
CS 131 Computer Vision: Foundations and Applications

(Fall 2014)

Problem Set 3

Due Wednesday, December 3, 5 PM

1 Curse of Dimensionality

In class, we used the nearest neighbor method to perform face recognition. The nearest neighbor
method is intuitive and very powerful, especially in low dimensional applications. When the number
of dimensions becomes higher, however, we may not want to use this method directly because of
its computational overhead and counterintuitive geometry. To work around these limitations, we
introduced PCA to reduce the dimensions of the data.

(a) Suppose we have n data samples and w test points in d dimensional space, we want to find each
test point’s nearest neighbor based on Euclidean distance ‖ · ‖2 where

‖x− y‖2 =

√√√√ d∑
i=1

(xi − yi)2

Please give the computational complexity of this procedure using big-O notation, and discuss what
happens when d becomes very large.

(b) When performing nearest neighbor search using Euclidean distance, we can use a simple heuristic
to speed up the search: we quickly reject candidates by using the difference in one dimension as
a lower bound for distances. Explain in words why this heuristic will not help much in high
dimensional space (i.e. when the dimension d is large).

(c) Given a unit cube in d-dimensional space C = {x ∈ Rd|0 ≤ xi ≤ 1, i = 1, 2, . . . , d}, show that
nearly all the volume of C is concentrated near its surface when d is large. Hint: To get the volume
of a cube near its surface, you can shrink the cube from its center by some constant c and subtract
the volume of shrunk cube from the volume of the original one.

(d) Consider generating points uniformly at random on the surface of a unit-radius sphere in d
dimensions. To get an intuition, let’s first consider the 2-dimensional version of generating points
on the circumference of a unit-radius circle by the following method:

• Independently generate each coordinate uniformly at random from the interval [−1, 1]. This
produces points distributed over a square that is large enough to completely contain the unit
circle.

1



• Discard all points outside the unit circle and project the remaining points onto circle (by
normalizing them into unit 2d vectors).

Can we generalize this technique in the obvious way to higher dimensions? What will happen when
d becomes very large? Use your result from part (c) to explain.

(e) Please list at least two methods you could use to overcome problems with high-resolution images
(i.e. data points in very high dimensions).

2 1-NN with Different Distance Metrics

Given two vectors x and y in n-dimensional space Rn, we can measure distances between them in
multiple ways:

• Eulidean distance (or `2 distance)

DistEuc(x, y) = ‖x− y‖2 =

√√√√ n∑
i=1

(xi − yi)2

• Cosine distance

DistCos(x, y) = 1− xT y

‖x‖2‖y‖2

• Mahalanobis distance
DistMah(x, y,Σ) = (x− y)T Σ(x− y)

(a) Let Σ be an identity matrix. Prove that:

DistMah(x, y,Σ) = ‖x− y‖22

for any x and y. The right hand side of equation is the squared Euclidean distance.

(b) Let x0, . . . , xK ∈ Rn. Consider the set of points that are closer (in Euclidean distance) to x0

than the other xi, i.e.,

V =
{
x ∈ Rn

∣∣∣‖x− x0‖2 ≤ ‖x− xi‖2, i = 1, · · · ,K
}

(1)

Show that the set V can be described as
{
x|Ax � b

}
, where Ax � b denotes:

a11x1 + · · ·+ a1nxn ≤ b1

a21x1 + · · ·+ a2nxn ≤ b2

... ≤
...

aK1x1 + · · ·+ aKnxn ≤ bK

In your answer, please make sure to specify what A and b are.

2



(c) Continuing from part (b), the set V defined in equation (1) is called the Voronoi region around
x0 with respect to x1, . . . , xK . Let’s consider the reverse problem of part (b). Given a non-empty

set V =
{
x|Ax � b

}
, describe in words how to find x0, . . . , xK so that V is the Voronoi region of

x0 with respect to x1, . . . , xK .

Hint: The goal is not to find the original, unique points that produced the Voronoi set V . That
problem would be under-constrained (fewer equations than unknowns). Instead, all you need to do
is describe how to find one possible set of points x0, . . . , xK that will produce that same Voronoi
region around x0 (it won’t necessarily produce the original Voronoi regions around the other points).

(d) Using Euclidean distance, we can define a family of sets

Vk =
{
x ∈ Rn

∣∣∣‖x− xk‖2 ≤ ‖x− xi‖2, i 6= k
}

The set Vk consists of points in Rn for which the closest point in the set {x0, . . . , xK} is xk. The
family of sets V0, . . . , VK gives a decomposition of the space Rn.

Using Cosine distance, we can also define a family of sets

Wk =
{
x ∈ Rn

∣∣∣DistCos(x, xk) ≤ DistCos(x, xi), i 6= k
}

Assume x0, . . . , xK are unit vectors. Prove that the decompositions V0, . . . VK and W0, . . . ,WK are
equivalent. Two decompositions of Rn are equivalent if and only if for any a ∈ Rn,

a ∈ Vk ⇐⇒ a ∈Wk

(e) Assume, again, that x0, . . . , xK are unit vectors. Would choosing Euclidean 1-NN over Cosine
1-NN make a difference? Please justify your answer.

(f) Consider the following in two dimensional space:

x0 = (0, 3) x1 = (−3, 0) x2 = (3, 0) Σ =

[
2 1
1 2

]
In particular, consider the decomposition U0, U1 and U2 given by

Uk =
{
x ∈ Rn

∣∣∣DistMah(x, xk) ≤ DistMah(x, xi), i 6= k
}

where k = 1, 2, 3. Use Matlab to plot this decomposition. Submit your code and plot for this part
of the problem. Hint: To plot a decomposition, you only need to plot the “decision boundaries”
between set Ui and set Uj .

3 PCA as Fitting Lines

PCA projects the data by an orthogonal matrix. This problem shows how to obtain this orthogonal
matrix, as well as the intuition behind it. For simplicity, you are only required to derive PCA in two

3



dimensional space. After finishing this problem, you can easily extend the results to n-dimensional
spaces.

Suppose we have a dataset D ∈ Rm×2 in R2, where each data sample x(i) is one row of the data
matrix. We want to approximate our high dimensional data by an orthogonal line set L in two
dimensional space

L = {az + b|z ∈ R}

where a ∈ R2, b ∈ R2, and a is a unit vector.

Figure 1: An illustration of fitting a two dimensional dataset to a line set L = {l1, l2}. Each black
dot is a data sample.

For each data sample x(i), the distance between x and a line l is defined by

d(x(i), l) = min
y∈l
‖x(i) − y‖2,

where ‖x‖2 =
√∑n

i=1 x
2
i (`2 norm), n is the data dimension and it is 2 in our case. Since we have

m data samples, we start by finding a single line set l that minimizes the total squared distance:

dt =

m∑
i=1

d(x(i), l)2

In other words, we’d like to fit the data samples to a set of straight lines, as close as possible such
that dt is minimized.

(a) Show that d(x, l) = ‖(I−aaT )(x−b)‖2. Hint: you might consider using a least squares approach.

4



(b) Using your result from (a), the total squared distance is given by

dt =

m∑
i=1

‖(I − aaT )(x(i) − b)‖22

Show that the optimal b, which minimizes dt while all other variables are held constant, is given by

bopt =
1

m

m∑
i=1

x(i)

Here, bopt is the mean (center) of our data set. Hint: P = (I − aaT ) is a projection matrix.

(c) Using this choice of b = bopt, find the optimal value of a which minimizes dt, in terms of x(i)

and bopt. Hint: Try to formulate the problem as a maximization problem of the form max(aT Σa).
The linear algebra review notes from the first week of class may prove useful here.

(d) So far, our results only give us a single line l = aoptz + bopt (z ∈ R). Our final goal is to
approximate the 2D data by an orthogonal line set L in two dimensional space. Describe how you
would choose the other line to add to the set L. Hint: The procedure should be very similar to the
steps in part (a)-(c).

4 Dimensionality Reduction

Because of the “curse of dimensionality”, we usually want to reduce our data dimensions when com-
paring images. We introduced Principle Component Analysis (PCA) as a method for dimensionality
reduction. In this problem, you’re going to learn another two common methods of dimensionality
reduction, which are also widely used in practice:

• Image downsampling is a common way of making images smaller. Matlab’s imresize does
image downsampling (its default options are fine for our purposes).

• Random projection uses randomly-chosen basis vectors to project high-dimensional data
points into a lower-dimensional space.

Suppose we have m data points {d1, . . . , dm} in Rn, where n is a very large number. We
project each di by multiplying a randomly generated matrix R on the left side, i.e. Rdi. We
deliberately choose R to be “flat”, i.e. of size s×n where s� n such that the projection Rdi
is of a lower dimension. We obtain R by randomly generating each of its entries independently
from a standard Gaussian distribution N (0, 1), and normalize each row to be a unit vector.
In this problem, we have generated the random vectors for you.

There are some nice theoretical properties about random projection, such as the Johnson-
Lindenstrauss lemma, which is beyond the scope of CS131.

• Principal component analysis projects data along the directions of its largest variances.
For this problem, we have provided the principle components in component.mat, where each
of row of U is a principal component.

5



Figure 2: Handwritten digits. Our KNN classifier will compare new images to known training
images.

(a) We will use the famous MNIST handwritten digits dataset [2] for this problem. Figure 2 is a
snapshot of the dataset. Each gray-scale image is of size 28 × 28, which contains 784 pixels. We
have subsampled the original dataset into Train.mat and Test.mat.

Train.mat is cell array of length 10. The cell at position i (assume we index starting from 1)
contains a 784× 500 matrix, which contains 500 images for digit (i mod 10).

Test.mat contains X and Y , where Y contains labels and X contains data.

We also provide an implementation of K-nearest-neighbors algorithm in KNN.m. For each test in-
stance, we compute its Euclidean distances to each data point in the Train cell array and decide the
test instance label by a voting procedure of class labels of its K nearest neighbors. In this problem,
you should implement DownSample.m, RandomProj.m and PCA.m to reduce the dimensionality of
the data. After you finish, you should run KNN.m and report classification performance with each
of the three dimensionality-reduction methods. Please submit a printout of your code.

(b) What do you observe when varying the number of reduced dimensions? Plot a (classification
accuracy) vs. (number of dimensions) curve for each of the three reduction methods (i.e. we need
three curves total). For Downsample, please use downsample ratios 0.1, 0.2, 0.4, and 0.8. For
RandomProj and PCA, please use reduced dimensions 9, 36, 144, and 576.

(c) Are the results you obtained in parts (a) and (b) sensitive to the number of nearest neighbors,
K? Please choose one of the three reduction methods and plot ONE (classification accuracy) vs.
(K) curve. We recommend using K = 5, 10, 20, and 40.

6



(d) Please rank these three dimensionality reduction methods with respect to their running time,
accuracy in part (b), and robustness in Table 1. Notice “robustness” column has been filled for you.
When your input data is noisy, random projection is the most robust among these three. Image
downsampling ranks second, and PCA is the least robust reduction method.

Reduction methods Running time in part(b) Recognition accuracy in part(b) Robustness
Image downsamping 2
Random projection 1

PCA 3

Table 1: Comparison of three reduction methods.

5 Logo Detection

A lot of computer vision algorithms represent visual data in the form of histograms (such as SIFT,
Shape Context), which can be easily handled by computers but allow for “slop” in the exact pixel
values and locations. In this problem, we are going to develop a simple detector for Starbucks logos
using histograms of image colors, and we’ll use a sliding window search to apply our detector to an
image.

(a) A template Starbucks logo (b) Sliding window search

Figure 3: Problem 5 illustration.

Suppose we have a template Starbucks logo, as given in Figure 3(a). For some given images (under
the logo/data folder), we want to find regions that are visually similar (i.e. likely another Starbucks
logo).

We’ll use a sliding window search as shown in Figure 3(b), where we slide a fixed size rectangle
across the entire image and compare the contents of each rectangle with the given template image.

7



We repeat the process with multiple window sizes. The sliding window code is provided for you; in
this problem you will only need to handle the comparison.

We will use color histograms to compare the template to each image rectangle that is grabbed by
the sliding window. We’ll build a histogram for the image inside the window, compare it against
the histogram of the template, and record the sliding window position which yields the best match.

Here is a list of functions you will use:

• Histogram.m builds a color histogram from a given image patch.

• SlideWindowDetector.m compares the template to all possible image regions, and saves the
one with the best match.

• VisualizeBox.m visualizes the detection result from SlideWindowDetector.m.

(a) In this part, you need to implement two histogram measures and use these two measures to find
the best match to the Starbucks logo in several images.

• Histogram intersection distance

DistIntersection(x, y) =

n∑
i=1

min{xi, yi}

This distance is a similarity measure, i.e. the higher the distance is, the more similar two
histograms are.

• Chi-square distance

DistChi-square(x, y) =

n∑
i=1

(xi − yi)
2

xi + yi

This distance measures the proximity of two histograms, i.e. the lower the value is, the more
similar two histograms are. Note: for entries where the denominator above is 0, just add 0.

Complete HistIntersectDist.m and ChiSquareDist.m, and then test your code by running
LogoRecognition.m after uncommenting the relevant function call. Please submit printout of your
code for this part of the problem.

(b) From part (a), we can see that our algorithm is not very accurate. This is partly because a
color histogram of an entire image is a quite weak representation (for example, it discards all the
spatial information). In this part, you are going to incorporate spatial information into the color
histogram by implementing “Spatial Pyramid”[1].

Read section 3 of the included “Spatial Pyramid” paper [1], and implement its equation (3) in
SpatialPyramidDist.m. The basic idea is to compute color histogram distances between multiple
sub-regions of the images being tested, so that spatial information is not entirely discarded (e.g.
when our sliding window is looking for images of the Starbucks logo, the images will need black
pixels near the center, rather than just anywhere). Figure 4 illustrates the histogram-building
process.

8



Figure 4: Spatial pyramid

Please submit a printout of your code and an image showing a successful logo detection.

(c) Of the three histogram-based image-comparison methods above, which are invariant to rota-
tions? Explain your answer.

References

[1] Svetlana Lazebnik, Cordelia Schmid, and Jean Ponce. Beyond bags of features: Spatial pyramid
matching for recognizing natural scene categories. In Computer Vision and Pattern Recognition,
2006 IEEE Computer Society Conference on, volume 2, pages 2169–2178. IEEE, 2006.

[2] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning ap-
plied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

9


	Curse of Dimensionality
	1-NN with Different Distance Metrics
	PCA as Fitting Lines
	Dimensionality Reduction
	Logo Detection

