | 80 | 90 | 60 | 30 |  |
| 0  | 30 | 50 | 80 | 80 | 90 | 60 | 30 |  |
| 0  | 20 | 30 | 50 | 50 | 60 | 40 | 20 |  |
| 10 | 20 | 30 | 30 | 30 | 30 | 20 | 10 |  |
| 10 | 10 | 10 | 0  | 0  | 0  | 0  | 0  |  |
|    |    |    |    |    |    |    |    |  |

$$(f * h)[m,n] = \sum_{k,l} f[k,l] h[m-k,n-l]$$

**Stanford University** 

Lecture 4- 42

6-Oct-16

Source: S. Seitz

In summary:

- This filter "Replaces" each pixel with an average of its neighborhood.
- Achieve smoothing effect (remove sharp features)

 $h[\cdot,\cdot]$ 





Stanford University

Lecture 4- 44 6-Oct-16

#### Filter example #2: Image Segmentation

Image segmentation based on a simple threshold:

$$g[n,m] = \begin{cases} 255, \ f[n,m] > 100\\ 0, \ \text{otherwise.} \end{cases}$$





**Stanford University** 

#### Lecture 4- 45

- Amplitude properties:
  - Additivity

 $S[f_i[n,m] + f_j[n,m]] = S[f_i[n,m]] + S[f_j[n,m]]$ 

- Amplitude properties:
  - Additivity

 $S[f_i[n,m] + f_j[n,m]] = S[f_i[n,m]] + S[f_j[n,m]]$ 

Homogeneity

 $S[\alpha f_i[n,m]] = \alpha S[f_i[n,m]]]$ 

- Amplitude properties:
  - Additivity

 $S[f_i[n,m] + f_j[n,m]] = S[f_i[n,m]] + S[f_j[n,m]]$ 

Homogeneity

 $S[\alpha f_i[n,m]] = \alpha S[f_i[n,m]]]$ 

- Superposition

 $S[\alpha f_i[n,m] + \beta f_j[n,m]] = \alpha S[f_i[n,m]] + \beta S[f_j[n,m]]$ 

- Amplitude properties:
  - Additivity

 $S[f_i[n,m] + f_j[n,m]] = S[f_i[n,m]] + S[f_j[n,m]]$ 

Homogeneity

$$S[\alpha f_i[n,m]] = \alpha S[f_i[n,m]]]$$

- Superposition

 $S[\alpha f_i[n,m] + \beta f_j[n,m]] = \alpha S[f_i[n,m]] + \beta S[f_j[n,m]]$ 

– Stability

$$|f[n,m]| \leq k \implies |g[n,m]| \leq ck$$

- Amplitude properties:
  - Additivity

 $S[f_i[n,m] + f_j[n,m]] = S[f_i[n,m]] + S[f_j[n,m]]$ 

Homogeneity

$$S[\alpha f_i[n,m]] = \alpha S[f_i[n,m]]]$$

- Superposition

 $S[\alpha f_i[n,m] + \beta f_j[n,m]] = \alpha S[f_i[n,m]] + \beta S[f_j[n,m]]$ 

– Stability

$$|f[n,m]| \le k \implies |g[n,m]| \le ck$$

- Invertibility

$$S^{-1}[S[f_i[n,m]]] = f[n,m]$$

#### Stanford University

#### Lecture 4- 50 6-Oct-16

- Spatial properties
  - Causality

for  $n < n_0, m < m_0$ , if  $f[n, m] = 0 \implies g[n, m] = 0$ 

- Shift invariance:

$$f[n-n_0, m-m_0] \xrightarrow{\mathcal{S}} g[n-n_0, m-m_0]$$

Is the moving average system is shift invariant?

$$f[n,m] \stackrel{\mathcal{S}}{\longrightarrow} g[n,m] = rac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} f[n-k,m-l]$$
  
 $F[x,y] \qquad \qquad G[x,y]$ 

| 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |
|---|---|----|----|----|----|----|----|---|---|
| 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |
| 0 | 0 | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 90 | 0  | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |
| 0 | 0 | 90 | 0  | 0  | 0  | 0  | 0  | 0 | 0 |
| 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |

| 0  | 10 | 20 | 30 | 30 | 30 | 20 | 10 |  |
|----|----|----|----|----|----|----|----|--|
| 0  | 20 | 40 | 60 | 60 | 60 | 40 | 20 |  |
| 0  | 30 | 60 | 90 | 90 | 90 | 60 | 30 |  |
| 0  | 30 | 50 | 80 | 80 | 90 | 60 | 30 |  |
| 0  | 30 | 50 | 80 | 80 | 90 | 60 | 30 |  |
| 0  | 20 | 30 | 50 | 50 | 60 | 40 | 20 |  |
| 10 | 20 | 30 | 30 | 30 | 30 | 20 | 10 |  |
| 10 | 10 | 10 | 0  | 0  | 0  | 0  | 0  |  |
|    |    |    |    |    |    |    |    |  |

**Stanford University** 

Lecture 4- 52 6-Oct-16

#### Is the moving average system is shift invariant?

$$f[n,m] \xrightarrow{\mathcal{S}} g[n,m] = \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} f[n-k,m-l]$$

$$f[n - n_0, m - m_0]$$

$$\xrightarrow{S} \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} f[(n - n_0) - k, (m - m_0) - l]$$

$$= g[n - n_0, m - m_0]$$
Yes!

**Stanford University** 

Lecture 4- 53 6-Oct-16

Is the moving average system is casual?  

$$f[n,m] \xrightarrow{\mathcal{S}} g[n,m] = \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} f[n-k,m-l]$$
  
 $F[x,y] \qquad \qquad G[x,y]$ 

| 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |  |    |    |    |    |    |    |    |    |  |
|---|---|----|----|----|----|----|----|---|---|--|----|----|----|----|----|----|----|----|--|
| 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |  | 0  | 10 | 20 | 30 | 30 | 30 | 20 | 10 |  |
| 0 | 0 | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |  | 0  | 20 | 40 | 60 | 60 | 60 | 40 | 20 |  |
| 0 | 0 | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |  | 0  | 30 | 60 | 90 | 90 | 90 | 60 | 30 |  |
| 0 | 0 | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |  | 0  | 30 | 50 | 80 | 80 | 90 | 60 | 30 |  |
| 0 | 0 | 0  | 90 | 0  | 90 | 90 | 90 | 0 | 0 |  | 0  | 30 | 50 | 80 | 80 | 90 | 60 | 30 |  |
| 0 | 0 | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |  | 0  | 20 | 30 | 50 | 50 | 60 | 40 | 20 |  |
| 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |  | 10 | 20 | 30 | 30 | 30 | 30 | 20 | 10 |  |
| 0 | 0 | 90 | 0  | 0  | 0  | 0  | 0  | 0 | 0 |  | 10 | 10 | 10 | 0  | 0  | 0  | 0  | 0  |  |
| 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |  |    |    |    |    |    |    |    |    |  |

for  $n < n_0, m < m_0$ , if  $f[n, m] = 0 \implies g[n, m] = 0$ 

**Stanford University** 

Lecture 4- 54

# Linear Systems (filters)

$$f[n,m] \to \operatorname{System} \mathcal{S} \to g[n,m]$$

- Linear filtering:
  - Form a new image whose pixels are a weighted sum of original pixel values
  - Use the same set of weights at each point
- **S** is a linear system (function) iff it *S* satisfies

 $S[\alpha f_i[n,m] + \beta f_j[h,m]] = \alpha S[f_i[n,m]] + \beta S[f_j[h,m]]$ 

#### superposition property

# Linear Systems (filters) $f[n,m] \rightarrow [\text{System } S] \rightarrow g[n,m]$

• Is the moving average a linear system?

- Is thresholding a linear system?
  - f1[n,m] + f2[n,m] > T
  - f1[n,m] < T **NO**
  - f2[n,m]<T

Stanford University

Lecture 4- 56 6-Oct-16

# 2D impulse function

- 1 at [0,0].
- 0 everywhere else



Stanford University

Lecture 4- 57 6-Oct-16

#### Impulse response

$$\delta_2[n,m] \to \mathcal{S} \to h[n,m]$$

$$\delta_2[n-k,m-l] \to \mathcal{S}(SI) \to h[n-k,m-l]$$

**Stanford University** 

Lecture 4- 58 6-Oct-16

**Example:** impulse response of the 3 by 3 moving average filter:

**Stanford University** 

 2D DS moving average over a 3 × 3 window of neighborhood

**Stanford University** 

Lecture 4- 60

6-Oct-16

A simple LSI is one that shifts the pixels of an image:

 $f[n,m] = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k,l] \,\delta_2[n-k,m-l]$ 

shifting property of the delta function

A simple LSI is one that shifts the pixels of an image:

 $f[n,m] = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k,l] \, \delta_2[n-k,m-l]$ 

Remember the superposition property:  $S[\alpha f_i[n,m] + \beta f_j[h,m]] = \alpha S[f_i[n,m]] + \beta S[f_j[h,m]]$ superposition property

**Stanford University** 

With the superposition property, any LSI system can be represented as a weighted sum of such shifting systems:

$$\begin{aligned} &\alpha_{1} \sum_{k} \sum_{l} f[k, l] \delta_{2,1}[k - n, l - m] \\ &+ \alpha_{2} \sum_{k} \sum_{l} f[k, l] \delta_{2,2}[k - n, l - m] \\ &+ \alpha_{3} \sum_{k} \sum_{l} f[k, l] \delta_{2,3}[k - n, l - m] \\ &+ \dots \end{aligned}$$

Stanford University

Lecture 4- 63 6-Oct-16

Rewriting the above summation:

$$\sum_k \sum_l f[k,l] (lpha_1 \delta_{2,1} [k-n,l-m] \ + lpha_2 \delta_{2,2} [k-n,l-m]$$

$$egin{aligned} &+ lpha_2 \delta_{2,2} [k-n,l-m] \ &+ lpha_3 \delta_{2,3} [k-n,l-m] \ &+ \ldots) \end{aligned}$$

**Stanford University** 

Lecture 4- 64 6-Oct-16

We define the filter of a LSI as:

$$egin{aligned} h[k,l] =& lpha_1 \delta_{2,1}[k,l-m] \ &+ lpha_2 \delta_{2,2}[k-n,l-m] \ &+ lpha_3 \delta_{2,3}[k-n,l-m] \ &+ \dots \end{aligned}$$

$$f[n,m] * h[n,m] = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k,l] h[n-k,m-l]$$

#### **Stanford University**

#### Lecture 4- 65 6-Oct-16

# What we will learn today?

- Images as functions
- Linear systems (filters)
- Convolution and correlation

Some background reading: Forsyth and Ponce, Computer Vision, Chapter 7

**Stanford University** 

Lecture 4- 66

We are going to convolve a function **f** with a filter **h**.

$$g[n] = \sum_{k} f[k]h[n-k]$$



**Stanford University** 

We are going to convolve a function **f** with a filter **h**.



Lecture 4-

68

6-Oct-16

Stanford University

We are going to convolve a function **f** with a filter **h**.



Stanford University

Lecture 4- 69 6-Oct-16

We are going to convolve a function **f** with a filter **h**.



Stanford University

We are going to convolve a function **f** with a filter **h**.



**Stanford University** 

#### Lecture 4- 71 6-Oct-16

We are going to convolve a function **f** with a filter **h**.



**Stanford University** 

#### Lecture 4- 72 6-Oct-16

### Discrete convolution (symbol: \*)

We are going to convolve a function **f** with a filter **h**.



Stanford University

#### Lecture 4- 73 6-Oct-16

### Discrete convolution (symbol: \*)

We are going to convolve a function **f** with a filter **h**.



Stanford University

#### Lecture 4- 74 6-Oct-16

### Discrete convolution (symbol: \*)

In summary, the steps for discrete convolution are:

- Fold h[k,l] about origin to form h[-k]
- Shift the folded results by n to form h[n k]
- Multiply h[n k] by f[k]
- Sum over all k
- Repeat for every n

$$g[n] = \sum_{k} f[k][h-k]$$

Stanford University

Lecture 4- 75

n



2D convolution is very similar to 1D.

The main difference is that we now have to iterate over 2 axis instead of 1. ٠

 $\sim$ 

$$f[n,m] * h[n,m] = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k,l] h[n-k,m-l]$$
Assume we have a filter(h[,]) that is 3x3. and an image (f[,]) that is 7x7.

n

6-Oct-16

76

Lecture 4-

2D convolution is very similar to 1D.

The main difference is that we now have to iterate over 2 axis instead of 1. ٠

 $\sim$ 

$$f[n,m] * h[n,m] = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k,l] h[n-k,m-l]$$
Assume we have a filter(h[,]) that is 3x3. and an image (f[,]) that is 7x7.

n

6-Oct-16

77

Lecture 4-

2D convolution is very similar to 1D.

• The main difference is that we now have to iterate over 2 axis instead of 1.

 $\sim$ 

00

$$f[n,m] * h[n,m] = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k,l] h[n-k,m-l]$$
Assume we have a filter(h[,]) that is 3x3. and an image (f[,]) that is 7x7.

n

6-Oct-16

78

Lecture 4-

2D convolution is very similar to 1D.

The main difference is that we now have to iterate over 2 axis instead of 1. ٠

 $\sim$ 

$$f[n,m] * h[n,m] = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k,l] h[n-k,m-l]$$
Assume we have a filter(h[,]) that is 3x3. and an image (f[,]) that is 7x7.

n

6-Oct-16

79

Lecture 4-

2D convolution is very similar to 1D.

• The main difference is that we now have to iterate over 2 axis instead of 1.

 $\sim$ 

00

$$f[n,m] * h[n,m] = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k,l] h[n-k,m-l]$$
Assume we have a filter(h[,]) that is 3x3. and an image (f[,]) that is 7x7.

Stanford University

n

2D convolution is very similar to 1D.

• The main difference is that we now have to iterate over 2 axis instead of 1.

$$f[n,m] * h[n,m] = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k,l] h[n-k,m-l]$$
Assume we have a filter(h[,]) that is 3x3. and an image (f[,]) that is 7x7.

### LSI (linear shift invariant) systems

An LSI system is completely specified by its impulse response.

 $f[n,m] = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k,l] \,\delta_2[n-k,m-l]$ 

 $\rightarrow \underbrace{\mathcal{S} \operatorname{LSI}}_{\delta_2[n,m] \to \underbrace{\mathcal{S}}_{D \to h[n,m]} \to \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k,l] h[n-k,m-l]$  Discrete convolution f[n,m] \* h[n,m]

#### Lecture 4- 82 6-Oct-16

shifting property of the delta function

|   |   |   | n  | -1 | 0  | 1  |
|---|---|---|----|----|----|----|
| 1 | 2 | 3 | -1 | -1 | -2 | -1 |
| 4 | 5 | 6 | 0  | 0  | 0  | 0  |
| 7 | 8 | 9 | 1  | 1  | 2  | 1  |

Input

Kernel

-13 -20 -17 -18 -24 -18 13 20 17

Output

Slide credit: Song Ho Ahn

Stanford University

Lecture 4- 83 6-0

| 1  | 2                 | 1                    |   |
|----|-------------------|----------------------|---|
| 0  | 0<br>1            | <mark>0</mark> 2     | 3 |
| -1 | <mark>-2</mark> 4 | <mark>-1</mark><br>5 | 6 |
|    | 7                 | 8                    | 9 |

 $= x[-1,-1] \cdot h[1,1] + x[0,-1] \cdot h[0,1] + x[1,-1] \cdot h[-1,1]$  $+ x[-1,0] \cdot h[1,0] + x[0,0] \cdot h[0,0] + x[1,0] \cdot h[-1,0]$  $+ x[-1,1] \cdot h[1,-1] + x[0,1] \cdot h[0,-1] + x[1,1] \cdot h[-1,-1]$  $= 0 \cdot 1 + 0 \cdot 2 + 0 \cdot 1 + 0 \cdot 0 + 1 \cdot 0 + 2 \cdot 0 + 0 \cdot (-1) + 4 \cdot (-2) + 5 \cdot (-1) = -13$ 

| -13 | -20 | -17 |
|-----|-----|-----|
| -18 | -24 | -18 |
| 13  | 20  | 17  |

Output

Slide credit: Song Ho Ahn

Stanford University

Lecture 4- 84

|   | 1                   | 2                 | 1                   |
|---|---------------------|-------------------|---------------------|
|   | <mark>0</mark><br>1 | <mark>0</mark> 2  | <mark>0</mark><br>3 |
|   | -1<br>4             | <mark>-2</mark> 5 | -1<br>6             |
| Ľ | 7                   | 8                 | 9                   |

 $= x[0,-1] \cdot h[1,1] + x[1,-1] \cdot h[0,1] + x[2,-1] \cdot h[-1,1]$  $+ x[0,0] \cdot h[1,0] + x[1,0] \cdot h[0,0] + x[2,0] \cdot h[-1,0]$  $+ x[0,1] \cdot h[1,-1] + x[1,1] \cdot h[0,-1] + x[2,1] \cdot h[-1,-1]$  $= 0 \cdot 1 + 0 \cdot 2 + 0 \cdot 1 + 1 \cdot 0 + 2 \cdot 0 + 3 \cdot 0 + 4 \cdot (-1) + 5 \cdot (-2) + 6 \cdot (-1) = -20$ 

| -13 | -20 | -17 |
|-----|-----|-----|
| -18 | -24 | -18 |
| 13  | 20  | 17  |

Output

Slide credit: Song Ho Ahn

Stanford University

Lecture 4- 85



 $x[1,-1] \cdot h[1,1] + x[2,-1] \cdot h[0,1] + x[3,-1] \cdot h[-1,1]$  $+ x[1,0] \cdot h[1,0] + x[2,0] \cdot h[0,0] + x[3,0] \cdot h[-1,0]$  $+ x[1,1] \cdot h[1,-1] + x[2,1] \cdot h[0,-1] + x[3,1] \cdot h[-1,-1]$  $= 0 \cdot 1 + 0 \cdot 2 + 0 \cdot 1 + 2 \cdot 0 + 3 \cdot 0 + 0 \cdot 0 + 5 \cdot (-1) + 6 \cdot (-2) + 0 \cdot (-1) = -17$ 

| -13 | -20 | -17 |
|-----|-----|-----|
| -18 | -24 | -18 |
| 13  | 20  | 17  |

Output

Slide credit: Song Ho Ahn

Stanford University

Lecture 4-86



 $= x[-1,0] \cdot h[1,1] + x[0,0] \cdot h[0,1] + x[1,0] \cdot h[-1,1]$  $+ x[-1,1] \cdot h[1,0] + x[0,1] \cdot h[0,0] + x[1,1] \cdot h[-1,0]$  $+ x[-1,2] \cdot h[1,-1] + x[0,2] \cdot h[0,-1] + x[1,2] \cdot h[-1,-1]$  $= 0 \cdot 1 + 1 \cdot 2 + 2 \cdot 1 + 0 \cdot 0 + 4 \cdot 0 + 5 \cdot 0 + 0 \cdot (-1) + 7 \cdot (-2) + 8 \cdot (-1) = -18$ 

| -13 | -20 | -17 |
|-----|-----|-----|
| -18 | -24 | -18 |
| 13  | 20  | 17  |

Output

Slide credit: Song Ho Ahn

Stanford University

Lecture 4- 87 6-

| 1               | <mark>2</mark> | 1              |
|-----------------|----------------|----------------|
| 1               | 2              | 3              |
| <mark>0</mark>  | <mark>0</mark> | <mark>0</mark> |
| 4               | 5              | 6              |
| <mark>-1</mark> | -2             | -1             |
| 7               | 8              | 9              |

 $= x[0,0] \cdot h[1,1] + x[1,0] \cdot h[0,1] + x[2,0] \cdot h[-1,1]$  $+ x[0,1] \cdot h[1,0] + x[1,1] \cdot h[0,0] + x[2,1] \cdot h[-1,0]$  $+ x[0,2] \cdot h[1,-1] + x[1,2] \cdot h[0,-1] + x[2,2] \cdot h[-1,-1]$  $= 1 \cdot 1 + 2 \cdot 2 + 3 \cdot 1 + 4 \cdot 0 + 5 \cdot 0 + 6 \cdot 0 + 7 \cdot (-1) + 8 \cdot (-2) + 9 \cdot (-1) = -24$ 

| -13 | -20 | -17 |
|-----|-----|-----|
| -18 | -24 | -18 |
| 13  | 20  | 17  |

Output

Slide credit: Song Ho Ahn

Stanford University

Lecture 4- 88



 $= x[1,0] \cdot h[1,1] + x[2,0] \cdot h[0,1] + x[3,0] \cdot h[-1,1]$  $+ x[1,1] \cdot h[1,0] + x[2,1] \cdot h[0,0] + x[3,1] \cdot h[-1,0]$  $+ x[1,2] \cdot h[1,-1] + x[2,2] \cdot h[0,-1] + x[3,2] \cdot h[-1,-1]$  $= 2 \cdot 1 + 3 \cdot 2 + 0 \cdot 1 + 5 \cdot 0 + 6 \cdot 0 + 0 \cdot 0 + 8 \cdot (-1) + 9 \cdot (-2) + 0 \cdot (-1) = -18$ 

| -13 | -20 | -17 |
|-----|-----|-----|
| -18 | -24 | -18 |
| 13  | 20  | 17  |

Output

Slide credit: Song Ho Ahn

**Stanford University** 

Lecture 4- 89



Original

Stanford University

Lecture 4- 90 6-Oct-16



Filtered (no change)

#### **Stanford University**

#### Lecture 4- 91 6-Oct-16



Original

Stanford University

Lecture 4- 92 6-Oct-16



Shifted right By 1 pixel

#### **Stanford University**

#### Lecture 4-6-Oct-16 93



Original

**Stanford University** 

Lecture 4- 94 6-Oct-16



Blur (with a box filter)

#### Stanford University

Original

#### Lecture 4- 95 6-Oct-16





Courtesy of D Lowe

6-Oct-16

• What does blurring take away?







• Let's add it back:



+ a



#### Stanford University

#### Lecture 4- 97 6-Oct-16

## Convolution in 2D – Sharpening filter



Original

### Sharpening filter: Accentuates differences with local average

**Stanford University** 

Lecture 4- 98 6-Oct-16

## Image support and edge effect

- •A computer will only convolve **finite support signals**.
  - That is: images that are zero for n,m outside some rectangular region
- numpy's convolution performs 2D DS convolution of finite-support signals.



Lecture 4-

99

6-Oct-16

## Image support and edge effect

- •A computer will only convolve **finite support signals.**
- What happens at the edge?



- zero "padding"
- edge value replication
- mirror extension
  - **MORE** (beyond the scope of this class)
- -> Matlab conv2 uses zero-padding



Stanford University

### Lecture 4- 101

### What we will learn today?

- Image sampling and quantization
- Image histograms
- Images as functions
- Linear systems (filters)
- Convolution and correlation

Some background reading: Forsyth and Ponce, Computer Vision, Chapter 7

Lecture 4- 102 6-Oct-16

## (Cross) correlation (symbol: \*\*)

Cross correlation of two 2D signals f[n,m] and g[n,m]

 $\infty$ 

 $\sim$ 

$$r_{fg}[k,l] \triangleq \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} f[n,m] g^*[n-k,m-l]$$

$$=\sum_{n=-\infty}^{\infty}\sum_{m=-\infty}^{\infty}f[n+k,m+l]\,g^*[n,m],\quad k,l\in\mathbb{Z},$$
 (k, l) is called the lag

• Equivalent to a convolution without the flip

$$r_{fg}[n,m] = f[n,m] * g^*[-n,-m]$$

(g\* is defined as the *complex conjugate* of g. In this class, g(n,m) are real numbers, hence g\*=g.)

## (Cross) correlation – example



Stanford University

Lecture 4- 104 6-Oct-16

## (Cross) correlation – example



#### **Stanford University**

#### Lecture 4- 105 6-Oct-16

## (Cross) correlation – example



Stanford University

#### Lecture 4- 106 6-Oct-16



Stanford University

#### Lecture 4- 107 6-Oct-16

### Convolution vs. (Cross) Correlation



**Stanford University** 

Lecture 4- 108 6-Oct-16



### Cross Correlation Application: Vision system for TV remote control

- uses template matching



Figure from "Computer Vision for Interactive Computer Graphics," W.Freeman et al, IEEE Computer Graphics and Applications, 1998 copyright 1998, IEEE

Lecture 4-

109

6-Oct-16

### properties

• Associative property:

$$(f * * h_1) * * h_2 = f * * (h_1 * * h_2)$$

• Distributive property:

$$f \ast \ast (h_1 + h_2) = (f \ast \ast h_1) + (f \ast \ast h_2)$$

### The order doesn't matter! $h_1 * * h_2 = h_2 * * h_1$

**Stanford University** 

Lecture 4- 110 6-Oct-16

### properties

### • Shift property:

 $f[n,m] ** \delta_2[n-n_0,m-m_0] = f[n-n_0,m-m_0]$ 

### • Shift-invariance:

$$g[n,m] = f[n,m] ** h[n,m]$$
  

$$\implies f[n-l_1,m-l_1] ** h[n-l_2,m-l_2]$$
  

$$= g[n-l_1-l_2,m-l_1-l_2]$$

**Stanford University** 

#### Lecture 4- 111 6-Oct-16

# Convolution vs. (Cross) Correlation

- A <u>convolution</u> is an integral that expresses the amount of overlap of one function as it is shifted over another function.
  - convolution is a filtering operation
- <u>Correlation</u> compares the *similarity of two sets of data*. Correlation computes a measure of similarity of two input signals as they are shifted by one another. The correlation result reaches a maximum at the time when the two signals match best.

– correlation is a measure of relatedness of two signals

### What we have learned today?

- Image sampling and quantization
- Image histograms
- Images as functions
- Linear systems (filters)
- Convolution and correlation