
TA Section - 4 Fei-Fei Li

PA3: Face Recognition

19-Nov-131

TA Section - 4 Fei-Fei Li

Outline

• Preprocessing faces

• Nearest-neighbor on:

– whole images

– PCA of faces (“Eigenface” representation)

– LDA of faces (“Fisherface” representation)

• Bonus: dilation/erosion

19-Nov-132

TA Section - 4 Fei-Fei Li

Raw data: problems?

19-Nov-133

TA Section - 4 Fei-Fei Li

Raw data

• If we plan to do a simple pixel-by-pixel
comparison (and we do), then the faces must
be in the exact same position in each image

– So we compare eye pixels to eye pixels, nose pixels
to nose pixels, etc.

• Computers can do this, using the Viola-Jones
(a.k.a. Haar Cascade) face-detection algorithm

19-Nov-134

TA Section - 4 Fei-Fei Li

Viola-Jones algorithm
• We don’t cover it in this class, but Viola-Jones face detection

basically uses a bunch of linear filters, which were arrived at
through machine learning, to detect faces, eyes, or whatever object
it’s trained on

• Great for detecting faces and other very consistent-looking objects
• We have applied it for you, to cut out and rotate/scale faces

19-Nov-135

TA Section - 4 Fei-Fei Li

Preprocessed Data

19-Nov-136

…

• We give you a big database, with multiple faces per test subject
• Faces are well-aligned
• You will compare new faces to this database, and label them as

belonging to the closest test subject (K-NN with K=1)

TA Section - 4 Fei-Fei Li

Comparing faces

• Simplest method: “unroll” each grayscale face
image, columnwise, into a single long vector

• Compare faces by taking Euclidean distance
between new face-vector and each one in the
database

• You’ll do this in compareFaces.m

19-Nov-137

…

TA Section - 4 Fei-Fei Li

Format of provided database
% load our face database into a matrix.
[rawFaceMatrix, imageOwner, imgHeight, imgWidth] = readInFaces();
% This give us: faceMatrix - column 1 of this matrix is image 1,
% converted to grayscale, and unrolled columnwise into a vector.
% So if image 1 is 120x100, column 1 will be length 12000. Column
% 2 is the same for image 2.
% imageOwner - a vector of size 1 x numImages, where imageOwner(i)
% holds the integer label of image (i). Images from the same
% person have the same label.
% imgHeight - the height of an original image (they are all the same
% size)
% imgWidth - the width of an original image (they are all the same
% size)

19-Nov-138

• Database faces are unrolled for you
• You unroll test images yourself, with
testImgVector = testImg(:)

TA Section - 4 Fei-Fei Li

Comparing faces

• Even a small image size of 120x100 pixels
produces a vector with 12,000 numbers
– If we do lots of comparisons, it will get slow

– Not great for storage space either

• Do we truly need 12,000 separate numbers to
compare faces? NO!

19-Nov-139

…

TA Section - 4 Fei-Fei Li

PCA for lean representation

• Principal Component Analysis is a technique to reduce
the dimensionality of data

• Key insight is that most types of raw data (e.g. faces)
can be represented as a combination of simple
patterns

• PCA finds a set of patterns that can be linearly
combined to reproduce the data:
– e.g. faceImage1 = 2*pattern1 - 0.5*pattern3

• We store the patterns once, and then we can represent
each face just in terms of its weights on the patterns
(e.g. 2 and -.5, in the example above)

19-Nov-1310

TA Section - 4 Fei-Fei Li

PCA review: getting PCA from SVD

• Construct a matrix where each column is a separate
data sample (e.g. each column is a face vector)

• Run SVD on that matrix, and look at the first few
columns of U to see patterns that are common among
the columns

• Columns of U are called Principal Components of the
data samples.

• (Note: the above image combines U and Σ. We’ll
actually combine Σ and VT, so that our principal
components are the columns of U, and are unit
vectors.)

19-Nov-1311

TA Section - 4 Fei-Fei Li

• Often, raw data samples have a lot of redundancy
and patterns

• PCA can allow you to represent data samples as
weights on the principal components, rather than
using the original raw form of the data

• By representing each sample as just those weights,
you can represent just the “meat” of what’s
different between samples.

• This minimal representation makes machine
learning and other algorithms much more efficient

19-Nov-1312

PCA review: getting PCA from SVD

TA Section - 4 Fei-Fei Li

PCA for lean representation
• The PCA principal components are also known as “basis

vectors” that can be linearly combined, with some
weighting, to produce each face vector.

• The weights for the training faces can be read off from VT

• When we see a new face, we can easily get its weights:
– PCA basis vectors are unit vectors and are orthogonal (mutually

perpendicular)
– So, dot product of a PCA basis vector with a face produces the

weight on that vector

• Before we do PCA to get the patterns, we calculate a “mean
face” and subtract it from all samples. (There’s no benefit
to representing patterns that are identical for all faces)
– So, remember to also subtract that mean face from the test

sample.

19-Nov-1313

TA Section - 4 Fei-Fei Li

PCA for lean representation
• PCA basis vectors are column vectors. But we can

roll them up into an image and view them to see
what patterns they’re representing:

19-Nov-1314

TA Section - 4 Fei-Fei Li

PCA for lean representation
• We can now represent images as weights on PCA basis

vectors (the vector of weights for an image is
sometimes called its “PCA space” representation)

• Those components represent most of the variation
between images
– So, distance measurements in PCA space are just as good!

• If we use weights on the top 20 principal components
to represent images of size 120x100, we have
compressed to 0.17% of the original size
– We do need to store those top 20 principal component

vectors for the dataset, but the savings is still massive for
large datasets!

19-Nov-1315

TA Section - 4 Fei-Fei Li

Fisherfaces

• PCA compresses data, which is great
– Its basis vectors capture the most variance possible

• But what if we could get basis vectors that
actually help us with our task? They would:
– Include variations in data that are important to

distinguish faces

– Intentionally leave out variations that are not helpful,
such as lighting changes

• Fisher Linear Discriminant Analysis (a.k.a.
Fisherfaces) can do that

19-Nov-1316

TA Section - 4 Fei-Fei Li

Fisherfaces

• Fisherfaces needs a training set that includes
multiple examples (face images) for each class
(test subject)
– Each examples is labeled with its class

– Fisherfaces finds basis vectors that capture the
most variation between classes, and the least
variation within classes

– If your training data includes multiple lighting
situations, it will tend to produce vectors that
ignore lighting changes

19-Nov-1317

TA Section - 4 Fei-Fei Li

Fisherfaces
• We have implemented Fisherfaces for you, and

you’ll just experiment with it.
– You’ll need to know what it does, but not the math

behind it

19-Nov-1318

Eigenface basis vectorsFisherface basis vectors

TA Section - 4 Fei-Fei Li

Design problem: classification as
face/nonface

• You will code isFace.m, which decides if a
given image is a face

• Many possible methods
• Good approaches involve checking for face-like

patterns. Some options:
– How much of the image is represented by the basis

vectors (which we know are good at representing
faces)

– How similar to “mean face”?
– Other options too (faces tend to have edges in certain

locations, etc.)

19-Nov-1319

TA Section - 4 Fei-Fei Li

Erosion/Dilation

• Erosion and dilation are a pixel-level filtering
technique

• Slide a “structuring element” across an image
(just like a linear filter)

19-Nov-1320

TA Section - 4 Fei-Fei Li

• In dilation, the pixel at the center of the
structuring element is replaced with the max
of everything under the structuring element

• Typically use a circular structuring element, as
above, but other shapes can have other
effects

Dilation

19-Nov-1321

TA Section - 4 Fei-Fei Li

• In erosion, the pixel at the center of the
structuring element is replaced with the min of
everything under the structuring element

• In binary images, erosion shrinks blobs and
dilation grows blobs.

• They can be used to get clustering-type effects

Erosion

19-Nov-1322

TA Section - 4 Fei-Fei Li

Design problem: cleaning up skin
segmentation

• In findHeads.m, we give you code which
makes a binary image, where 1 means the pixel is
close to skin color

• With dilation/erosion, you can get round blobs
(connected regions of 1’s) where there are heads
– Will require a lot of tweaking while looking at results

• Then, MATLAB’s regionprops function can
give you the center, area, eccentricity, and other
characteristics for a blob

• You must return the centers of all heads

19-Nov-1323

TA Section - 4 Fei-Fei Li

Design problem: cleaning up skin
segmentation

19-Nov-1324

TA Section - 4 Fei-Fei Li

Writeup

• Answer the given questions about how and
why things work

• Our grading process is:
– We answer the questions ourselves and come up

with important “bullet-points” that a complete
answer contains

– Grade for a question is based on whether you
include the important points
• No need to tell us other stuff, or repeat info we’ve

given you, unless you want to

19-Nov-1325

