CS131 Computer Vision: Foundations and Applications
(Fall 2015)
Programming Assignment 2

GrabCat: Foreground-Background Segmentation via Clustering
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Due Friday, November 20, 5 PM

Introduction

In this assignment, you will use clustering algorithms to segment images. You will then use these segmenta-
tions to identify foreground and background objects. And finally, you will transfer foreground objects from
one image to another as shown in Figure 1.

Your assignment will involve the following subtasks:

Clustering algorithms: Implement K-Means clustering and Hierarchical Agglomerative Clustering.

Pixel feature vectors: Implement a feature vector that combines color and position information and
implement feature normalization.
Optional: Get creative and implement your own feature transform.

Image Segmentation: Segment several images using a variety of parameters and qualitatively assess
your results.

GrabCat: Transfer Segments Between Images: Transfer objects from one image to another.

Quantitative Evaluation: Evaluate segmentation algorithms with a variety of parameter settings
by comparing your computed segmentations against a dataset of ground-truth segmentations.

A

Figure 1: Transfering an object from one image to another. Far Left: Original image. Center Left:
Segmented cat. Center Right: New background. Far Right: Composite image; we “grab” the cat from
the first image and place it onto the background image.



2 Clustering Algorithms

2.1 K-Means Clustering

As discussed in class, K-Means is one of the most popular clustering algorithms. We have provided skeleton
code for K-Means clustering in the file KMeansClustering.m. Your first task is to finish implementing the K-
Means algorithm using the provided file. You can use KMeansClusteringTest.m to test your implementation.

2.2 Hierarchical Agglomerative Clustering

Another simple clustering algorithm is Hierarchical Agglomerative Clustering, which is sometimes abbreviated
as HAC. In this algorithm, each point is initially assigned to its own cluster. Then cluster pairs are merged
until we are left with the desired number of predetermined clusters (see Algorithm 1).

We have provided skeleton code for hierarchical agglomorative clustring in the file HAClustering.m. Please
finish the implementation in this file. You can use HAClusteringTest.m to test your implementation.

Algorithm 1 Hierarchical Agglomerative Clustering

Require: Points z1,...,2, € R", desired number of clusters k € Z
Assign each point to its own cluster
while There are more than k clusters do
Compute the distance between all pairs of clusters
Merge the two closest clusters
end while

3 Pixel Feature Vectors

Before we can use a clustering algorithm to segment an image, we must compute some feature vector for
each pixel. The feature vector for each pixel should encode the qualities that we care about in a good
segmentation. More concretely, for a pair of pixels p; and p; with corresponding feature vectors f; and f;,
the distance between f; and f; should be small if we believe that p; and p; should be placed in the same
segment and large otherwise.

3.1 Color Features

One of the simplest possible feature vectors for a pixel is simply the vector of colors for that pixel. This
method has been implemented for you in the file ComputeColorFeatures.m.

3.2 Color and Position Features

Another simple feature vector for a pixel is to concatenate its color and its position within the image. In
other words, for a pixel of color (r,g,b) located at position (z,y) in the image, its feature vector would be
(r,9,b,x,y). Implement this method of computing feature vectors in the file ComputePositionColorFeatures.m.
You can test your implementation by running ComputePositionColorFeaturesTest.m.

3.3 Feature Normalization

Sometimes we want to combine different types of features (such as color and postion) into a single feature
vector. Features from different sources may have drastically different ranges; for example each color channel
of an image may be in the range [0, 1) while the position of each pixel may have a much wider range. Uneven
scaling between different features in the feature vector may cause clustering algorithms to behave poorly.

One way to correct for uneven scaling between different features is to apply some sort of normalization to



the feature vector. One of the simplest types of normalization is to force each feature to have zero mean and
unit variance.

Suppose that we have a set of feature vectors fi,..., f, where each f; € R™ is the feature vector for a
single pixel, and f;; is the value of the jth feature for the ith pixel. We can then compute the mean p; and
variance 032» of each feature as follows
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To force each feature to have zero mean and unit variance, we replace our feature vectors f1,..., f, with a
modified set of feature vectors f1,..., f, where
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Implement this method of feature vector normalization in the file NormalizeFeatures.m. You can test your
implementation by running NormalizeFeaturesTest.m.

3.4 Get Creative!

For this programming assignment we have asked you to implement a very simple feature transform for each
pixel. While it is not required, you should feel free to experiment with other feature transforms. Could your
final segmentations be improved by adding gradients, edges, SIFT descriptors, or other information to your
feature vectors? Could a different type of normalization give better results?

Depending on the creativity of your approach and the quality of your writeup, implementing extra feature
vectors can be worth extra credit. You can use the function ComputeFeatures.m as a starting point to
implement your own feature transforms.

In Your Writeup

In your writeup you should describe all methods of computing feature vectors that you use in your project.
For each method of computing feature vectors, explain why you expect that this feature vector will or will
not produce a good segmentation for an image.

In addition, you should describe all methods of feature normalization that you employ.

4 Image Segmentations

After computing a feature vector for each pixel, we can compute a segmentation for the original image by
applying a clustering algorithm to the computed feature vectors. Each cluster of feature vectors corresponds
to a segment in the image, and each pair of pixels p; and p; in the image will be placed in the same segment
if and only if their corresponding feature vectors f; and f; are located in the same cluster.

You can compute a segmentation for an image using the function ComputeSegmentation.m. This function
allows you to specify the function used to compute features for each pixel, whether the features should be
normalized, and the clustering method used to cluster the feature vectors.

For example, to compute a segmentation for the image img with 5 segments using K-Means clustering and
using ComputeColorFeatures to compute pixel features with feature normalization you would write:

segments = ComputeSegmentation(img, 5, ’kmeans’, @ComputeColorFeatures, true);



You can read the full documentation for ComputeSegmentation by typing help ComputeSegmentation.

If you find that your segmentations take a long time to compute, you can set the optional resize argument
of ComputeSegmentation. If this argument is set then the image will be shrunk before being segmented,
and the segmentation will then be upsampled to the size of the original image. You will probably need to
use this feature when segmenting images with hierarchical agglomerative clustering.

The syntax @ComputeColorFeatures creates a handle to the function ComputeColorFeatures; this mecha-
nism allows functions to be passed as arguments to MATLAB functions.

At this point you have a lot of options for computing segmentations: you have two different clustering algo-
rithms (K-Means and HAC), two choices of pixel features (just color features or color and position features),
and the choice to either normalize or not normalize the features. You can also vary the number of segments
that are computed.

Once you have computed a segmentation for an image, you can visualize it using the functions ShowSegmentation
and ShowMeanColorImage. Read the documentation for these functions (using the help command) to see
how they are used. Example output from these visualization tools can be seen in Figure 2.

You can use the script RunComputeSegmentation as a starting point to compute segmentations for images.
Choose a few images (either your own or images from the imgs folder) and compute segmentations for these
images using different combinations of segmentation parameters (feature transform, normalization, cluster-
ing method, number of clusters). A successful segmentation will cleanly separate the objects in the image
from each other, while an unsuccessful separation will not.

In Your Writeup

In your writeup you should include visualizations of at least 4 different segmentations. At least 2 of these
segmentations should be successful, and at least 2 of these segmentations should be unsuccessful. Each
of your examples should use different parameters for segmentation, and the parameters for each of your
examples should be different.

You should also answer the following questions in your writeup (a few sentences for each question is sufficient):

1. What effect do each of the segmentation parameters (feature transform, feature normalization, number
of clusters, clustering method, resize) have on the quality of the final segmentation?

2. How do each of these parameters affect the speed of computing a segmentation?

3. How do the properties of an image affect the difficulty of computing a good segmentation for that
image?

5 GrabCat: Transfer Segments between Images

A successful segmentation of an image should separate the objects from the background. Assuming that we
compute such a successful segmentation, we can “transfer” objects from one image to another by transfer-
ring the segments that make up the object. An example image produced using this procedure is shown in
Figure 1.

Once you have computed a successful segmentation for an image, you can use the ChooseSegments func-
tion to choose a subset of these segments to transfer to a background image. The documentation for the
ChooseSegments function contains more details on how to use it.

Use some of your successful segmentations from the previous section to transfer objects from one image
to another. You can use the provided foreground images of cats in the imgs directory and the provided
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Figure 2: Visualizing a computed segmentation. Top: Visualize individual segments using
ShowSegmentation. Bottom: Visualize the segmented image as a whole using MakeMeanColorImage; the
pixels in each cluster have been replaced with the average color of all pixels in that cluster.

background images in the imgs/backgrounds; also feel free to use your own images.
You can use the script GrabCat.m as a starting point for this section.

In Your Writeup

Include at least 2 examples of composite images produced by transferring segments from one image to
another. For each composite image explain how you produced it (i.e. describe what the input images were
and what segmentation parameters were used).

6 Quantitative Evaluation

Looking at images is a good way to get an idea for how well an algorithm is working, but the best way to
evaluate an algorithm is to have some quantitative measure of its performance.

For this project we have supplied a small dataset of cat images and ground truth segmentations of these
images into foreground (cats) and background (everything else). We will quantitatively evaluate your seg-
mentations by evaluating their performance on this dataset.

To achieve good performance, you will probably need to divide each image into more than two segments.
This means that you will need to combine multiple segments in order to reconstruct the foreground and the



Feature Feature Clustering ~ Number Resize Mean

Transform Normalization Method of clusters  (or max pixels) accuracy
Position Yes K-Means 10 None 0.91
Position + Color No HAC 5 0.2 0.58

Table 1: Example table of results; the numbers are made up. You might want to make a table like this in
your report.

background. You can manually choose the foreground segments using ChooseSegments.m as in the previ-
ous sections. Alternatively, you can have the evaluation function EvaluateSegmentation.m automatically
choose which segments should be in the foreground and which segments should be in the background.

You can use the script EvaluateAllSegmentations.m to evaluate a segmentation method’s ability to sep-
arate foreground from background on the entire provided dataset. Use this script as a starting point to
evaluate a variety of segmentation parameters. Note that you can toggle the chooseSegmentsManually
variable to either choose foreground segments yourself or allow EvaluateSegmentation.m to automatically
choose foreground segments for you.

In Your Writeup

Include a detailed evaluation of the effect of varying segmentation parameters (feature transform, feature
normalization, clustering method, number of clusters, resize) on the mean accuracy of foreground-background
segmentations on the provided dataset. You should test a minimum of 10 combinations of parameters. To
present your results, you might consider making a table similar to Table 1.

You should expand upon the qualitative assessment of Section 4 and try to answer the following question:

1. Based on your quantitative experiments, how do each of the segmentation parameters affect the quality
of the final foreground-background segmentation?

2. Are some images simply more difficult to segment correctly than others? If so, what are the qualities
of these images that cause the segmentation algorithms to perform poorly?

3. Also feel free to point out or discuss any other interesting observations that you made.

You may combine your discussion in this section with your discussion from Section 4 if you like. However,
your grade for both sections will depend on the thoroughness and correctness of your discussion. Just as
a point of reference, we anticipate that none of the questions above can be answered in a single sentence;
you should back up all answers with either experimental data, or a convincing argument. Overall for this
assignment, we care more about your explanation and discussion than about your actual code or results
(although those are important too!).



