CS131
Face Recognition

Yuke Zhu
December 3, 2014
Outline

• Preprocessing faces
• Nearest-neighbor on:
 - whole images
 - PCA of faces ("Eigenface" representation)
 - LDA of faces ("Fisherface" representation)
• Bonus: dilation/erosion
Raw data: problems?
Raw data

• If we plan to do a simple pixel-by-pixel comparison (and we do), then the faces must be in the exact same position in each image
 - So we compare eye pixels to eye pixels, nose pixels to nose pixels, etc.

• Computers can do this, using the Viola-Jones (a.k.a. Haar Cascade) face-detection algorithm
Viola-Jones algorithm

• We don’t cover it in this class, but Viola-Jones face detection basically uses a bunch of linear filters, which were arrived at through machine learning, to detect faces, eyes, or whatever object it’s trained on
• Great for detecting faces and other very consistent-looking objects
• We have applied it for you, to cut out and rotate/scale faces
Preprocessed Data

- We give you a big database, with multiple faces per test subject
- Faces are well-aligned
- You will compare new faces to this database, and label them as belonging to the closest test subject (K-NN with K=1)
Comparing faces

• Simplest method: “unroll” each grayscale face image, columnwise, into a single long vector

• Compare faces by taking Euclidean distance between new face-vector and each one in the database

• You’ll do this in compareFaces.m
% load our face database into a matrix.
[rawFaceMatrix, imageOwner, imgHeight, imgWidth] = readInFaces();
% This give us: faceMatrix - column 1 of this matrix is image 1,
% converted to grayscale, and unrolled columnwise into a vector.
% So if image 1 is 120x100, column 1 will be length 12000. Column
% 2 is the same for image 2.
% imageOwner - a vector of size 1 x numImages, where imageOwner(i)
% holds the integer label of image (i). Images from the same
% person have the same label.
% imgHeight - the height of an original image (they are all the same
% size)
% imgWidth - the width of an original image (they are all the same
% size)

• Database faces are unrolled for you
• You unroll test images yourself, with
testImgVector = testImg(:)
Comparing faces

- Even a small image size of 120x100 pixels produces a vector with 12,000 numbers
 - If we do lots of comparisons, it will get slow
 - Not great for storage space either

- Do we truly need 12,000 separate numbers to compare faces? **NO!**
PCA for lean representation

• Principal Component Analysis is a technique to reduce the dimensionality of data

• Key insight is that most types of raw data (e.g. faces) can be represented as a combination of simple patterns

• PCA finds a set of patterns that can be linearly combined to reproduce the data:
 - e.g. $\text{facelImage1} = 2\times\text{pattern1} - 0.5\times\text{pattern3}$

• We store the patterns once, and then we can represent each face just in terms of its weights on the patterns (e.g. 2 and -.5, in the example above)
PCA review: getting PCA from SVD

• Construct a matrix where each column is a separate data sample (e.g. each column is a face vector)
• Run SVD on that matrix, and look at the first few columns of U to see patterns that are common among the columns
• Columns of U are called Principal Components of the data samples.
• (Note: the above image combines U and Σ. We’ll actually combine Σ and V^T, so that our principal components are the columns of U, and are unit vectors.)
PCA review: getting PCA from SVD

- Often, raw data samples have a lot of redundancy and patterns.
- PCA can allow you to represent data samples as weights on the principal components, rather than using the original raw form of the data.
- By representing each sample as just those weights, you can represent just the “meat” of what’s different between samples.
- This minimal representation makes machine learning and other algorithms much more efficient.
PCA for lean representation

• The PCA principal components are also known as “basis vectors” that can be linearly combined, with some weighting, to produce each face vector.
• The weights for the training faces can be read off from V_T
• When we see a new face, we can easily get its weights:
 - PCA basis vectors are unit vectors and are orthogonal (mutually perpendicular)
 - So, dot product of a PCA basis vector with a face produces the weight on that vector
• Before we do PCA to get the patterns, we calculate a “mean face” and subtract it from all samples. (There’s no benefit to representing patterns that are identical for all faces)
 - So, remember to also subtract that mean face from the test sample.
PCA for lean representation

• PCA basis vectors are column vectors. But we can roll them up into an image and view them to see what patterns they’re representing:
PCA for lean representation

• We can now represent images as weights on PCA basis vectors (the vector of weights for an image is sometimes called its “PCA space” representation)

• Those components represent most of the variation between images
 - So, distance measurements in PCA space are just as good!

• If we use weights on the top 20 principal components to represent images of size 120x100, we have compressed to 0.17% of the original size
 - We do need to store those top 20 principal component vectors for the dataset, but the savings is still massive for large datasets!
Fisherfaces

• PCA compresses data, which is great
 - Its basis vectors capture the most variance possible
• But what if we could get basis vectors that actually help us with our task? They would:
 - Include variations in data that are important to distinguish faces
 - Intentionally leave out variations that are not helpful, such as lighting changes
• Fisher Linear Discriminant Analysis (a.k.a. Fisherfaces) can do that
Fisherfaces

• Fisherfaces needs a training set that includes multiple examples (face images) for each class (test subject)
 - Each examples is labeled with its class
 - Fisherfaces finds basis vectors that capture the most variation between classes, and the least variation within classes
 - If your training data includes multiple lighting situations, it will tend to produce vectors that ignore lighting changes
Fisherfaces

• We have implemented Fisherfaces for you, and you’ll just experiment with it.
 - You’ll need to know what it does, but not the math behind it

Fisherface basis vectors

Eigenface basis vectors
Design problem: classification as face/nonface

• You will code isFace.m, which decides if a given image is a face
• Many possible methods
• Good approaches involve checking for face-like patterns. Some options:
 - How much of the image is represented by the basis vectors (which we know are good at representing faces)
 - How similar to “mean face”?
 - Other options too (faces tend to have edges in certain locations, etc.)
Erosion/Dilation

• Erosion and dilation are a pixel-level filtering technique
• Slide a “structuring element” across an image (just like a linear filter)
Dilation

• In dilation, the pixel at the center of the structuring element is replaced with the max of everything under the structuring element.

• Typically use a circular structuring element, as above, but other shapes can have other effects.
Erosion

- In erosion, the pixel at the center of the structuring element is replaced with the min of everything under the structuring element.

- In binary images, erosion shrinks blobs and dilation grows blobs.

- They can be used to get clustering-type effects.
Design problem: cleaning up skin segmentation

- In findHeads.m, we give you code which makes a binary image, where 1 means the pixel is close to skin color.
- With dilation/erosion, you can get round blobs (connected regions of 1’s) where there are heads.
 - Will require a lot of tweaking while looking at results.
- Then, MATLAB’s regionprops function can give you the center, area, eccentricity, and other characteristics for a blob.
- You must return the centers of all heads.
Design problem: cleaning up skin segmentation
Writeup

• Answer the given questions about how and why things work

• Our grading process is:
 - We answer the questions ourselves and come up with important “bullet-points” that a complete answer contains
 - Grade for a question is based on whether you include the important points
 • No need to tell us other stuff, or repeat info we’ve given you, unless you want to