Networks and Hierarchical Processing: Object Recognition in Human and Computer Vision

Guest Lecture: Marius Cătălin Iordan
CS 131 - Computer Vision: Foundations and Applications
01 December 2014
1. Processing Pathways in the Human Visual System
 - “what” and “where” pathways
 - building features in the ventral stream

2. Hierarchical Pattern Recognition Systems
 - early stages: small scale neural network
 - injecting neuroscience knowledge into design

3. Third Age of the Neural Network: Modern Deep Nets
 - extremely large scale (data + computation)
 - sudden, huge performance boost for recognition
From Retina to Cortex

world
retina
(compression)
LGN
visual cortex
(expansion)
The Flow of Information

Weiner & Grill-Spector (2012)

Processing Pathways review
Processing Pathways review

Van Essen (1991)
Specialization: “What” and “Where” Pathways

monkey lesion studies

“what”

“where”

Mishkin & Ungerleider 1982
Specialization: “What” and “Where” Pathways

monkey lesion studies

lesion “where” pathway: difficulty in spatial reasoning

lesion “what” pathway: difficulty in object recognition

Mishkin & Ungerleider 1982
Specialization: “What” and “Where” Pathways

monkey lesion studies

lesion “where” pathway: difficulty in spatial reasoning

lesion “what” pathway: difficulty in object recognition

Mishkin & Ungerleider 1982
Object Recognition: The “What” Pathway

DiCarlo & Cox (2007)
Object Recognition: The “What” Pathway

Object Recognition: Building Features and Invariance

visual processing is done in stages
each area performs a transformation on its inputs
invariance is built gradually across many successive steps

DiCarlo & Cox (2007)
2. Hierarchical Pattern Recognition Systems

neuroscience-inspired computer vision
Neocognitron: Neural Network
Neocognitron: Neural Network

Fukushima (1988)
Neocognitron: Neural Network

- **Input layer**
- **S-cell layer**
- **C-cell layer**

Fukushima (1988)
Neocognitron: S-Cell

C-cell layer / input layer S-cell layer C-cell layer

Hierarchical Computation neocognitron

Fukushima (1988)
Neocognitron: S-Cell

- **Human retina**
 - Photoreceptors
 - Cells
 - Ganglion Cells

- **Computer Vision**
 - Pixels
 - Linear
 - $\times W_1$
 - $\times W_2$
 - $\times W_3$
 - $\times W_4$
 - Non-linear
 - $\times W_5$
 - $\times W_6$
 - $\times W_7$

- Action potentials

- Binary string
 - 1011001

Figure courtesy of A. Alahi
Neocognitron: C-Cell “Pooling”

building position invariance

Fukushima (1988)
Neocognitron: Network

Fukushima (1988)
Neocognitron: Network

Hierarchical Computation neocognitron

Fukushima (1988)
Neocognitron: Network
Hierarchical Computation: Neocognitron

Neocognitron: Network

Fukushima (1988)
Neocognitron: Robust Results

Fukushima (1988)
Neocognitron

biologically inspired hierarchical processing pipeline
invariance is built gradually across many successive steps
simple neural network solves complicated non-linear problem

Fukushima (1988)
Hierarchical Computation feed-forward model

Feed-Forward Object Recognition Model

Hubel & Wiesel (1962), Riesenhuber & Poggio (1999), Serre et al. (2007)
Feed-Forward Object Recognition Model

Hubel & Wiesel (1962), Riesenhuber & Poggio (1999), Serre et al. (2007)
Feed-Forward Object Recognition Model

Task: is there an animal in the picture?

Serre et al. (2007)
Feed-Forward Object Recognition Model

task: is there an animal in the picture?

Serre et al. (2007)
Feed-Forward Object Recognition Model

- task: is there an animal in the picture?

Serre et al. (2007)
Feed-Forward Object Recognition Model

task: is there an animal in the picture?

Serre et al. (2007)
Feed-Forward Object Recognition Model

biologically-inspired processing pipeline

patches — receptive fields
building invariance
hierarchical processing

major drawback?
no feedback

Serre et al. (2007)
Discussion
Discussion

how closely should we aim to copy human vision?

is reverse-engineering human vision a self-imposed limitation?

perfect recognition vs. visual understanding?
3. Modern Neural Networks

extremely large scale data and computation
Deep Convolutional Neural Network

650,000 cells — 60,000,000 parameters

Krizhevsky et al. (2013)
Deep Convolutional Neural Network

650,000 cells — 60,000,000 parameters

Krizhevsky et al. (2013)
Deep Convolutional Neural Network

Want to know more about state-of-the-art neural networks?

CS 231N
http://vision.stanford.edu/cs231n/

Winter QT 2015
Fei-Fei Li & Andrej Karpathy
Object Recognition: Building Features and Invariance

visual processing is done in stages
each area performs a transformation on its inputs
invariance is built gradually across many successive steps

DiCarlo & Cox (2007)
Feed-Forward Object Recognition Model

biologically-inspired processing pipeline

patches — receptive fields
building invariance
hierarchical processing

major drawbacks?

no feedback

much less complex than human vision

Serre et al. (2007)
Deep Convolutional Neural Network

extremely large scale data and computation

sudden, huge performance boost for recognition

if you want to know more, take CS 231N in Winter QT

Krizhevsky et al. (2013)
End-Quarter Feedback Forms