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1 Vectors and Matrices Recap

1.1 Vector

A column vector v ∈ IRnx1 where

v =


v1
v2
...
vn


A row vector vT ∈ IR1xn where

vT = [v1 v2 · · · vn]

T denotes the transpose operation.

The norm is

||x||2 =

√√√√ n∑
i=1

x2i

Formally, the norm can also be defined as any function f : IRn 7→ IR that satisfies 4 properties:

• Non-negativity: For all x ∈ IRn, f(x) ≥ 0

• Definiteness: f(x) = 0 if and only if x = 0

• Homogeneity: For all x ∈ IRn, t ∈ IR, f(tx) = |t|f(x)
• Triangle inequality: For all x, y ∈ IRn, f(x+ y) ≤ f(x) + f(y)

1.1.1 Projection

A projection is an inner product (dot product) of vectors. If B is a unit vector, then A ·B gives the
length of A which lies in the direction of B.

1.2 Matrix

A matrix A ∈ IRmxn is an array of numbers with size m by n.

A =


a11 a12 a13 · · · a1n
a21 a22 a23 · · · a2n

...
...

am1 am2 am3 · · · amn


If m = n, we say that A is square.

Computer Vision: Foundations and Applications (CS 131, 2017), Stanford University.



1.2.1 An Application of Matrices

Grayscale images have one number per pixel and are stored as an m× n matrix. Color images have 3
numbers per pixel - red, green, and blue

2 Transformation Matrices

Matrices can be used to transform vectors in useful ways, through multiplication: x′ = Ax. The
simplest application of that is through scaling, or multiplying a scaling matrix with scalars on its
diagonal by the vector.

We can also use matrices to rotate vectors. When we multiply a matrix and a vector; the resulting x
coordinate is the original vector dot the first row.

In order to rotate a vector by an angle θ, counter-clockwise:

x′ = cosθx− sinθy and

y′ = cosθy + sinθx

therefore, we multiply it by the matrix

M =

[
cosθ −sinθ
sinθ cosθ

]
which gives us that P ′ = RP .

We can also use multiple matrices to transform a point. For example, p′ = R2R1Sp. The transforma-
tions are applied one after another, from right to left. In our example, this would be (R2(R1(Sp))).

In order to translate vectors, we have to implement a somewhat hacky solution of adding a "1" at
the very end of the vector. This way, using these "homogeneous coordinates", we can also translate
vectors. The multiplication works out so the rightmost column of our matrix gets added to the
respective coordinates. A homogenous matrix will have [0 0 1] in the bottom row to ensure that the
elements get added correctly, and the resulting vector has ’1’ at the bottom.

By convention, in homogeneous coordinates, we divide the result by its last coordinate after doing
matrix multiplication.

[
x
y
7

]
[
x/7
y/7
1

]

So to obtain the result of P (x, y)− > P ′ = (sxx, syy)

we have to first P = (x, y)− > (x, y, 1) and then P ′ = (sxx, syy)− > (sxx, syy, 1) so we can then
do the matrix multiplication S*P. Though, we have to note that scaling and translating is not the same
as translating and scaling. In other words, T ∗ S ∗ P 6= S ∗ T ∗ P
Any rotation matrix R belongs to the category of normal matrices, and it satisfies interesting properties.
For example, RṘT = I and det(R) = 1

The rows of a rotation matrix are always mutually perpendicular (a.k.a. orthogonal) unit vectors; this
is what allows for it to satisfy some of the few unique properties mentioned above.

3 Matrix Inverse

Given a matrix A, its inverse A−1 is a matrix such that:

AA−1 = A−1A = I
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where I is the identity matrix of the same size.

An example of a matrix inverse is: [
2 0
0 3

]−1
=

[
1
2 0
0 1

3

]

A matrix does not necessarily have an inverse. IfA−1 exists, A is known as invertible or non-singular.

Some useful identities for matrices that are invertible are:

• (A−1)−1 = A

• (AB)−1 = B−1A−1

• A−T , (AT )−1 = (A−1)T

3.1 Pseudoinverse

Frequently in linear algebra problems, you want to solve the equation AX = B for X . You would
like to compute A−1 and multiply both sides to get X = A−1B. In python, this command would be:
np.linalg.inv(A)*B.

However, for large floating point matrices, calculating inverses can be very expensive and possibly
inaccurate. An inverse could also not even exist for A. What should we do?

Luckily, we have what is known as a pseudoinverse. This other matrix can be used to solve for
AX = B. Python will try many methods, including using the pseudo-inverse, if you use the following
command: np.linalg.solve(A,B). Additionally, using the pseudo-inverse, Python finds the closest
solution if there exists no solution to AX = B.

4 Matrix Rank

• The rank of a transformation matrix A tells you how many dimensions it transforms a matrix
to.

• col-rank(A) = maximum number of linearly independent column vectors of A

• row-rank(A) = maximum number of linearly independent row vectors of A. Column rank
always equals row rank.

• For transformation matrices, the rank tells you the dimensions of the output.

• For instance, if rank of A is 1, then the transformation p′ = Ap points onto a line.

• Full rank matrix- if mxm and rank is m

• Singular matrix- if mxm matrix rank is less than m, because at least one dimension is
getting collapsed. (No way to tell what input was from result) –> inverse does not exist for
non-square matrices.

5 Eigenvalues and Eigenvectors (SVD)

5.1 Definitions

An eigenvector x of a linear transformation A is a non-zero vector that, when A is applied to it, does
not change its direction. Applying A to the eigenvector scales the eigenvector by a scalar value λ,
called an eigenvalue.

The following equation describes the relationship between eigenvalues and eigenvectors:

Ax = λx, x 6= 0
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5.2 Finding eigenvectors and eigenvalues

If we want to find the eigenvalues of A, we can manipulate the above definition as follows:

Ax = λx, x 6= 0

Ax = (λIx), x 6= 0

(λI −A)x = 0, x 6= 0

Since we are looking for non-zero x, we can equivalently write the above relation as:

|λI −A| = 0

Solving this equation for λ gives the eigenvalues of A, and these can be substituted back into the
original equation to find the corresponding eigenvectors.

5.3 Properties
• The trace of A is equal to the sum of its eigenvalues:

tr(A) =
n∑

i=1

λi

• The determinant of A is equal to the product of its eigenvalues:

|A| =
n∏

i=1

λi

• The rank of A is equal to the number of non-zero eigenvalues of A.
• The eigenvalues of a diagonal matrix D = diag(d1, . . . , dn) are just the diagonal entries
d1, . . . dn.

5.4 Spectral Theory

5.4.1 Definitions

• An eigenpair is the pair of an eigenvalue and its associated eigenvector.
• An eigenspace of A associated with λ is the space of vectors where:

(A− λI) = 0

• The spectrum of A is the set of all its eigenvalues:
σ(A) = {λ ∈ C : λI −A is singular}

Where C is the space of all eigenvalues of A
• The spectral radius of A is the magnitude of its largest magnitude eigenvalue:

ρ(A) = max{|λ1|, . . . , |λn|}

5.4.2 Theorem: Spectral radius bound

Spectral radius is bounded by the infinity norm of a matrix:

ρ(A) = lim
k→∞

||Ak||1/k

Proof :
|λ|k||v|| = ||λ|kv|| = ||Akv||

By the Cauchy–Schwarz inequality (||uv|| ≤ ||u|| · ||v||):
|λ|k||v|| ≤ ||Ak|| · ||v||

Since v 6= 0:
|λ|k ≤ ||Ak||

And we thus arrive at:
ρ(A) = lim

k→∞
||Ak||1/k
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5.5 Diagonalization

An n× n matrix A is diagonalizable if it has n linearly independent eigenvectors.

Most square matrices are diagonalizable

• Normal matrices are diagonalizable
Note: Normal matrices are matrices that satisfy:

A∗A = AA∗

Where A∗ is the complex conjugate of A
• Matrices with n distinct eigenvalues are diagonalizable

Lemma: Eigenvectors associated with distinct eigenvalues are linearly independent.

To diagonalize the matrix A, consider its eigenvalues and eigenvectors. We can construct matrices D
and V , where D is the diagonal matrix of the eigenvalues of A, and V is the matrix of corresponding
eigenvectors:

D =

λ1 . . .
λn


V = [v1 v2 . . . vn]

Since we know that:
AV = V D

We can diagonalize A by:
A = V DV −1

If all eigenvalues are unique, then V is orthogonal. Since the inverse of an orthogonal matrix is its
transpose, we can write the diagonalization as:

A = V DV T

5.6 Symmetric Matrices

If A is symmetric, then all its eigenvalues are real, and its eigenvectors are orthonormal. Recalling
the above diagonalization equation, we can diagonalize A by:

A = V DV T

Using the above relation, we can also write the following relationship:

Given y = V Tx:

xTAx = xTV DV Tx = yTDy =

n∑
i=1

λiy
2
i

Thus, if we want to do the following maximization:

maxx∈Rn(xTAx) subject to ||x||22 = 1

Then the maximizing x can be found by finding the eigenvector corresponding to the largest eigenvalue
of A.

5.7 Applications

Some applications of eigenvalues and eigenvectors include, but are not limited to:

• PageRank
• Schroedinger’s equation
• Principle component analysis (PCA)
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6 Matrix Calculus

6.1 The Gradient

If a function f : IRmxn 7→ IR takes as input a matrix A of size (m× n) and returns a real value, then
the gradient of f is

∇Af(A) ∈ IRmxn =


∂f(A)
∂A11

∂f(A)
∂A12

· · · ∂f(A)
∂A1n

∂f(A)
∂A21

∂f(A)
∂A22

· · · ∂f(A)
∂A2n

...
...

. . .
...

∂f(A)
∂Am1

∂f(A)
∂Am2

· · · ∂f(A)
∂Amn


Every entry in the matrix is:

∇Af(A)ij =
∂f(A)

∂Aij

The size of∇Af(A) is always the same as the size of A. Thus, if A is a vector x:

∇xf(x) =


∂f(x)
∂x1

∂f(x)
∂x2

...
∂f(x)
∂xn


6.2 The Gradient: Properties

• ∇x(f(x) + g(x)) = ∇xf(x) +∇xg(x)

• For t ∈ IR,∇x(tf(x)) = t∇xf(x)

6.3 The Hessian

The Hessian matrix with respect to x can be written as ∇2
xf(x) or as H . It is an nxn matrix of

partial derivatives

∇2
xf(x) ∈ IRnxn =


∂2f(x)
∂x2

1

∂2f(x)
∂x1∂x2

· · · ∂2f(x)
∂x1∂xn

∂2f(x)
∂x2∂x1

∂2f(x)
∂x2

2
· · · ∂2f(x)

∂x2∂xn

...
...

. . .
...

∂2f(x)
∂xn∂x1

∂2f(x)
∂xn∂x2

· · · ∂2f(x)
∂x2

n


Every entry in the matrix is:

∇2
xf(x)ij =

∂2f(x)

∂xi∂xj

It’s important to note that the Hessian is the gradient of every entry of the gradient of the vector. For
instance, the first column of the Hessian is the gradient of ∂f(x)

∂x1
.

6.4 The Hessian: Properties

Schwarz’s theorem: The order of partial derivatives doesn’t matter so long as the second derivative
exists and is continuous.

Thus, the Hessian is always symmetric:

∂2f(x)

∂xi∂xj
=
∂2f(x)

∂xj∂xi

6



6.5 Example Calculations

6.5.1 Example Gradient Calculation

For x ∈ IRn, let f(x) = bTx for some known vector b ∈ IRn

f(x) = [b1 b2 · · · bn]
T


x1
x2
...
xn


Thus,

f(x) =

n∑
i=1

bixi

∂f(x)

∂xk
=

∂

∂xk

n∑
i=1

bixi = bk

Therefore, we can conclude that: ∇xb
Tx = b.

6.5.2 Example Hessian Calculation

Consider the quadratic function f(x) = xTAx

f(x) =

n∑
i=1

n∑
j=1

Aijxixj

∂f(x)

∂xk
=

∂

∂xk

n∑
i=1

n∑
j=1

Aijxixj

=
∂

∂xk
[
∑
i 6=k

∑
j 6=k

Aijxixj +
∑
i6=k

Aikxixk +
∑
j 6=k

Akjxkxj +Akkx
2
k]

=
∑
i 6=k

Aikxi +
∑
j 6=k

Akjxj + 2Akkxk

=

n∑
i=1

Aikxi +

n∑
j=1

Akjxj = 2

n∑
i=1

Akixi

∂2f(x)

∂xk∂xl
=

∂

∂xk
[
∂f(x)

∂xl
] =

∂

∂xk
[

n∑
i=1

2Alixi]

= 2Alk = 2Akl

Thus,
∇2

xf(x) = 2A
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