Lecture 8: Camera Models

Dr. Juan Carlos Niebles
Stanford AI Lab

Professor Fei-Fei Li
Stanford Vision Lab
What we will learn today?

• Pinhole cameras
• Cameras & lenses
• The geometry of pinhole cameras
 • Projection matrix
 • Intrinsic parameters
 • Extrinsic parameters

Reading:
[FP] Chapters 1 – 3
[HZ] Chapter 6
What we will learn today?

- Pinhole cameras
- Cameras & lenses
- The geometry of pinhole cameras
 - Projection matrix
 - Intrinsic parameters
 - Extrinsic parameters

Reading:
- [FP] Chapters 1 – 3
- [HZ] Chapter 6
Camera and World Geometry

- How tall is this woman?
- How high is the camera?
- What is the camera rotation?
- What is the focal length of the camera?
- Which ball is closer?
How do we see the world?

- Let’s design a camera
 - Idea 1: put a piece of film in front of an object
 - Do we get a reasonable image?
• Add a barrier to block off most of the rays
 – This reduces blurring
 – The opening known as the aperture
Camera obscura: the pre-camera

- Known during classical period in China and Greece (e.g. Mo-Tsi, China, 470BC to 390BC)

Illustration of Camera Obscura

Freestanding camera obscura at UNC Chapel Hill

Photo by Seth Ilys

Slide credit: J. Hayes
Camera Obscura used for Tracing

Lens Based Camera Obscura, 1568

Slide credit: J. Hayes
First Photograph

Oldest surviving photograph
- Took 8 hours on pewter plate

Photograph of the first photograph

Joseph Niepce, 1826

Stored at UT Austin

Niepce later teamed up with Daguerre, who eventually created Daguerrotypes

Slide credit: J. Hayes
Dimensionality Reduction Machine (3D to 2D)

3D world

Point of observation

2D image

Figures © Stephen E. Palmer, 2002
Projection can be tricky...
Projection can be tricky...
Projective Geometry

What is lost?

• Length
Length is not preserved
Projective Geometry

What is lost?

• Length
• Angles
What is preserved?

• Straight lines are still straight
Vanishing points and lines

Parallel lines in the world intersect in the image at a “vanishing point”

Slide credit: J. Hayes
Vanishing points and lines

Vertical vanishing point (at infinity)

Vanishing point

Vanishing line

Vanishing point
Pinhole camera

\[
P = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \quad \rightarrow \quad P' = \begin{bmatrix} x' \\ y' \end{bmatrix}
\]

\[
\begin{align*}
x' &= f' \frac{x}{z} \\
y' &= f' \frac{y}{z}
\end{align*}
\]

Note: \(z \) is always negative.

Derived using similar triangles
Pinhole camera

- Common to draw image plane in front of the focal point
- Moving the image plane merely scales the image.

\[
\begin{align*}
x' &= f \frac{x}{z} \\
y' &= f \frac{y}{z}
\end{align*}
\]
Pinhole camera

Is the size of the aperture important?
Cameras & Lenses

Shrinking aperture size
- Rays are mixed up

-Why the aperture cannot be too small?
 - Less light passes through
 - Diffraction effect

Adding lenses!
What we will learn today?

- Pinhole cameras
- Cameras & lenses
- The geometry of pinhole cameras
 - Projection matrix
 - Intrinsic parameters
 - Extrinsic parameters

Reading:
[FP] Chapters 1 – 3
[HZ] Chapter 6
Cameras & Lenses

- A lens focuses light onto the film
Cameras & Lenses

- A lens focuses light onto the film
 - Rays passing through the center are not deviated
 - All parallel rays converge to one point on a plane located at the focal length f
Cameras & Lenses

• A lens focuses light onto the film
 – There is a specific distance at which objects are “in focus”
 [other points project to a “circle of confusion” in the image]
Cameras & Lenses

• Laws of geometric optics
 – Light travels in straight lines in homogeneous medium
 – Reflection upon a surface: incoming ray, surface normal, and reflection are co-planar
 – Refraction: when a ray passes from one medium to another

Snell’s law

\[n_1 \sin \alpha_1 = n_2 \sin \alpha_2 \]

\(\alpha_1 \) = incident angle
\(\alpha_2 \) = refraction angle
\(n_i \) = index of refraction
Thin Lenses

Snell’s law:
\[n_1 \sin \alpha_1 = n_2 \sin \alpha_2 \]

Small angles:
\[n_1 \alpha_1 \approx n_2 \alpha_2 \]
\[n_2 = n \text{ (lens)} \]
\[n_1 = 1 \text{ (air)} \]

\[Z' = f + Z_o \]
\[f = \frac{R}{2(n-1)} \]

\[x' = \frac{x}{z} \]
\[y' = \frac{y}{z} \]
Cameras & Lenses

Issues with lenses: Chromatic Aberration

• Lens has different refractive indices for different wavelengths: causes color fringing

\[f = \frac{R}{2(n - 1)} \]
Issues with lenses: Spherical aberration

- Rays farther from the optical axis focus closer
Issues with lenses: Radial Distortion

- Deviations are most noticeable for rays that pass through the edge of the lens

No distortion

Pin cushion

Barrel (fisheye lens)

Image magnification decreases with distance from the optical axis
What we will learn today?

- Pinhole cameras
- Cameras & lenses
- The geometry of pinhole cameras
 - Projection matrix
 - Intrinsic parameters
 - Extrinsic parameters
Relating real-world point to a point on a camera

\[P = (x, y, z) \rightarrow P' = \left(f \frac{x}{z}, f \frac{y}{z} \right) \]

\[\mathbb{R}^3 \rightarrow \mathbb{R}^2 \]

f = focal length

c = center of the camera
Relating real-world point to a point on a camera

Is this a linear transformation?

$$P = (x, y, z) \rightarrow P' = (f \frac{x}{z}, f \frac{y}{z})$$

No — division by z is nonlinear!

How to make it linear?
Homogeneous coordinates – a reminder

\[(x, y) \Rightarrow \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}\]
homogeneous image coordinates

\[(x, y, z) \Rightarrow \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}\]
homogeneous scene coordinates

• Converting \textit{from} homogeneous coordinates

\[
\begin{bmatrix} x \\ y \\ w \end{bmatrix} \Rightarrow (x/w, y/w) \\
\begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} \Rightarrow (x/w, y/w, z/w)
\]
Relating a real-world point to a point on the camera

In Cartesian coordinates:

\[P = (x, y, z) \rightarrow P' = \left(f \frac{x}{z}, f \frac{y}{z} \right) \]

In homogeneous coordinates:

\[
P' = \begin{bmatrix}
 f & x \\
 f & y \\
 z & 0
\end{bmatrix}
= \begin{bmatrix}
 f & 0 & 0 & 0 \\
 0 & f & 0 & 0 \\
 0 & 0 & 1 & 0
\end{bmatrix}
\begin{bmatrix}
 x \\
 y \\
 z \\
 1
\end{bmatrix}
\]

"Projection matrix"

\[P' = M \cdot P \quad \mathbb{R}^4 \rightarrow \mathbb{R}^3 \]
Interlude: why does this matter?
Object Recognition (CVPR 2006)
Inserting photographed objects into images (SIGGRAPH 2007)

Original

Created

Slide credit: J. Hayes
Relating a real-world point to a point on the camera

In homogeneous coordinates:

\[
P' = \begin{bmatrix} f & x \\ f & y \\ z \end{bmatrix} = \begin{bmatrix} f & 0 & 0 & 0 \\ 0 & f & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}
\]

Intrinsic Assumptions
- Unit aspect ratio
- Optical center at (0,0)
- No skew

Extrinsic Assumptions
- No rotation
- Camera at (0,0,0)
Relating a real-world point to a point on the camera

In homogeneous coordinates:

\[P' = \begin{bmatrix} f & x \\ f & y \\ z \end{bmatrix} = \begin{bmatrix} f & 0 & 0 & 0 \\ 0 & f & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = K[I \ 0]P \]

Intrinsic Assumptions
- Unit aspect ratio
- Optical center at (0,0)
- No skew

Extrinsic Assumptions
- No rotation
- Camera at (0,0,0)
Remove assumption: known optical center

Intrinsic Assumptions
- Optical center at (0,0)
- Optical center at \((u_0, v_0)\)
- Square pixels
- No skew

\[
P' = K \begin{bmatrix} I & 0 \end{bmatrix} P
\]

\[
w \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} f & 0 & u_0 \\ 0 & f & v_0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}
\]

Extrinsic Assumptions
- No rotation
- Camera at (0,0,0)

Slide inspiration: S. Savarese
Remove assumption: square pixels

Intrinsic Assumptions
- Optical center at \((u_0, v_0)\)
- Square pixels
- Rectangular pixels
- No skew

Extrinsic Assumptions
- No rotation
- Camera at \((0,0,0)\)

\[
P' = K \begin{bmatrix} I & 0 \end{bmatrix} P \rightarrow w = \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} \alpha & 0 & u_0 & 0 \\ 0 & \beta & v_0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}
\]
Remove assumption: non-skewed pixels

Intrinsic Assumptions
• Optical center at \((u_0, v_0)\)
• Rectangular pixels
• No skew
• Small skew

Extrinsic Assumptions
• No rotation
• Camera at \((0,0,0)\)

\[
P' = K \begin{bmatrix} I & 0 \end{bmatrix} P
\]

\[
\begin{bmatrix}
\alpha & s & u_0 & 0 \\
0 & \beta & v_0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\]

\[
\begin{bmatrix}
u \\
v \\
w \\
1
\end{bmatrix}
= \begin{bmatrix}
x \\
y \\
z \\
1
\end{bmatrix}
\]

Slide inspiration: S. Savarese
Remove assumption: non-skewed pixels

Intrinsic Assumptions
- Optical center at \((u_0, v_0)\)
- Rectangular pixels
- Small skew

Extrinsic Assumptions
- No rotation
- Camera at \((0,0,0)\)

\[
P' = K \begin{bmatrix} I & 0 \end{bmatrix} P
\]

\[
w \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} \alpha & s & u_0 & 0 \\ 0 & \beta & v_0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}
\]
Real world camera: Translate + Rotate
Remove assumption: allow translation

Intrinsic Assumptions
- Optical center at \((u_0, v_0)\)
- Rectangular pixels
- Small skew

Extrinsic Assumptions
- No rotation
- Camera at \((0,0,0) \rightarrow (t_x, t_y, t_z)\)

\[
P' = K \begin{bmatrix} I & \bar{t} \end{bmatrix} P
\]

\[
\begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} \alpha & 0 & u_0 \\ 0 & \beta & v_0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & t_x \\ 0 & 1 & 0 & t_y \\ 0 & 0 & 1 & t_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}
\]
Remove assumption: allow rotation

Intrinsic Assumptions
- Optical center at \((u_0, v_0)\)
- Rectangular pixels
- Small skew

Extrinsic Assumptions
- No rotation
- Camera at \((t_x, t_y, t_z)\)

Rotation around the coordinate axes, counter-clockwise

\[
R_x(\alpha) = \begin{bmatrix}
1 & 0 & 0 \\
0 & \cos \alpha & -\sin \alpha \\
0 & \sin \alpha & \cos \alpha \\
\end{bmatrix}
\]
\[
R_y(\beta) = \begin{bmatrix}
\cos \beta & 0 & \sin \beta \\
0 & 1 & 0 \\
-\sin \beta & 0 & \cos \beta \\
\end{bmatrix}
\]
\[
R_z(\gamma) = \begin{bmatrix}
\cos \gamma & -\sin \gamma & 0 \\
\sin \gamma & \cos \gamma & 0 \\
0 & 0 & 1 \\
\end{bmatrix}
\]
Remove assumption: allow rotation

Intrinsic Assumptions
- Optical center at \((u_0, v_0)\)
- Rectangular pixels
- Small skew

Extrinsic Assumptions
- No rotation
- Camera at \((t_x, t_y, t_z)\)

\[P' = K [R \bar{t}] P \]

\[
\begin{bmatrix}
 u \\
 v \\
 1
\end{bmatrix} =
\begin{bmatrix}
 \alpha & s & u_0 \\
 0 & \beta & v_0 \\
 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
 r_{11} & r_{12} & r_{13} & t_x \\
 r_{21} & r_{22} & r_{23} & t_y \\
 r_{31} & r_{32} & r_{33} & t_z \\
 0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
 x \\
 y \\
 z \\
 1
\end{bmatrix}
\]
A generic projection matrix

Intrinsic Assumptions
• Optical center at \((u_0, v_0)\)
• Rectangular pixels
• Small skew

Extrinsic Assumptions
• Allow rotation
• Camera at \((t_x, t_y, t_z)\)

\[
P' = K[R \ t]P \quad w\begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} \alpha & s & u_0 \\ 0 & \beta & v_0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} & r_{13} & t_x \\ r_{21} & r_{22} & r_{23} & t_y \\ r_{31} & r_{32} & r_{33} & t_z \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}
\]
A generic projection matrix

Intrinsic Assumptions
- Optical center at \((u_0, v_0)\)
- Rectangular pixels
- Small skew

Extrinsic Assumptions
- Allow rotation
- Camera at \((t_x, t_y, t_z)\)

\[
P' = K[R \ t]P \quad \rightarrow \quad w \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} \alpha & s & u_0 \\ 0 & \beta & v_0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} & r_{13} & t_x \\ r_{21} & r_{22} & r_{23} & t_y \\ r_{31} & r_{32} & r_{33} & t_z \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}
\]

Degrees of freedom??

Slide inspiration: S. Savarese
A generic projection matrix

Intrinsic Assumptions
• Optical center at \((u_0, v_0)\)
• Rectangular pixels
• Small skew

Extrinsic Assumptions
• Allow rotation
• Camera at \((t_x, t_y, t_z)\)

\[
P' = K [R \ t] P \quad \rightarrow \quad \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} \alpha & s & u_0 \\ 0 & \beta & v_0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} & r_{13} & t_x \\ r_{21} & r_{22} & r_{23} & t_y \\ r_{31} & r_{32} & r_{33} & t_z \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}
\]

Degrees of freedom??

Slide inspiration: S. Savarese
CS231a: Camera Calibration
estimate all intrinsic and extrinsic parameters

Intrinsic Assumptions
• Optical center at \((u_0, v_0)\)
• Rectangular pixels
• Small skew

Extrinsic Assumptions
• Allow rotation
• Camera at \((t_x, t_y, t_z)\)

\[
P' = K [R \ t] P \quad \rightarrow \quad \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} \alpha & s & u_0 \\ 0 & \beta & v_0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} & r_{13} & t_x \\ r_{21} & r_{22} & r_{23} & t_y \\ r_{31} & r_{32} & r_{33} & t_z \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}
\]

Slide inspiration: S. Savarese
Orthographic Projection

- Special case of perspective projection
 - Distance from the COP to the image plane is infinite
 - Also called “parallel projection”
- What’s the projection matrix?

\[
\begin{bmatrix}
 u \\
v \\
w
\end{bmatrix} = \begin{bmatrix}
 1 & 0 & 0 & 0 \\
 0 & 1 & 0 & 0 \\
 0 & 0 & 0 & 1
\end{bmatrix}\begin{bmatrix}
x \\
y \\
z \\
1
\end{bmatrix}
\]
Scaled Orthographic Projection

- Special case of perspective projection
 - Object dimensions are small compared to distance to camera

- Also called “weak perspective”
- What’s the projection matrix?

\[
\begin{bmatrix}
 u \\
 v \\
 1
\end{bmatrix} = \begin{bmatrix}
 f & 0 & 0 & 0 \\
 0 & f & 0 & 0 \\
 0 & 0 & 0 & s
\end{bmatrix} \begin{bmatrix}
 x \\
 y \\
 z \\
 1
\end{bmatrix}
\]
Field of View (Zoom)

From London and Upton
Things to remember

• Vanishing points and vanishing lines

• Pinhole camera model and camera projection matrix M
 • Intrinsic parameters
 • Extrinsic parameters

• Homogeneous coordinates
What we have learned today?

- Pinhole cameras
- Cameras & lenses
- The geometry of pinhole cameras
 - Projection matrix
 - Intrinsic parameters
 - Extrinsic parameters

Reading:
- [FP] Chapters 1 – 3
- [HZ] Chapter 6