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Recap: Image Segmentation

* Goal: identify groups of pixels that go together
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Recap: Gestalt Theory

* Gestalt: whole or group (German: "shape, form")

— Whole is other than sum of its parts
— Relationships among parts can yield new properties/features

* Psychologists identified series of factors that predispose set of
elements to be grouped (by human visual system)

“I stand at the window and see a house, trees, sky.

Theoretically | might say there were 327 brightnesses

and nuances of colour. Do | have “327"? No. | have sky, house,

and trees.”

Max Wertheimer
(1880-1943)

L i

Untersuchungen zur Lehre von der Gestalt,
Psychologische Forschung, Vol. 4, pp. 301-350, 1923
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Recap: Gestalt Factors
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These factors make intuitive sense, but are very difficult to translate into algorithms.




Recap: Multistability

https://en.wikipedia.org/wiki/Spinning_Dancer
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Recap: Agglomerative clustering

Simple algorithm

e Initialization:
o Every point is its own cluster
e Repeat:
o Find “most similar” pair of clusters
o Merge into a parent cluster
e Until:
o The desired number of clusters has been reached
o There is only one cluster
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What will we learn today?

* K-means clustering
* Mean-shift clustering

Start!

Bandwidth Value: 0.8
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Reading material:
Forsyth & Ponce: Chapter 9.3
Comaniciu and Meer, Mean Shift: A Robust Approach toward Feature Space Analysis, PAMI 2002.

gifs: https://www.projectrhea.org
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https://www.cse.unr.edu/~bebis/CS773C/ObjectRecognition/Papers/Comaniciu02.pdf

Image Segmentation: Toy Example

white

pixels

d 3 black pixels gray / _—
2 | pi)Iels |

input image L J

* These intensities define the " intensity

 We could label every pixel in the image according to which
of these primary intensities it is.

— i.e., segment the image based on the intensity feature.
 What if the image isn’t quite so simple?

Slide credit: Kristen Grauman
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Pixel count

Input image L

] a0 100 150 pedali] 230 s ali]

Intensity

G000

5000 -

4000

3000 -

Pixel count

2000

1000 -

Input image -100 -50 0 50 100 150 200 250 300

Intensity
Slide credit: Kristen Grauman
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* Now how to determine the three main
intensities that define our groups?

e We need to cluster.

Slide credit: Kristen Grauman
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* Goal: choose three “centers” as the representative intensities,
and label every pixel according to which of these centers it is
nearest to.

* Best cluster centers are those that minimize Sum of Square
Distance (SSD) between all points and their nearest cluster

centercf
k
SSD =) ) (z—c)

i1 TEC

Slide credit: Kristen Grauman
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Objective function

® Goal: minimize the distortion in data given
clusters
- Preserve information

Cluster center Data
; N k /
*  C¥ - 1 Yy 2
C,0 = argmn — E E 0ii(ci — x;)°
o0 :\ : - : z
§ \

Whether z; is assigned to ¢;
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Clustering

* With this objective, it is a “chicken and egg”
problem:

— If we knew the cluster centers, we could allocate points to
groups by assigning each to its closest center.
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— If we knew the group memberships, we could get the
centers by computing the mean per group.
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Slide credit: Kristen Grauman
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K-means Clustering

e [nitialization:
o choose k cluster centers

e Repeat:
o assignment step:
m Forevery point find its closest center
o update step:
m Update every center as the mean of its points

e Until:
o The maximum number of iterations is reached, or
o No changes during the assignment step, or
o The average distortion per point drops very little

[Lloyd, 1957]
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: &
K-means Clustering  _.oonsc*

note
o Input: N examples {xi,...,xy} (x, € RP); the number of partitions K
@ Initialize: K cluster centers pu1,..., uk. Several initialization options:

o Randomly initialized anywhere in RP
@ Choose any K examples as the cluster centers

@ lterate:

@ Assign each of example x, to its closest cluster center
! 2
Co=A{n: k=argmin||x, — [’}

(Ck is the set of examples closest to p)
o Recompute the new cluster centers p, (mean/centroid of the set Cy)

1
ﬂk:mzxn

nECk

@ Repeat while not converged

slide credit: P. Rai
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https://www.cs.utah.edu/~piyush/teaching/4-10-slides.pdf
https://www.cs.utah.edu/~piyush/teaching/4-10-slides.pdf

: (@
K-means Clustering  _.oonsc*

note

The K-means objective function

@ Let py,...,uk be the K cluster centroids (means)
@ Let rx € {0,1} be indicator denoting whether point x,, belongs to cluster k

@ K-means objective minimizes the total distortion (sum of distances of points
from their cluster centers)

N K
J(Ju: :") = ernkan _)ukHz

=1 k=1

@ Note: Exact optimization of the K-means objective is NP-hard

@ The K-means algorithm is a heuristic that converges to a local optimum [1]

[1] L. Bottou and Y. Bengio. Convergence properties of the kmeans algorithm. NIPS, 1995. slide credit: P. Rai
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K-means: Initialization

e k-means is extremely sensitive to initialization

e Bad initialization can lead to:
o poor convergence speed
o bad overall clustering

e How to initialize?

o randomly from data

o try to find K “spread-out” points (k-means++)
e Safeguarding measure:

o try multiple initializations and choose the best

Fei-Fei Li Lecture 13 - 17 8-Nov-2016



K-means: Initialization

e k-means is extremely sensitive to initialization

e Bad initialization can lead to:
o poor convergence speed
o bad overall clustering
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K-means++

* Can we prevent arbitrarily bad local minima?

1. Randomly choose first center.

2. Pick new center with prob. proportional to (x - ci)2
— (Contribution of x to total error)

3. Repeat until K centers.
* Expected error O(logK) (optimal)

K-means++ animation Arthur & Vassilvitskii 2007
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http://theory.stanford.edu/~sergei/slides/BATS-Means.pdf
http://theory.stanford.edu/~sergei/slides/BATS-Means.pdf
http://shabal.in/visuals/kmeans/KMeansPlusPlus.pdf
http://shabal.in/visuals/kmeans/KMeansPlusPlus.pdf

K-means: choosing K

@ One way to select K for the K-means algorithm is to try different values of
K, plot the K-means objective versus K, and look at the “elbow-point” in

the plot

1000 |

5001

O

1

2 3 4

@ For the above plot, K = 2 is the elbow point

Picture courtesy: "Pattern Recognition and Machine Learning, Chris Bishop (2006)

Fei-Fei Li

slide credit: P. Rai
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https://www.cs.utah.edu/~piyush/teaching/4-10-slides.pdf
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K-means: choosing K

Validation set

— Try different numbers of clusters and look at
performance

 When building dictionaries (discussed later), more
clusters typically work better
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Distance Measure & Termination

e Choice of “distance” measure:
m Euclidean (most commonly used)
m Cosine

m non-linear! (Kernel k-means) ey &

Picture courtesy: Christof Monz (Queen Mary, Univ. of London)

e Termination:
o The maximum number of iterations is reached
o No changes during the assignment step (convergence)
o The average distortion per point drops very little
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http://www.public.asu.edu/~jye02/CLASSES/Fall-2005/PAPERS/kdd_spectral_kernelkmeans.pdf

K-means: Example

4 Sanced k- ™

K-Means Clustering Example
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http://www.youtube.com/watch?v=BVFG7fd1H30
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https://www.youtube.com/watch?v=BVFG7fd1H30

How to evaluate clusters?

* Generative
— How well are points reconstructed from the clusters?
— “Distortion”

* Discriminative
— How well do the clusters correspond to labels?
* Purity
— Note: unsupervised clustering does not aim to be
discriminative
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Segmentation as Clustering

e Let’s just use the pixel intensities!

Slide credit: Kristen Grauman
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Feature Space

* Depending on what we choose as the feature space,
we can group pixels in different ways.

* Grouping pixels based on
intensity similarity

4—.!( C0=CCC(C(0—=0—CQC(C(C0-0—-Q(CQ(C C(C.—>

* Feature space: intensity value (1D)

Slide credit: Kristen Grauman
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Feature Space

* Depending on what we choose as the feature space, we can
group pixels in different ways.

* Grouping pixels based
on color similarity

& b (2
N R G_=189 G=12
B=2 B=2
/

® Feature space: color value (3D)

Slide credit: Kristen Grauman
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Feature Space

* Depending on what we choose as the feature space, we can
group pixels in different ways.

* Grouping pixels based

on texture similarity

ENNIAE
ESNIAE

ENNIZ
T e o O O O

Filter bank of
24 filters

® Feature space: filter bank responses (e.g., 24D)

Fei-Fei Li

Slide credit: Kristen Grauman
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K-Means Clustering Results

* K-means clustering based on intensity or color is
essentially vector quantization of the image attributes

— Clusters don’t have to be spatially coherent

Image Intensity-based clusters Color-based clusters

Image source: Forsyth & Ponce
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Smoothing Out Cluster Assighments

e Assigning a cluster label per pixel may yield outliers:

—>
Original Labeled by cluster center’s intensity
|?
* How can we ensure they 3
are spatially smooth? 5

Slide credit: Kristen Grauman
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Segmentation as Clustering

* Depending on what we choose as the feature space,
we can group pixels in different ways.

* Grouping pixels based on
intensity+position similarity

t Intensity

T

= Way to encode both similarity and proximity.

Slide credit: Kristen Grauman

Fei-Fei Li Lecture 13 - 31 8-Nov-2016




K-means clustering for superpixels

SLIC Superpixels:
® Feature space — intensity + position
o L.a.b. color space
o limited region (window 2*S)

[lk)ak)bkaxk)yk]

® Distance metric;:

de = +/(l; —1:)? + (a; — ai)? + (b; — b;)? ' : .
Fig. 1: Images segmented using SLIC into superpixels of size 64, 256,
ds - \/(335' . :'3?3)2 F (yj @ yi)Q and 1024 pixels (approximately).

v =y(8) (%)
® Initialization:
o Spatial grid (grid step = S)

(a) standard k-means searches (b) SLIC searches

® Iterate over centers and not points R o

Achanta et al., SLIC Superpixels Compared to State-of-the-art Superpixel Methods, PAMI 2012.
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https://infoscience.epfl.ch/record/177415/files/Superpixel_PAMI2011-2.pdf

K-means clustering for superpixels

Algorithm 1 SLIC superpixel segmentation

/% Initialization */

Initialize cluster centers Cx = [lx,ak, bk, Tk, 'yk]T by
sampling pixels at regular grid steps S.

Move cluster centers to the lowest gradient position in a
3 X 3 neighborhood.

Set label [(i) = —1 for each pixel i.
Set distance d(7) = oo for each pixel i.

repeat
/*x Assignment */
for each cluster center C), do
for each pixel ¢ in a 25 x 2S5 region around C} do
Compute the distance D between C} and i.
if D < d(i) then
set d(i) = D
set [(i) =k
end if
end for
end for

/* Update +/
Compute new cluster centers.
Compute residual error E.

until £ < threshold

Achanta et al., SLIC Superpixels Compared to State-of-the-art Superpixel Methods, PAMI 2012.
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https://infoscience.epfl.ch/record/177415/files/Superpixel_PAMI2011-2.pdf

K-means clustering for superpixels

S 1 F i : . 3 ) y ' o> e
GS04 NCO05 TPO9 QS09 GCalO GCb10 SLIC

Fig. 7: Visual comparison of superpixels produced by various methods. The average superpixel size in the upper left of each image is 100 pixels,
and 300 in the lower right. Alternating rows show each segmented image followed by a detail of the center of each image.

Achanta et al., SLIC Superpixels Compared to State-of-the-art Superpixel Methods, PAMI 2012.
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https://infoscience.epfl.ch/record/177415/files/Superpixel_PAMI2011-2.pdf

K-means clustering for superpixels

Achanta et al., SLIC Superpixels Compared to State-of-the-art Superpixel Methods, PAMI 2012.
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K-means Clustering: Limitations

@ Makes hard assignments of points to clusters

@ A point either completely belongs to a cluster or not belongs at all

o No notion of a soft assignment (i.e., probability of being assigned to each
cluster: say K = 3 and for some point x,, p1 = 0.7, p> = 0.2, p3 = 0.1)

o Gaussian mixture models and Fuzzy K-means allow soft assignments

@ Sensitive to outlier examples (such examples can affect the mean by a lot)

o K-medians algorithm is a more robust alternative for data with outliers

@ Reason: Median is more robust than mean in presence of outliers

@ Works well only for round shaped, and of roughtly equal sizes/density clusters

@ Does badly if the clusters have non-convex shapes

o Spectral clustering or kernelized K-means can be an alternative [1]

[1] Dhillon et al. Kernel k-means. Spectral Clustering and Normalized Cuts. KDD, 2004, slide credit: P. Rai
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https://www.cs.utah.edu/~piyush/teaching/4-10-slides.pdf
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http://www.public.asu.edu/~jye02/CLASSES/Fall-2005/PAPERS/kdd_spectral_kernelkmeans.pdf

K-Means pros and cons

* Pros

* Finds cluster centers that minimize
conditional variance (good
representation of data)

e Simple and fast, Easy to implement
* Cons

* Need to choose K

* Sensitive to outliers

* Prone to local minima

e All clusters have the same
parameters (e.g., distance measure
is non-adaptive)

outher

e

outher

e *Can be slow: each iteration is %2
O(KNd) for N d-dimensional points &, ‘gﬁ
* Usage fm 8 g
* Unsupervised clustering %% a%?

* Rarely used for pixel segmentation e .,"5”

(A): Two natural clusters (B): k-means clusters
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Scaling-up K-means clustering

o é‘g Q
8 e
e Assignment step is the bottleneck iy el
e Approximate assignments k O; o,
o [AK-means, CVPR 2007], [AGM, ECCV 2012] A
Ranked retrieval DRVQ
e Mini-batch version
o [mbK-means, WWW 2010] y . 3(% \
: ) B %
e Search from every center S IR 5
o [Ranked retrieval, WSDM 2014] P &2
e Binarize data and centroids o : %f:nj
o [BK-means, CVPR 2015] EGM e —

e (Quantize data
o [DRVAQ, ICCV 2013], [IQ-means, ICCV 2015]
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https://www.robots.ox.ac.uk/~vgg/publications/papers/philbin07.pdf
http://image.ntua.gr/iva/files/agm.pdf
https://www.eecs.tufts.edu/~dsculley/papers/fastkmeans.pdf
http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/42853.pdf
http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Gong_Web_Scale_Photo_2015_CVPR_paper.pdf
http://image.ntua.gr/iva/files/qc.pdf
http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Avrithis_Web-Scale_Image_Clustering_ICCV_2015_paper.pdf

What will we learn today?

* Mean-shift clustering
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Mean-Shift Segmentation

* An advanced and versatile technique for
clustering-based segmentation

Segmented "landscape 1" | Segmented "landscape 27

D. Comaniciu and P. Meer, Mean Shift: A Robust Approach toward Feature Space Analysis, PAMI 2002.

Slide credit: Svetlana Lazebnik
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Mean-Shift Algorithm

12

10+ —— i
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* Iterative Mode Search v
1. Initialize random seed, and window W g
2. Calculate center of gravity (the “mean”) of W = Z v H(x) Iz
3. Shift the search window to the mean xeW 'g
4, Repeat Step 2 until convergence S
[}
o
A

[Fukunaga & Hostetler, 1975]
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Slide by Y. Ukrainitz & B. Sarel
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Slide by Y. Ukrainitz & B. Sarel
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Slide by Y. Ukrainitz & B. Sarel

Fei-Fei Li Lecture 13 - 44 8-Nov-2016



Region of

Mean-Shift [

|

o interest
Center of
o mass
o
PY o
o
o
o
o
o o o '
® ® Mean Shift
() vector

Slide by Y. Ukrainitz & B. Sarel

Fei-Fei Li Lecture 13 - 45 8-Nov-2016



Region of

Mean-Shift [

|

o interest
Center of
o mass
o
PY o
o
o
o
o
o o o '
® ® Mean Shift
() vector

Slide by Y. Ukrainitz & B. Sarel

Fei-Fei Li Lecture 13 - 46 8-Nov-2016



Region of

Mean-Shift [

|

o interest
Center of
o mass
o
PY o
o
o
o
o
o o o '
® ® Mean Shift
() vector

Slide by Y. Ukrainitz & B. Sarel

Fei-Fei Li Lecture 13 - 47 8-Nov-2016



Mean-Shift o
o ® ® ® [ interest ]
= ¢ N ®
o
@ * ¢ °oe
o P ® °
® ®
o o o
¢ o ® o ® ® °
o
. o o o o
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Real Modality Analysis
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The blue data points were traversed by the windows towards the mode. =
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Mean-Shift Clustering

e Cluster: all data points in the attraction basin of a
mode

e Attraction basin: the region for which all trajectories
lead to the same mode

Slide by Y. Ukrainitz & B. Sarel
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Mean-Shift Clustering/Segmentation

 Find features (color, gradients, texture, etc)

* Initialize windows at individual pixel locations

 Perform mean shift for each window until convergence

e Merge windows that end up near the same “peak” or mode

Slide credit: Svetlana Lazebnik
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IVIean Shlft Segmentatlon Results

Slide credit: Svetlana Lazebnik
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More Results

Slide credit: Svetlana Lazebnik
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More Results
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Problem: Computational Complexity
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Speedups: Basin of Attraction

O - TN @) @)

Slide credit: Bastian Leibe

Fei-Fei Li Lecture 13 - 57 8-Nov-2016




o @ @

e Assign all points within radius r/c of the search path to the mode

Slide credit: Bastian Leibe
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Given n data points x; € R?, the multivariate kernel density estimate using a
‘ radially symmetric kernel’ (e.g., Epanechnikov and Gaussian kernels), K (x), is given

\—,ecz‘ﬂ“ica1 °E ;&
e o oo™ i
no fx nhd ;K( T ) 3 (1)

where h (termed the bandwidth parameter) defines the radius of kernel. The radially
symmetric kernel is defined as,

K (x) = cxk([x]*), (2)

where ¢, represents a normalization constant. Taking the gradient of the density
estimator (1) and some further algebraic manipulation yields,

ﬂ 3% (=)

s 2
X—X;

> g (I=52°)

term 1 ~ Bt v

g
term 2

X —X;

h

o

- x|, (3

Mean-shift Vi) = et [Zg(
Algorithm -

Comaniciu & Meer, 2002

i=1

where g(x) = —k'(z) denotes the derivative of the selected kernel profile. The first
term is proportional to the density estimate at x (computed with the kernel G =
c9(]x|*)). The second term, called the mean shift vector, m, points toward the
direction of maximum increase in density and is proportional to the density gradient
estimate at point x obtained with kernel K. The mean shift procedure for a given
point x; is as follows: (see Fig. 1):

1. Compute the mean shift vector m(x?).

t41
7

2. Translate density estimation window: x;™* = x! + m(x%).

3. Iterate steps 1. and 2. until convergence, i.e., Vf(x;) = 0.
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Figure 1: Mean shift procedure. Starting at data point x;, run the mean shift pro-
cedure to find the stationary points of the density function. Superscripts denote the
mean shift iteration, the shaded and black dots denote the input data points and
successive window centres, respectively, and the dotted circles denote the density
estimation windows.
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Summary Mean-Shift

* Pros
— General, application-independent tool

— Model-free, does not assume any prior shape (spherical,
elliptical, etc.) on data clusters

— Just a single parameter (window size h)
* h has a physical meaning (unlike k-means)

— Finds variable number of modes
— Robust to outliers

* Cons
— Output depends on window size
— Window size (bandwidth) selection is not trivial
— Computationally (relatively) expensive (~2s/image)
— Does not scale well with dimension of feature space

Slide credit: Svetlana Lazebnik

Fei-Fei Li Lecture 13 - 61 8-Nov-2016



Medoid-Shift & Quick-Shift

\\

- does not need the gradient or quadratlc lower bound
- only one step has to be computed for each point: simply moves each
point to the nearest neighbor for which there is an increment of the

density
- there is no need for a stopping/merging heuristic

- the data space X may be non-Euclidean

[Vedaldi and Soatto, 2008]
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http://www.robots.ox.ac.uk/~vedaldi/assets/pubs/vedaldi08quick.pdf

What have we learned today

* K-means clustering
* Mean-shift clustering

IPython Notebook for SLIC and Quickshift
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https://gist.github.com/skamalas/805ded0892663ea9c66010ef6f768450
https://gist.github.com/skamalas/805ded0892663ea9c66010ef6f768450

