Lecture 7: Finding Features (part 2/2)

Professor Fei-Fei Li
Stanford Vision Lab
What we will learn today?

• Local invariant features
 – Motivation
 – Requirements, invariances

• Keypoint localization
 – Harris corner detector

• Scale invariant region selection
 – Automatic scale selection
 – Difference-of-Gaussian (DoG) detector

• SIFT: an image region descriptor

Some background reading: David Lowe, IJCV 2004
A quick review

• Local invariant features
 – Motivation
 – Requirements, invariances

• Keypoint localization
 – Harris corner detector

• Scale invariant region selection
 – Automatic scale selection
 – Difference-of-Gaussian (DoG) detector

• SIFT: an image region descriptor
Quick review: Harris Corner Detector

“flat” region: no change in all directions

“edge”: no change along the edge direction

“corner”: significant change in all directions
Quick review: Harris Corner Detector

\[\theta = \det(M) - \alpha \text{trace}(M)^2 = \lambda_1 \lambda_2 - \alpha (\lambda_1 + \lambda_2)^2 \]

- Fast approximation
 - Avoid computing the eigenvalues
 - \(\alpha \): constant (0.04 to 0.06)
Quick review: Harris Corner Detector
Quick review: Harris Corner Detector

- Translation invariance
- Rotation invariance
- Scale invariance?

Not invariant to image scale!

All points will be classified as edges!
What we will learn today?

• Local invariant features
 – Motivation
 – Requirements, invariances

• Keypoint localization
 – Harris corner detector

• Scale invariant region selection
 – Automatic scale selection
 – Difference-of-Gaussian (DoG) detector

• SIFT: an image region descriptor
Scale Invariant Detection

• Consider regions (e.g. circles) of different sizes around a point

• Regions of corresponding sizes will look the same in both images
Scale Invariant Detection

• The problem: how do we choose corresponding circles *independently* in each image?
Scale Invariant Detection

- Solution:
 - Design a function on the region (circle), which is “scale invariant” (the same for corresponding regions, even if they are at different scales)
 - For a point in one image, we can consider it as a function of region size (circle radius)

Example: average intensity. For corresponding regions (even of different sizes) it will be the same.
Scale Invariant Detection

- Common approach:
 Take a local maximum of this function

- Observation: region size, for which the maximum is achieved, should be *invariant* to image scale.

\[
\text{Important: this scale invariant region size is found in each image independently!}
\]

- Diagram showing two images with different scales and the region sizes where the maximum is achieved.
Scale Invariant Detection

• A “good” function for scale detection: has one stable sharp peak

For usual images: a good function would be a one which responds to contrast (sharp local intensity change)
Scale Invariant Detection

- Functions for determining scale

$\mathbf{Kernels:}$

$L = \sigma^2 \left(G_{xx}(x, y, \sigma) + G_{yy}(x, y, \sigma) \right)$
(Laplacian)

$DoG = G(x, y, k\sigma) - G(x, y, \sigma)$
(Difference of Gaussians)

where Gaussian

$G(x, y, \sigma) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{x^2+y^2}{2\sigma^2}}$

Note: both kernels are invariant to scale and rotation
\[\text{det } M = \lambda_1 \lambda_2 \]
\[\text{trace } M = \lambda_1 + \lambda_2 \]

From Lindeberg 1998

blob detection; Marr 1982; Voorhees and Poggio 1987; Blostein and Ahuja 1989; ...
Scale Invariant Detectors

- **Harris-Laplacian**\(^1\)

 Find local maximum of:

 - Harris corner detector in space (image coordinates)
 - Laplacian in scale

- **SIFT (Lowe)**\(^2\)

 Find local maximum of:

 - Difference of Gaussians in space and scale

Scale Invariant Detectors

- Experimental evaluation of detectors w.r.t. scale change

Repeatability rate:

\[
\text{Repeatability rate} = \frac{\# \text{ correspondences}}{\# \text{ possible correspondences}}
\]

Scale Invariant Detection: Summary

- **Given**: two images of the same scene with a large *scale difference* between them
- **Goal**: find *the same* interest points *independently* in each image
- **Solution**: search for *maxima* of suitable functions in *scale* and in *space* (over the image)

Methods:

1. **Harris-Laplacian** [Mikolajczyk, Schmid]: maximize Laplacian over scale, Harris’ measure of corner response over the image
2. **SIFT** [Lowe]: maximize Difference of Gaussians over scale and space
What we will learn today?

• Local invariant features
 – Motivation
 – Requirements, invariances
• Keypoint localization
 – Harris corner detector
• Scale invariant region selection
 – Automatic scale selection
 – Difference-of-Gaussian (DoG) detector
• SIFT: an image region descriptor
Local Descriptors

- We know how to detect points
- Next question:

How to *describe* them for matching?

Point descriptor should be:
1. Invariant
2. Distinctive
CVPR 2003 Tutorial

Recognition and Matching Based on Local Invariant Features

David Lowe
Computer Science Department
University of British Columbia
Invariant Local Features

- Image content is transformed into local feature coordinates that are invariant to translation, rotation, scale, and other imaging parameters.
Advantages of invariant local features

- **Locality**: features are local, so robust to occlusion and clutter (no prior segmentation)

- **Distinctiveness**: individual features can be matched to a large database of objects

- **Quantity**: many features can be generated for even small objects

- **Efficiency**: close to real-time performance

- **Extensibility**: can easily be extended to wide range of differing feature types, with each adding robustness
Scale invariance

Requires a method to repeatably select points in location and scale:

• The only reasonable scale-space kernel is a Gaussian (Koenderink, 1984; Lindeberg, 1994)
• An efficient choice is to detect peaks in the difference of Gaussian pyramid (Burt & Adelson, 1983; Crowley & Parker, 1984 – but examining more scales)
• Difference-of-Gaussian with constant ratio of scales is a close approximation to Lindeberg’s scale-normalized Laplacian (can be shown from the heat diffusion equation)
Advantages of invariant local features

- **Locality**: features are local, so robust to occlusion and clutter (no prior segmentation)
- **Distinctiveness**: individual features can be matched to a large database of objects
- **Quantity**: many features can be generated for even small objects
- **Efficiency**: close to real-time performance
- **Extensibility**: can easily be extended to wide range of differing feature types, with each adding robustness
Becoming rotation invariant

• We are given a keypoint and its scale from DoG
• We will select a characteristic orientation for the keypoint (based on the most prominent gradient there; discussed next slide)
• We will describe all features relative to this orientation
• Causes features to be rotation invariant!
 – If the keypoint appears rotated in another image, the features will be the same, because they’re relative to the characteristic orientation
Becoming rotation invariant

- Choosing characteristic orientation:
- Use the blurred image associated with the keypoint’s scale. Look at pixels in a square around it (say, size 16x16)
- Compute gradient direction at each pixel (this is easy, using vertical and horizontal edge filters)
- Create a histogram of these local gradient directions
- Keypoint orientation = the peak of that histogram

Minor details: we’ll also weight each pixel’s histogram contribution by the magnitude of its gradient and how close it is to the keypoint

Now, each keypoint has stable 2D coordinates \((x, y, \text{scale, orientation})\). Now we must give it a “fingerprint.”
Example of keypoint detection

Threshold on value at DOG peak and on ratio of principle curvatures (Harris approach)

(a) 233x189 image
(b) 832 DOG extrema
(c) 729 left after peak value threshold
(d) 536 left after testing ratio of principle curvatures
Repeatability vs number of scales sampled per octave

• Use the blurred image associated with the keypoint’s scale
• Take image gradients over a 16x16 array of locations.
• To become rotation invariant, rotate the gradient directions AND locations by \(-\theta\) (keypoint orientation)
 – Now we’ve cancelled out rotation and have gradients expressed at locations relative to keypoint orientation \(\theta\)
 – We could also have just rotated the whole image by \(-\theta\), but that would be slower.
Using precise gradient locations is fragile. We’d like to allow some “slop” in the image, and still produce a very similar descriptor.

- Create array of orientation histograms (a 4x4 array is shown)
- Put the rotated gradients into their local orientation histograms
 - A gradient’s contribution is divided among the nearby histograms based on distance. If it’s halfway between two histogram locations, it gives a half contribution to both.
 - Also, scale down gradient contributions for gradients far from the center
- The SIFT authors found that best results were with 8 orientation bins per histogram, and a 4x4 histogram array.
SIFT descriptor formation

- 8 orientation bins per histogram, and a 4x4 histogram array, yields 8 x 4x4 = 128 numbers.
- So a SIFT descriptor is a length 128 vector, which is invariant to rotation (because we rotated the descriptor) and scale (because we worked with the scaled image from DoG)
- We can compare each vector from image A to each vector from image B to find matching keypoints!
 - Euclidean “distance” between descriptor vectors gives a good measure of keypoint similarity
SIFT descriptor formation

- Adding robustness to illumination changes:
- Remember that the descriptor is made of gradients (differences between pixels), so it’s already invariant to changes in brightness (e.g. adding 10 to all image pixels yields the exact same descriptor)
- A higher-contrast photo will increase the magnitude of gradients linearly. So, to correct for contrast changes, normalize the vector (scale to length 1.0)
- Very large image gradients are usually from unreliable 3D illumination effects (glare, etc). So, to reduce their effect, clamp all values in the vector to be \(\leq 0.2 \) (an experimentally tuned value). Then normalize the vector again.
- Result is a vector which is fairly invariant to illumination changes.
Figure 8: This graph shows the percent of keypoints giving the correct match to a database of 40,000 keypoints as a function of width of the $n \times n$ keypoint descriptor and the number of orientations in each histogram. The graph is computed for images with affine viewpoint change of 50 degrees and addition of 4% noise.

Feature stability to noise

- Match features after random change in image scale & orientation, with differing levels of image noise
- Find nearest neighbor in database of 30,000 features
Feature stability to affine change

- Match features after random change in image scale & orientation, with 2% image noise, and affine distortion
- Find nearest neighbor in database of 30,000 features
Distinctiveness of features

• Vary size of database of features, with 30 degree affine change, 2% image noise

• Measure % correct for single nearest neighbor match
Figure 11: The probability that a match is correct can be determined by taking the ratio of distance from the closest neighbor to the distance of the second closest. Using a database of 40,000 keypoints, the solid line shows the PDF of this ratio for correct matches, while the dotted line is for matches that were incorrect.
Figure 12: The training images for two objects are shown on the left. These can be recognized in a cluttered image with extensive occlusion, shown in the middle. The results of recognition are shown on the right. A parallelogram is drawn around each recognized object showing the boundaries of the original training image under the affine transformation solved for during recognition. Smaller squares indicate the keypoints that were used for recognition.
Figure 13: This example shows location recognition within a complex scene. The training images for locations are shown at the upper left and the 640x315 pixel test image taken from a different viewpoint is on the upper right. The recognized regions are shown on the lower image, with keypoints shown as squares and an outer parallelogram showing the boundaries of the training images under the affine transform used for recognition.
Nice SIFT resources

• VLFeat toolbox:
 – http://www.vlfeat.org/overview/sift.html

• an online tutorial:
 http://www.aishack.in/2010/05/sift-scale-invariant-feature-transform/

• Wikipedia:
Applications of local invariant features

• Wide baseline stereo
• Motion tracking
• Panoramas
• Mobile robot navigation
• 3D reconstruction
• Recognition
• ...
Automatic mosaicing

http://www.cs.ubc.ca/~mbrown/autostitch/autostitch.html
Wide baseline stereo

[Image from T. Tuytelaars ECCV 2006 tutorial]
Recognition of specific objects, scenes

Schmid and Mohr 1997

Rothganger et al. 2003

Sivic and Zisserman, 2003

Lowe 2002
What we have learned this week?

• Local invariant features
 – Motivation
 – Requirements, invariances

• Keypoint localization
 – Harris corner detector

• Scale invariant region selection
 – Automatic scale selection
 – Difference-of-Gaussian (DoG) detector

• SIFT: an image region descriptor

Some background reading: R. Szeliski, Ch 14.1.1; David Lowe, IJCV 2004