Trends in 3D:
3D Perception Through Exclusive Priors and Deep Learning

Amir R. Zamir
Stanford University
OMITTED (unpublished)
3D From a Single Image Using Exclusive Priors
Multi-View 3D

- No inherent ambiguity
Single-View 3D

Inherently ambiguous \leftrightarrow prior information
1. Generic
Priors!

1. Generic

2. Exclusive and specific
Exclusive Priors
Exclusive Priors

- Geo-semantic Segmentation, In CVPR15.
Exclusive Priors

• Reduce “3D from single image” to “alignment” problem.
 – Advantages:
 • Computationally less complex
 • Less reliance on semantics; Better generalization
 • Beyond-Image 3D
 – Disadvantages:
 • More dependency on meta-data
 • Coverage
 • Cross-modality
Exclusive Priors

• Reduce “3D from single image” to “alignment” problem.
 – Advantages:
 • Computationally less complex
 • Less reliance on semantics; Better generalization
 • Beyond-Image 3D
 – Disadvantages:
 • More dependency on meta-data
 • Coverage
 • Cross-modality

• 3D through post-alignment transferring
• Robustness
Object Detection and Scene Alignment Using Object Priors

GIS Dataset

- e.g. Washington D.C.
 - Lamp posts
GIS Dataset

- e.g. Washington D.C.
 - Lamp posts
 - Fire Hydrants
GIS Dataset

- e.g. Washington D.C.
 - Lamp posts
 - Fire Hydrants
 - Road signs
GIS Dataset

- e.g. Washington D.C.
 - Lamp posts
 - Fire Hydrants
 - Road signs
 - Trash cans
GIS Dataset

• Locations of most stationary objects are documented!
• e.g. Washington D.C.
 – Buildings, Foliage, Road signs, ATMs, Fire Hydrants, Lamp posts, Cell/FM towers, Traffic Lights, Bus/subway stations, Trash cans.
Fusion of Image content and GIS

Object Detectors

GIS

Lamp Post Road Sign Traffic Light
Location-aware Object Detection

Image + Metadata → Object Detection (DPM) → Graph Matching → Detected Objects

- Projecting GIS Objects
- Occlusion Handling
Obtaining Priors from GIS

Camera View

All Projections

Non-occluded Projections

2D projection on the Image

\[
\begin{pmatrix}
\Phi(i) \\
1
\end{pmatrix} = \mathbf{P}_{\phi(i)}
\]

Camera Matrix

GIS priors
Higher Order Graph Matching
DPM Results

Loose Threshold Tuned Threshold Strict Threshold

Street Light Traffic Sign Traffic Signal Trash Can Bus Stop Fire Hydrant
Traffic Signal, Street Light, and Fire Hydrant are detected successfully.

Object Detection + 3D
DPM Results (Tuned Threshold)

Our Results

Street Light Traffic Sign Traffic Signal Trash Can Bus Stop Fire Hydrant
Quantitative Object Detection Results

![Graphs showing precision-recall curves for different objects: Street Light, Traffic Signal, Trash Can, Fire Hydrant, and Traffic Sign. Each graph compares different detection methods: OIS-OPM (graph matching), OPM, OIS-OPM (top detection), and OIS Projection. The curves illustrate the performance of each method across varying recall levels.]
Do we need camera meta-data?

• How far can we get without meta data (i.e., GPS location and compass direction)?
Semantic Cross-View Matching

F. Castalo, A. Zamir, R. Angst, F. Palmieri, S. Savarese
In ICCVW 2015
Semantic Cross-View Matching

Input Semantic Priors (map) Alignment Heat Map
Semantic Map (GIS)
Semantic Map (GIS)
Topological and Semantic Matching
Semantic Segment Layout (SSL) features

(b) Contact Region Detection
(c) Segment Shape Approximation
(d) Contact Region Uncertainty
(e) Descriptor Extraction
Semantic Segment Layout (SSL) features

(a) Gaussian Pooling Regions

(b) Contact Region Detection
(c) Segment Shape Approximation
(d) Contact Region Uncertainty
(e) Descriptor Extraction
Experimental Results
How about Videos?!
Bayesian Recursive Estimation

New state: $p(x_t | z_t)$

Likelihood (Current Segment)

Prediction (previous Segment)

Observation: $p(z_t | x)$

Motion Model
Camera Pose Estimation for a YouTube Video

Simultaneous 3D + Semantics

• ACM Multimedia'13: Visual Business Recognition - A Multimodal Approach
3D + Semantics

- **Bruegger's Bagel**
 - Address: 25 Market Square, Pittsburgh, PA 15222
 - User Rating: 5/5

- **Nicholas Coffee Co.**
 - Address: 23 Market Square, Pittsburgh, PA 15222
 - User Rating: 4/5

- **Tavern.**
 - Address: 24 Market Square, Pittsburgh, PA 15222
 - User Rating: 2/5
Text Processing

Business Lexicon
Zorba’s Gyros, Lush Cosmetic, Macy’s, Italian Village Pizza, The Exchange, Easy Street, Bruegger’s Bagels, Verizon Wireless, T.

Image Matching

Fusion

Businesses
Verizon
Results

NAME: Pizza My Heart
ADDRESS: 220 University Ave, Palo Alto, CA 94301
USER Rating: 3.5/5
CATEGORY: Pizza
PHONE: (650) 327-9400
Data Driven 3D Voxel Patterns for Object Category Recognition

Yu Xiang1,2, Wongun Choi3, Yuanqing Lin3, and Silvio Savarese1

1Stanford University, 2University of Michigan at Ann Arbor
3NEC Laboratories America, Inc.

CVPR 2015
The image is from the KITTI detection benchmark (Geiger et al. CVPR’12)
2D Object Detection
2D Object Segmentation
Occlusion Reasoning
3D Localization
Our Contribution: Data-Driven 3D Voxel Patterns

- 2D detection
- 3D pose
- Occlusion
- 3D location
Training Pipeline Overview

1. Align 2D images with 3D CAD models
2. 3D voxel exemplars
3. 3D voxel patterns
4. Training 3D voxel pattern detectors
Building 3D Voxel Exemplars

Depth ordering

2D mask labeling

3D CAD model
Voxelization

self-occluded

truncated

visible

occluded

3D voxel model
Discovering 3D Voxel Patterns
Training 3D Voxel Pattern Detectors

• Train a ACF detector for each 3DVP.

Testing Pipeline Overview

1. Apply 3DVP detectors
2. Occlusion reasoning
3. Transfer meta-data
4. Backproject to 3D

Input 2D image

2D detection

3D localization

2D segmentation
1. Apply 3DVP Detectors
1. Apply 3DVP Detectors
2. Transfer Meta-Data

3DVPs
2. Transfer Meta-Data
3. Occlusion Reasoning

Occlusion reasoning: find a set of visibility-compatible detections
4. 3D Localization

Backprojection
Anecdotal Results on KITTI
Thank You!

Amir R. Zamir (zamir@cs.stanford.edu)
Yu Xiang, F. Castaldo, R. Angst, Wongun Choi,
G. Vaca, S. Ardeshir, M. Shah, Yuanqing Lin, S. Savarese

• **CVPR'15**: Data Driven 3D Voxel Patterns for Object Category Recognition
• **ECCV'14**: GIS-Assisted Object Detection and Geospatial Localization
• **ACM Multimedia'13**: Visual Business Recognition - A Multimodal Approach
• **CVPR'12**: City Scale Geo-spatial Trajectory Estimation of a Moving Camera