PA3: Face Recognition

Outline

- Preprocessing faces
- Nearest-neighbor on:
- whole images
- PCA of faces ("Eigenface" representation)
- LDA of faces ("Fisherface" representation)
- Bonus: dilation/erosion

Raw data: problems?

Fei-Fei Li
TA Section - 4
3
19-Nov-13

Raw data

- If we plan to do a simple pixel-by-pixel comparison (and we do), then the faces must be in the exact same position in each image
- So we compare eye pixels to eye pixels, nose pixels to nose pixels, etc.
- Computers can do this, using the Viola-Jones (a.k.a. Haar Cascade) face-detection algorithm

Viola-Jones algorithm

- We don't cover it in this class, but Viola-Jones face detection basically uses a bunch of linear filters, which were arrived at through machine learning, to detect faces, eyes, or whatever object it's trained on
- Great for detecting faces and other very consistent-looking objects
- We have applied it for you, to cut out and rotate/scale faces

Preprocessed Data

- We give you a big database, with multiple faces per test subject
- Faces are well-aligned
- You will compare new faces to this database, and label them as belonging to the closest test subject ($\mathrm{K}-\mathrm{NN}$ with $\mathrm{K}=1$)

Comparing faces

- Simplest method: "unroll" each grayscale face image, columnwise, into a single long vector

- Compare faces by taking Euclidean distance between new face-vector and each one in the database
- You'll do this in compareFaces.m

Format of provided database

\% load our face database into a matrix.
[rawFaceMatrix, imageOwner, imgHeight, imgWidth] = readInFaces();
$\%$ This give us: faceMatrix - column 1 of this matrix is image 1,
\% converted to grayscale, and unrolled columnwise into a vector.
$\% \quad$ So if image 1 is 120×100, column 1 will be length 12000 . Column
$\% \quad 2$ is the same for image 2.
\% imageOwner - a vector of size $1 \times$ numlmages, where imageOwner(i)
$\%$ holds the integer label of image (i). Images from the same
\% person have the same label.
\% imgHeight - the height of an original image (they are all the same
\% size)
\% imgWidth - the width of an original image (they are all the same
\% size)

- Database faces are unrolled for you
- You unroll test images yourself, with
testImgVector $=$ testImg(:)

Comparing faces

- Even a small image size of 120×100 pixels produces a vector with 12,000 numbers - If we do lots of comparisons, it will get slow - Not great for storage space either
- Do we truly need 12,000 separate numbers to compare faces? NO!

PCA for lean representation

- Principal Component Analysis is a technique to reduce the dimensionality of data
- Key insight is that most types of raw data (e.g. faces) can be represented as a combination of simple patterns
- PCA finds a set of patterns that can be linearly combined to reproduce the data:
- e.g. facelmage1 $=2 *$ pattern1-0.5* pattern3
- We store the patterns once, and then we can represent each face just in terms of its weights on the patterns (e.g. 2 and -.5, in the example above)

PCA review: getting PCA from SVD

$$
\begin{array}{cc}
U \Sigma & V^{T} \\
\left.\left[\begin{array}{ccc}
-3.67 & -.71 & 0 \\
-8.8 & .30 & 0
\end{array}\right] \times\left[\begin{array}{ccc}
-.42 & -.57 & -.70 \\
.81 & .11 & -.58 \\
.41 & -.82 & .41
\end{array}\right] \quad\right]
\end{array}
$$

- Construct a matrix where each column is a separate data sample (e.g. each column is a face vector)
- Run SVD on that matrix, and look at the first few columns of \boldsymbol{U} to see patterns that are common among the columns
- Columns of \boldsymbol{U} are called Principal Components of the data samples.
- (Note: the above image combines U and Σ. We'll actually combine Σ and V^{\top}, so that our principal components are the columns of U, and are unit vectors.)

PCA review: getting PCA from SVD

- Often, raw data samples have a lot of redundancy and patterns
- PCA can allow you to represent data samples as weights on the principal components, rather than using the original raw form of the data
- By representing each sample as just those weights, you can represent just the "meat" of what's different between samples.
- This minimal representation makes machine learning and other algorithms much more efficient

PCA for lean representation

- The PCA principal components are also known as "basis vectors" that can be linearly combined, with some weighting, to produce each face vector.
- The weights for the training faces can be read off from V^{\top}
- When we see a new face, we can easily get its weights:
- PCA basis vectors are unit vectors and are orthogonal (mutually perpendicular)
- So, dot product of a PCA basis vector with a face produces the weight on that vector
- Before we do PCA to get the patterns, we calculate a "mean face" and subtract it from all samples. (There's no benefit to representing patterns that are identical for all faces)
- So, remember to also subtract that mean face from the test sample.

PCA for lean representation

- PCA basis vectors are column vectors. But we can roll them up into an image and view them to see what patterns they're representing:

PCA for lean representation

- We can now represent images as weights on PCA basis vectors (the vector of weights for an image is sometimes called its "PCA space" representation)
- Those components represent most of the variation between images
- So, distance measurements in PCA space are just as good!
- If we use weights on the top 20 principal components to represent images of size 120×100, we have compressed to 0.17% of the original size
- We do need to store those top 20 principal component vectors for the dataset, but the savings is still massive for large datasets!

Fisherfaces

- PCA compresses data, which is great
- Its basis vectors capture the most variance possible
- But what if we could get basis vectors that actually help us with our task? They would:
- Include variations in data that are important to distinguish faces
- Intentionally leave out variations that are not helpful, such as lighting changes
- Fisher Linear Discriminant Analysis (a.k.a.

Fisherfaces) can do that

Fisherfaces

- Fisherfaces needs a training set that includes multiple examples (face images) for each class
(test subject)
- Each examples is labeled with its class
- Fisherfaces finds basis vectors that capture the most variation between classes, and the least variation within classes
- If your training data includes multiple lighting situations, it will tend to produce vectors that ignore lighting changes

Fisherfaces

- We have implemented Fisherfaces for you, and you'll just experiment with it.
- You'll need to know what it does, but not the math behind it

Fisherface basis vectors

Eigenface basis vectors

Design problem: classification as face/nonface

- You will code isFace . m, which decides if a given image is a face
- Many possible methods
- Good approaches involve checking for face-like patterns. Some options:
- How much of the image is represented by the basis vectors (which we know are good at representing faces)
- How similar to "mean face"?
- Other options too (faces tend to have edges in certain locations, etc.)

Erosion/Dilation

- Erosion and dilation are a pixel-level filtering technique
- Slide a "structuring element" across an image (just like a linear filter)

Dilation

- In dilation, the pixel at the center of the structuring element is replaced with the max of everything under the structuring element

- Typically use a circular structuring element, as above, but other shapes can have other effects

Erosion

- In erosion, the pixel at the center of the structuring element is replaced with the min of everything under the structuring element

- In binary images, erosion shrinks blobs and dilation grows blobs.
- They can be used to get clustering-type effects

Design problem: cleaning up skin segmentation

- In findHeads .m, we give you code which makes a binary image, where 1 means the pixel is close to skin color
- With dilation/erosion, you can get round blobs (connected regions of 1's) where there are heads - Will require a lot of tweaking while looking at results
- Then, MATLAB's regionprops function can give you the center, area, eccentricity, and other characteristics for a blob
- You must return the centers of all heads

Design problem: cleaning up skin segmentation

Writeup

- Answer the given questions about how and why things work
- Our grading process is:
- We answer the questions ourselves and come up with important "bullet-points" that a complete answer contains
- Grade for a question is based on whether you include the important points
- No need to tell us other stuff, or repeat info we've given you, unless you want to

