CS131
Panoramic Image Stitching

Ranjay Krishna
16-Oct-15
Agenda

• Objective
• Main flow
• Skeleton code
• Results
Objective

Multiple images into one panorama!
Main Flow

- Detect key points
Detect Key Points

...
Skeleton Code

• Detect key points (Done for you!)
 – Under KeypointDetect

[feature, DoG pyr, Gaussian pyr] = detect_features(input image)
Main Flow

- Detect key points
- Build the SIFT descriptors

\((u_1, u_2, \ldots, u_{128})\)
\((v_1, v_2, \ldots, v_{128})\)
Build the SIFT Descriptors

This is just an illustration!
Skeleton Code

• Build the SIFT descriptors
• Input
 – Gaussian pyramid
 – key point location
 – key point scale index
• Output
 – A set of 128-dim vectors
Skeleton Code

• Build the SIFT descriptors (30 lines of code)
 – Compute gradient magnitude and orientation
 – For each key point
 • Find a patch (tricky round-off)
 • Compute orientation of the patch
 • Build the histogram (edge case)
Main Flow

- Detect key points
- Build the SIFT descriptors
- Match SIFT descriptors
Match SIFT Descriptors

- Euclidean distance between descriptors
Skeleton Code

• **Match SIFT descriptors** (6 lines of code)
 – Input: D1, D2, thresh (default 0.7)
 – Output: match [D1’s index, D2’s index]
 – Try to use *one* for loop
 – Useful command
 • repmat
 • sort
Main Flow

\[(u_1, u_2, \ldots, u_{128}) \]
\[(v_1, v_2, \ldots, v_{128}) \]

- Detect key points
- Build the SIFT descriptors
- Match SIFT descriptors
- Fitting the transformation

\[T = \begin{bmatrix} t_{11} & t_{12} & t_{13} \\ t_{21} & t_{22} & t_{23} \\ 0 & 0 & 1 \end{bmatrix} \]
Fitting the transformation

- 2D transformations
Skeleton Code

- Fit the transformation matrix
 \[H = \begin{bmatrix}
 h_{11} & h_{12} & h_{13} \\
 h_{21} & h_{22} & h_{23} \\
 0 & 0 & 1
 \end{bmatrix} \]

- Six variables
 - each point gives two equations
 - at least three points

- Least squares
Main Flow

- Detect key points
- Build the SIFT descriptors
- Match SIFT descriptors
- Fitting the transformation
- RANSAC
RANSAC

• A further refinement of matches
Skeleton Code

• RANSAC
 – ComputeError

\[
\left\| \begin{bmatrix} x_2 \\ y_2 \\ 1 \end{bmatrix} - H \begin{bmatrix} x_1 \\ y_1 \\ 1 \end{bmatrix} \right\|_2
\]
Main Flow

- Detect key points
- Build the SIFT descriptors
- Match SIFT descriptors
- Fitting the transformation
- RANSAC

\[(u_1, u_2, \ldots, u_{128})\]

\[(v_1, v_2, \ldots, v_{128})\]
Image Stitching

• Almost done for you
Skeleton Code

• Multiple Stitch (2 lines of code)
 – A simplified case of real-world scenario
 – Transformation is associative and invertible
 – Useful command
 • pinv
Skeleton Code

• Tester.m
 – Scripts that help you to get started

• Evaluate.m
 – Scripts that tests your solution
 • Load fixed input from checkpoint
 • Run your implementation
 • Compare results with reference solution
Requirement

• Due Date: 5pm Oct 30, 2015
• Electronic submission only
 – cs131submissions@gmail.com for code
 – Gradescope for report
• Code + Report
 – SIFT invariance and why it helps
 – DoG v.s. Dense SIFT
 – Why RANSAC
 – Your own stitches
 – Error discussion
Results
Results
Questions?