Lecture 4: Pixels and Filters

Dr. Juan Carlos Niebles
Stanford AI Lab

Professor Fei-Fei Li
Stanford Vision Lab
What we will learn today?

• Images as functions
• Linear systems (filters)
• Convolution and correlation

Some background reading:
Forsyth and Ponce, Computer Vision, Chapter 7
Images as functions

• An image contains discrete number of pixels
 – A simple example
 – Pixel value:
 • “grayscale”
 (or “intensity”): [0,255]
Images as functions

• An image contains discrete number of pixels
 – A simple example
 – Pixel value:
 • “grayscale”
 (or “intensity’’): [0, 255]
 • “color”
 – RGB: [R, G, B]
 – Lab: [L, a, b]
 – HSV: [H, S, V]

[249, 215, 203]

[213, 60, 67]

[90, 0, 53]
Images as functions

• **An Image** as a function f from \mathbb{R}^2 to \mathbb{R}^M:

 $f(x, y)$ gives the **intensity** at position (x, y)

• Defined over a rectangle, with a finite range:

 $f: [a,b] \times [c,d] \rightarrow [0,255]$
Images as functions

• **An Image** as a function f from \mathbb{R}^2 to \mathbb{R}^M:

 $f(x, y)$ gives the **intensity** at position (x, y)

 • Defined over a rectangle, with a finite range:

 $$f: [a,b] \times [c,d] \rightarrow [0, 255]$$

 \[r(x, y) \]

 • A color image: $f(x, y) = g(x, y)$

 \[b(x, y) \]
Images as discrete functions

• Images are usually **digital** (discrete):
 – **Sample** the 2D space on a regular grid

• Represented as a matrix of integer values

<table>
<thead>
<tr>
<th></th>
<th>120</th>
<th></th>
<th>120</th>
<th></th>
<th>120</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>62</td>
<td>79</td>
<td>23</td>
<td>119</td>
<td>120</td>
<td>105</td>
<td>4</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>9</td>
<td>62</td>
<td>12</td>
<td>78</td>
<td>34</td>
</tr>
<tr>
<td>10</td>
<td>58</td>
<td>197</td>
<td>46</td>
<td>0</td>
<td>0</td>
<td>48</td>
</tr>
<tr>
<td>176</td>
<td>135</td>
<td>5</td>
<td>188</td>
<td>191</td>
<td>68</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>29</td>
<td>26</td>
<td>37</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>89</td>
<td>144</td>
<td>147</td>
<td>187</td>
<td>102</td>
<td>62</td>
</tr>
<tr>
<td>255</td>
<td>252</td>
<td>0</td>
<td>166</td>
<td>123</td>
<td>62</td>
<td>0</td>
</tr>
<tr>
<td>166</td>
<td>63</td>
<td>127</td>
<td>17</td>
<td>1</td>
<td>0</td>
<td>99</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Images as discrete functions

Cartesian coordinates

\[f[n, m] = \begin{bmatrix} \vdots & \vdots & \vdots \\ \vdots & f[-1, 1] & f[0, 1] & f[1, 1] \\ \vdots & f[-1, 0] & f[0, 0] & f[1, 0] \\ f[-1, -1] & f[0, -1] & f[1, -1] & \vdots & \vdots \end{bmatrix} \]

Notation for discrete functions
What we will learn today?

• Images as functions
• Linear systems (filters)
• Convolution and correlation

Some background reading:
Forsyth and Ponce, Computer Vision, Chapter 7
Systems and Filters

• Filtering:
 – Form a new image whose pixels are a combination original pixel values

Goals:
- Extract useful information from the images
 • Features (edges, corners, blobs...)

- Modify or enhance image properties:
 • super-resolution; in-painting; de-noising
De-noising

Super-resolution

Salt and pepper noise

In-painting

Bertalmio et al.

Fei-Fei Li

Lecture 4 - 11 6-Oct-16
2D discrete-space systems (filters)

\[f[n, m] \rightarrow \text{System } S \rightarrow g[n, m] \]

\[g = S[f], \quad g[n, m] = S\{f[n, m]\} \]

\[f[n, m] \xrightarrow{S} g[n, m] \]
Filter example #1: Moving Average

- 2D DS moving average over a 3×3 window of neighborhood

\[
g[n, m] = \frac{1}{9} \sum_{k=n-1}^{n+1} \sum_{l=m-1}^{m+1} f[k, l]
\]

\[
= \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} f[n - k, m - l]
\]

\[
(f \ast h)[m, n] = \frac{1}{9} \sum_{k,l} f[k,l] h[m-k, n-l]
\]
Filter example #1: Moving Average

\[F[x, y] \]

\[(f \ast h)[m, n] = \sum_{k,l} f[k, l] h[m-k, n-l] \]

\[G[x, y] \]
Filter example #1: Moving Average

\[F[x, y] \]

\[G[x, y] \]

\[
(f \ast h)[m,n] = \sum_{k,l} f[k,l] h[m-k, n-l]
\]
Filter example #1: Moving Average

\[F[x, y] \]

\[G[x, y] \]

\[(f * h)[m, n] = \sum_{k,l} f[k, l] h[m - k, n - l] \]
Filter example #1: Moving Average

\[F[x, y] \]

\[G[x, y] \]

\[(f \ast h)[m,n] = \sum_{k,l} f[k,l] h[m-k, n-l]\]
Filter example #1: Moving Average

\[F[x, y] \quad G[x, y] \]

\[(f \ast h)[m,n] = \sum_{k,l} f[k,l] h[m-k, n-l] \]
Filter example #1: Moving Average

\[F[x, y] \]

\[G[x, y] \]

\[
(f \ast h)[m, n] = \sum_{k,l} f[k,l] h[m-k, n-l]
\]

Source: S. Seitz
In summary:

- Replaces each pixel with an average of its neighborhood.
- Achieve smoothing effect (remove sharp features)
Filter example #1: Moving Average
Filter example #2: Image Segmentation

- Image segmentation based on a simple threshold:

\[g[n, m] = \begin{cases}
255, & f[n, m] > 100 \\
0, & \text{otherwise.}
\end{cases} \]
Classification of systems

- Amplitude properties
 - Linearity
 - Stability
 - Invertibility

- Spatial properties
 - Causality
 - Separability
 - Memory
 - Shift invariance
 - Rotation invariance
Shift-invariance

If \(f[n, m] \xrightarrow{S} g[n, m] \) then

\[
f[n - n_0, m - m_0] \xrightarrow{S} g[n - n_0, m - m_0]
\]

for every input image \(f[n, m] \) and shifts \(n_0, m_0 \)
Is the moving average system is shift invariant?

\[F[x, y] \quad G[x, y] \]
Is the moving average system is shift invariant?

\[
f[n, m] \xrightarrow{S} g[n, m] = \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} f[n - k, m - l]
\]

\[
f[n - n_0, m - m_0]
\]

\[
\xrightarrow{S} \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} f[(n - n_0) - k, (m - m_0) - l]
\]

\[
= g[n - n_0, m - m_0] \quad \text{Yes!}
\]
Linear Systems (filters)

\[f(x, y) \rightarrow S \rightarrow g(x, y) \]

- Linear filtering:
 - Form a new image whose pixels are a weighted sum of original pixel values
 - Use the same set of weights at each point

- \(S \) is a linear system (function) iff it \(S \) satisfies

\[S[\alpha f_1 + \beta f_2] = \alpha S[f_1] + \beta S[f_2] \]

superposition property
Linear Systems (filters)

\[f(x, y) \rightarrow S \rightarrow g(x, y) \]

• Is the moving average a linear system?

• Is thresholding a linear system?
 - \(f_1[n,m] + f_2[n,m] > T \)
 - \(f_1[n,m] < T \)
 - \(f_2[n,m] < T \quad \text{No!} \)
LSI (linear \textit{shift invariant}) systems

Impulse response

\[\delta_2[n, m] \rightarrow S \rightarrow h[n, m] \]

\[\delta_2[n - k, m - l] \rightarrow S_{(SI)} \rightarrow h[n - k, m - l] \]
LSI (linear *shift invariant*) systems

Example: impulse response of the 3 by 3 moving average filter:

\[
h[n, m] = \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} \delta_2[n - k, m - l]
\]

\[
= \begin{bmatrix}
1/9 & 1/9 & 1/9 \\
1/9 & 1/9 & 1/9 \\
1/9 & 1/9 & 1/9 \\
\end{bmatrix}
\]
LSI (linear *shift invariant*) systems

An LSI system is completely specified by its impulse response.

\[
f[n, m] = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k, l] \delta_2[n - k, m - l]
\]

\[
\delta_2[n, m] \rightarrow [S] \rightarrow h[n, m]
\]

\[
\rightarrow \boxed{S \text{ LSI}} \rightarrow \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k, l] h[n - k, m - l]
\]

Discrete convolution

\[
f[n, m] \ast h[n, m]
\]
What we will learn today?

• Images as functions
• Linear systems (filters)
• Convolution and correlation

Some background reading:
Forsyth and Ponce, Computer Vision, Chapter 7
Discrete convolution (symbol: ∗)

- Fold $h[k,l]$ about origin to form $h[-k,-l]$
- Shift the folded results by n,m to form $h[n - k,m - l]$
- Multiply $h[n - k,m - l]$ by $f[k,l]$
- Sum over all k,l
- Repeat for every n,m
Discrete convolution (symbol: \(\ast \))

- Fold \(h[k,l] \) about origin to form \(h[-k,-l] \)
- Shift the folded results by \(n,m \) to form \(h[n-k,m-l] \)
- Multiply \(h[n-k,m-l] \) by \(f[k,l] \)
- Sum over all \(k,l \)
- Repeat for every \(n,m \)
Discrete convolution (symbol: \(\ast \))

- Fold \(h[k,l] \) about origin to form \(h[-k,-l] \)
- Shift the folded results by \(n,m \) to form \(h[n-k,m-l] \)
- Multiply \(h[n-k,m-l] \) by \(f[k,l] \)
- Sum over all \(k,l \)
- Repeat for every \(n,m \)
Convolution in 2D - examples

Original

*

0 0 0
0 1 0
0 0 0

=

?
Convolution in 2D - examples

Original

\[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0 \\
\end{array} \]

Filtered (no change)

Courtesy of D Lowe
Convolution in 2D - examples

Original

\[
\begin{array}{c}
\cdot 0 & \cdot 0 & \cdot 0 \\
\cdot 0 & \cdot 0 & \cdot 1 \\
\cdot 0 & \cdot 0 & \cdot 0 \\
\end{array}
\]

\[
\ast
\]

= ?

Courtesy of D Lowe
Convolution in 2D - examples

Original

\[
\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0 \\
\end{array}
\]

= Shifted right By 1 pixel

Courtesy of D Lowe
Convolution in 2D - examples

Original

\[
\begin{bmatrix}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1 \\
\end{bmatrix}
\ast \frac{1}{9}
=
?
\]
Convolution in 2D - examples

Original * \frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} = \text{Blur (with a box filter)}

Courtesy of D Lowe
Convolution in 2D - examples

(Note that filter sums to 1)

“details of the image”
- What does blurring take away?

- Let’s add it back:
Convolution in 2D – Sharpening filter

Sharpening filter: Accentuates differences with local average
Image support and edge effect

• A computer will only convolve **finite support signals**.
 • That is: images that are zero for n,m outside some rectangular region

• MATLAB’s conv2 performs 2D DS convolution of finite-support signals.

\[
\begin{align*}
N_1 \times M_1 & \ast N_2 \times M_2 = (N_1 + N_2 - 1) \times (M_1 + M_2 - 1)
\end{align*}
\]
Image support and edge effect

• A computer will only convolve finite support signals.
• What happens at the edge?

- zero “padding”
- edge value replication
- mirror extension
- more (beyond the scope of this class)

-> Matlab conv2 uses zero-padding
What we will learn today?

- Images as functions
- Linear systems (filters)
- Convolution and correlation

Some background reading:
Forsyth and Ponce, Computer Vision, Chapter 7
(Cross) correlation (symbol: ⋆⋆)

Cross correlation of two 2D signals \(f[n,m] \) and \(g[n,m] \)

\[
\begin{align*}
\rho_{fg}[k, l] & \triangleq \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} f[n, m] g^*[n - k, m - l] \\
&= \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} f[n + k, m + l] g^*[n, m], \quad k, l \in \mathbb{Z}.
\end{align*}
\]

\((k, l)\) is called the lag

• Equivalent to a convolution without the flip

\[
\rho_{fg}[n, m] = f[n, m] \ast g^*[-n, -m]
\]

\((g^* \text{ is defined as the complex conjugate of } g. \text{ In this class, } g(n,m) \text{ are real numbers, hence } g^*=g.)\)
(Cross) correlation – example

MATLAB’s `xcorr2`

Courtesy of J. Fessler
(Cross) correlation – example

Left

Right

scanline

Norm. cross corr. score

\[dc(y_1, y_2) = \frac{y_1^T y_2}{\|y_1\| \|y_2\|} \]
Convolution vs. (Cross) Correlation
Convolution vs. (Cross) Correlation

• A convolution is an integral that expresses the amount of overlap of one function as it is shifted over another function.
 – convolution is a filtering operation

• Correlation compares the similarity of two sets of data. Correlation computes a measure of similarity of two input signals as they are shifted by one another. The correlation result reaches a maximum at the time when the two signals match best.
 – correlation is a measure of relatedness of two signals
Cross Correlation Application: Vision system for TV remote control - uses template matching

properties

- **Commutative property:**

 \[f \ast \ast h = h \ast \ast f \]

- **Associative property:**

 \[(f \ast \ast h_1) \ast \ast h_2 = f \ast \ast (h_1 \ast \ast h_2) \]

- **Distributive property:**

 \[f \ast \ast (h_1 + h_2) = (f \ast \ast h_1) + (f \ast \ast h_2) \]

The order doesn’t matter! \[h_1 \ast \ast h_2 = h_2 \ast \ast h_1 \]
properties

• **Shift property:**

\[f[n, m] \ast \delta_2[n - n_0, m - m_0] = f[n - n_0, m - m_0] \]

• **Shift-invariance:**

\[g[n, m] = f[n, m] \ast h[n, m] \]

\[\implies f[n - l_1, m - l_1] \ast h[n - l_2, m - l_2] = g[n - l_1 - l_2, m - l_1 - l_2] \]
What we have learned today?

- Images as functions
- Linear systems (filters)
- Convolution and correlation