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Abstract

Within the range of images that we might categorize as a ‘‘beach’’, for example, some will be more representative of that
category than others. Here we first confirmed that humans could categorize ‘‘good’’ exemplars better than ‘‘bad’’ exemplars
of six scene categories and then explored whether brain regions previously implicated in natural scene categorization
showed a similar sensitivity to how well an image exemplifies a category. In a behavioral experiment participants were more
accurate and faster at categorizing good than bad exemplars of natural scenes. In an fMRI experiment participants passively
viewed blocks of good or bad exemplars from the same six categories. A multi-voxel pattern classifier trained to
discriminate among category blocks showed higher decoding accuracy for good than bad exemplars in the PPA, RSC and
V1. This difference in decoding accuracy cannot be explained by differences in overall BOLD signal, as average BOLD activity
was either equivalent or higher for bad than good scenes in these areas. These results provide further evidence that V1, RSC
and the PPA not only contain information relevant for natural scene categorization, but their activity patterns mirror the
fundamentally graded nature of human categories. Analysis of the image statistics of our good and bad exemplars shows
that variability in low-level features and image structure is higher among bad than good exemplars. A simulation of our
neuroimaging experiment suggests that such a difference in variance could account for the observed differences in
decoding accuracy. These results are consistent with both low-level models of scene categorization and models that build
categories around a prototype.
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Introduction

Human observers are able to quickly and efficiently categorize

briefly presented images of natural scenes [1–5], whether that

category is defined by an object within the scene or describes a

property of the whole scene. Similarly, brain measures indicate

that natural scene images can evoke differential activation very

early in processing [6–8]. However, not all natural scenes are

equivalent in regard to category membership. Some images are

better exemplars of their category than others. Here we explore

the effects of category membership on both human behavior and

fMRI brain activity.

Pioneering work in fMRI, using univariate statistical techniques,

revealed that the parahippocampal place area (PPA) and the

retrosplenial cortex (RSC) play a key role in processing scenes as

opposed to isolated objects [9–11]. More recently, this work has

been extended to assess the role of these regions in natural scene

categorization [5,12–18]. Importantly, this body of work has

moved away from standard univariate statistical techniques and

instead used multivariate techniques that take advantage of the

pattern of activity across an area.

For example, Walther et al. [5] used multi-voxel pattern

analysis to show that activity patterns in the PPA and RSC, as

well as in primary visual cortex (V1) and the lateral occipital

complex (LOC), can be used to distinguish between scene

categories. More importantly, scene categories could not only be

discriminated in PPA, RSC and LOC, but decoding in these

regions mirrored behavioral measures in two ways. First, the

distribution of decoding errors in these regions, unlike in V1,

correlated well with the distribution of behavioral errors made by

subjects performing a similar scene categorization task. Second,

PPA, and not RSC, LOC or V1, showed a decrease in decoding

accuracy when the scenes were presented up-down inverted; a

similar drop in accuracy was observed in a related behavioral

categorization task.

Here we ask whether decoding accuracy in these same regions

correlates with another aspect of human categorization behavior

critical to the concept of a category, that is, the degree to which an
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image exemplifies its category. If these regions are sensitive to

actual scene categories, then they should also be sensitive to the

degree to which an image denotes a particular scene category. For

example, within the range of images that we might categorize as a

‘‘beach,’’ some are more representative of that category than

others. Will the degree to which an image exemplifies the category

‘‘beach’’ influence decoding in visual cortex?

Such an effect could suggest a connection between the perceived

category membership of a scene and its neural representation in

these areas. A difference in decoding accuracy could also be due to

differences in the strength of the correlation between low-level

visual features and scene category. It is possible, after all, that what

determines whether a particular image is a good exemplar of a

category is the degree to which its features correlate with a

category prototype. Thus, regardless of what mediates better

decoding accuracy for good than bad exemplars, such a

correlation with human judgments would further implicate these

regions in the representation of scene category.

We first verified behaviorally that good exemplars (rated as such

by separate observers) were categorized more accurately and

quickly than bad exemplars of a category. Then, using a similar

approach to Walther et al. [5], we asked whether fMRI decoding

accuracy in any of the regions previously implicated in natural

scene categorization (V1, LOC, RSC and PPA) showed a similar

good versus bad exemplar effect.

We asked a group of observers to rate 4025 images from six

natural scene categories (beaches, city streets, forests, highways,

mountains and offices) for how representative the images were of

their respective category. Images were then grouped into good,

medium or bad exemplars of each category based on their average

ratings. Another group of participants then took part in two

experimental sessions: a behavioral session, in which they

categorized these (briefly presented) images, and an fMRI session,

in which they passively viewed the images while being scanned.

Data from the fMRI session was submitted to two analyses: 1) a

univariate linear regression analysis to compare the percent signal

change for good and bad exemplars, and 2) multi-voxel pattern

analysis to determine whether any of the regions explored

contained stronger category signals for good category exemplars

than bad. Finally, we analyzed the images used in the experiments

in order to explore what properties might make them either good

or bad exemplars of their respective natural scene categories.

Materials and Methods

Participants
Nine participants from the University of Illinois (5 females,

mean age 31), with normal or corrected-to-normal vision,

participated in the behavioral and fMRI sessions for monetary

reward.

Ethics Statement
Both experiments were approved by the Institutional Review

Board of the University of Illinois and all participants gave written

informed consent according to the principles of Declaration of

Helsinki.

Stimuli
4025 color images from 6 different categories (beaches, city

streets, forests, highways, mountains and offices) were downloaded

from the worldwide web via multiple search engines, using the six

category names and their synonyms as search terms. These images

were then posted to Amazon Mechanical Turk (AMT) (http://

aws.amazon.com/mturk/) to be rated for how representative they

were of their category. Anonymous users of the AMT web service,

located all around the world, performed the task on their own

computer and received $0.001 per image rated. Images were

4006300 pixels in size, but varied in the visual angle subtended

across participants by the monitors and viewing distance they

used. Images were shown for approximately 250 ms. Timing was

controlled by the Javascript timer in the users’ web browsers, thus

the actual presentation time could vary slightly depending on the

users’ computer settings. Users were asked to rate each image for

how good of an exemplar of a given category the image was (e.g.

‘‘How representative is this image of a BEACH?’’). Responses

were recorded as clicks on a graphical user interface (see Figure 1

for an example of the interface) and could range from 1 (‘‘poor’’ )

to 5 (‘‘good’’). In order to ensure that the users of the AMT service

were committed to the task, we placed a random ‘‘check’’ trial

every 10 trials. Each check trial repeated one of the images

randomly chosen among the preceding 10 trials. We computed a

‘‘discount’’ score for each user such that if they responded to the

check trial with a different category label they received a discount

of 5 and if they chose a different rating than their previous

response they received a discount corresponding to the absolute

value of the difference between the new and old rating. The

discount score was summed over all the check trials for each user.

If the total discount score exceeded 10, the data for this user was

discarded. This ensured that we only retained the data of

consistent and committed users. Besides being rated from 1 to 5,

images could also be rated as a member of any of the other

categories or as ‘‘none of them’’. Images that received this

response for more than one quarter of the total ratings were not

used in subsequent experiments (6.36% of the total). The

remaining images each received 20 ratings per image on average.

For each scene category we first selected the 80 images with the

highest ratings as the candidates for ‘‘good’’ exemplars and the 80

images with the lowest ratings as the candidates for ‘‘bad’’

exemplars. In addition, we chose the 80 images closest to the

midpoint between the ‘‘good’’ and ‘‘bad’’ average ratings for

‘‘medium’’ exemplars to be used in a preliminary staircasing

procedure. We then acquired additional ratings on these candidate

images to further refine our good and bad image sets. After one

more round of rating, each of the 240 selected images in each

category had an average of 137 ratings/image.

For each category, images from this second round of ratings

were sorted in order of descending average rating. The 60 images

with the highest average ratings from the 80 ‘‘good’’ candidates

were labeled as ‘‘good’’ exemplars. Similarly, we selected 60 ‘‘bad’’

exemplars as the images with the lowest ratings. We selected 60

‘‘medium’’ exemplars corresponding to the 60 central images in

that ranked list. The sets of images in each rating class (good,

medium, and bad) were mutually exclusive. Some examples of the

images from each of the rating classes can be seen in Figure 2.

Mean ratings at this stage were 4.7, 4 and 2.9 for good, medium

and bad exemplars, respectively. The distribution of ratings looked

similar for all 6 categories.

Behavioral experiment. Good, medium and bad images

were scaled to 8006600 pixels. For each of the 6 categories, 60

images from each rating class were used, bringing the total number

of images to 1080. Each image was presented on a CRT-monitor

(resolution 10246768, display rate 75 Hz) and subtended 22617

degrees of visual angle. Images were centered on a 50% grey

background. Stimulus presentation and response recording were

controlled using the open source Vision Egg package for Python

[19].

fMRI experiment. Stimuli were the same 360 good and 360

bad images used in the behavioral experiment (60 for each

Decoding Natural Scenes Categories
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Figure 1. Interface used by the AMT workers to rate our images. Users could replay the image once by clicking on a button placed below the
image.
doi:10.1371/journal.pone.0058594.g001

Figure 2. Examples of good, medium, and bad images used in the behavioral and fMRI experiments.
doi:10.1371/journal.pone.0058594.g002
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category). For four participants they were projected in a pair of

MR-compatible LCD goggles (Resonance Technologies, North-

ridge, CA) running at a resolution of 8006600, while for the other

five they were presented using back-projection set at a resolution of

8006600. In each case the images subtended 22617 degrees of

visual angle. Images were presented using the Psychophysics

Toolbox for Matlab [20–21].

Procedure
Behavioral experiment. Participants performed six-alterna-

tive forced-choice categorization of the images. The session was

comprised of: a training phase during which participants learned

the response mappings between the six categories and their

corresponding keys; a staircasing phase, during which image

presentation time varied to reach 65% classification accuracy for

each individual participant; and an experimental phase during

which we tested the participants’ categorization performance at his

or her individual presentation time.

During each trial participants viewed a fixation cross for 500 ms

prior to a brief image presentation (image duration depended on

the experiment phase) that was followed by a perceptual mask

(500 ms duration; see [5] for examples of the masks). Finally, a

blank screen was presented for 2000 ms. Participants were asked

to press one of six keys on the computer keyboard to indicate the

category of the viewed image. If no input was given, the trial timed

out after the 2000 ms fixation period and was excluded from the

analysis.

During the training phase images were presented for 250 ms to

ensure adequate learning of response mappings. Once an 80%

accuracy rate was achieved in the training phase (after 60 trials on

average), the QUEST algorithm [22] was used to staircase the

image presentation time to achieve 65% classification accuracy for

each individual participant (53 trials on average). Images from our

set of medium exemplars were used for training and staircasing.

Staircasing was terminated when the standard deviation of the

display times over a block was less than the refresh period

(13.3 ms) of the monitor. The image presentation duration

obtained during the staircasing phase of the experiment was used

during the testing phase of the experiment. The average

presentation time across subjects was 64 ms (ranging from 26 ms

to 133 ms).

During the testing phase, good and bad exemplars alternated in

separate blocks of 20 images each. Participants completed a total

of 36 experimental blocks. The good and bad image sets were only

viewed in the testing phase of the experiment and each image was

shown exactly once across the whole session. Participants received

auditory feedback (800 Hz pure tone, 100 ms) for incorrect

responses in both the training and staircasing phases of the

experiment, but no feedback was provided in the testing phase.

fMRI experiment. In order to ensure high signal strength in

the scanner, images were presented for longer in the fMRI

experiment than in the behavioral experiment. Participants

performed the fMRI experiment first. They passively viewed

images for 1.6 seconds each, arranged in blocks of 10 images, with

no interstimulus interval. Each run contained 6 different blocks

corresponding to the 6 categories. Blocks of images were

interleaved with blank periods lasting 12 seconds to allow BOLD

response to return to baseline. The scanning session was

comprised of a total of 12 runs, with 6 runs of good and 6 runs

of bad images presented in alternating order with the starting

condition (good or bad) counterbalanced across subjects. The

category order was randomized but replicated for two consecutive

runs (one good and one bad). Each image was shown once in the

whole session.

MRI Acquisition and Preprocessing
Scanning was performed at the Biological Imaging Center at

the University of Illinois at Urbana-Champaign. T1-weighted

anatomical images and gradient-echo echo planar (EPI) images

were acquired in a 3T-head only scanner (Allegra, Siemens) using

a standard head coil. EPI images were collected from the entire

brain (TR = 2 s, TE = 30 ms, flip angle = 90, matrix 64664; FOV

22 cm) in interleaved order. 90 volumes of 34 axial slices

(3.43863.438 mm in-plane resolution) were collected in each

functional run. Slice thickness was 3 mm and gap size was 1 mm.

The first 4 volumes of each run were discarded. A high resolution

structural scan (1.25 mm61.25 mm61.25 mm; MPRAGE) was

collected to assist in registering the images with the retinotopic

mapping data. Functional data were motion corrected to the

middle image of the 6th run, and normalized to the temporal

mean of each run using AFNI [23]. For the pattern recognition

analysis no other image processing steps, such as spatial

smoothing, were performed.

Multi voxel pattern analysis. To address whether the

category-specific information in various brain regions differed

between good and bad images we constructed a decoder

previously shown to be effective for decoding scene category from

multi-voxel fMRI activity [5]. Specifically, after pre-processing, in

a given ROI (see below for definition of the ROIs) we extracted

the eight time points corresponding to each presentation block,

shifted by 4 seconds to approximate the delay in the BOLD

response. Multi-voxel pattern analysis was then performed

separately on the good and bad runs. We elaborate on the

procedure using good exemplars as an example, but the same

procedures were used for the bad exemplars. Using five of the six

‘‘good’’ runs, a support vector machine (SVM) classifier with a

linear kernel (C = 0.02) was trained to assign the correct category

labels to patterns of fMRI activity in the ROI. The classifier was

then tested on the fMRI activity from the left-out run. The

classifier was trained and tested on each time point separately (as

opposed to averaging activity across a block), and disagreements

regarding the predicted category label within blocks were resolved

by majority voting, i.e., each block was labeled with the category

that was most frequently predicted among the eight volumes in the

block. Ties were resolved by selecting the category with the largest

SVM decision values before thresholding. The procedure was

repeated six times with each of the six good runs left out in turn in

a leave-one-run-out (LORO) cross validation procedure, thus

generating predictions for the blocks in each run. Decoding

accuracy was measured as the fraction of blocks with correct

category predictions, providing an indication of the strength of the

category-specific information in a given ROI for good exemplar

images. The same LORO cross-validation procedure was

performed for the bad image runs to arrive at the equivalent

measure for bad exemplars. Significance of decoding accuracy

results was established with a one-tailed t-test, comparing the

mean of the accuracies over participants to chance level (1/6). A

two-tailed, paired t-test was used to assess whether there was a

significant difference in decoding accuracy between good and bad

exemplars.

Univariate good/bad analysis. We performed a univariate

linear regression analysis to compare the percent signal change in

good and bad images. For this analysis, in addition to the pre-

processing mentioned above, fMRI images were spatially

smoothed (6 mm FWHM). We defined two regressors of interest:

blocks of good images and blocks of bad images were modeled

separately and convolved by a gamma function to approximate the

hemodynamic response [24]. We performed a linear contrast

between these two regressors and extracted the percent signal

Decoding Natural Scenes Categories
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change in each participant’s V1, PPA and RSC ROIs. In each of

the ROIs, mean percent signal change values for good and bad

images were submitted to a two-tailed t-test to determine whether

they differed significantly.

Regions of Interest. Based on previous work [5] we

identified 5 separate ROIs: V1, the parahippocampal place area

(PPA), the retrosplenial cortex (RSC), the lateral occipital complex

(LOC) and the fusiform face area (FFA).

In a separate scanning session, V1 was delineated using

standard retinotopic mapping procedures and analyses described

elsewhere: a meridian mapping procedure was used for participant

3 [25] and a traveling wave procedure was used for the remaining

participants [26]. LOC, FFA, PPA and RSC were identified in

separate functional localizer scans, where blocks of images of faces,

houses, objects, scrambled objects, landscapes and cityscapes were

presented. Each block consisted of 20 images of a given category,

where each image was presented for 450 ms followed by a 330 ms

inter-stimulus interval. In a given run, 4 blocks of each category

were shown while a fixation block of 12 seconds was interleaved

every two or three blocks. Participants performed a 1-back task,

pressing a button each time an image was repeated. Two

functional scans (139 volumes each) were recorded in a given

session. All subjects were scanned in two sessions while 1

participant required an additional session due to a weak BOLD

signal in the previous scans. The 3dAllineate function in AFNI

[23] was used to register the images across localizers and

experimental sessions.

EPI images from the localizer runs were motion corrected,

smoothed (4 mm FWHM) and normalized to the mean of each

run. BOLD response in each type of block was modeled separately

and convolved with a gamma variate function of the hemodynamic

response [24]. ROIs were defined from linear contrasts as the sets of

contiguous voxels that differentially activated in the following

comparisons: PPA and RSC were identified by a (cityscapes,

landscapes).objects contrast, LOC by an objects.scrambled

objects contrast and FFA was identified by a faces.(objects,

cityscapes, and landscapes) contrast. For all localizer contrasts, a

maximum threshold of p,261023 (uncorrected) was applied.

Stricter thresholds were used when necessary to break clusters that

spanned multiple ROIs. There was no overlap between any of the

ROIs, and all ROI voxels were used for the pattern analysis without

any further voxel selection.

Image Analysis
To explore whether good images are more or less variable than

bad images across a given feature space we extracted features

describing the form and color of the images. To create a ‘‘form’’

space we created grayscale versions of the images that were

downsampled to 6006450 pixels and convolved them with 64

Gabor filters (8 orientation68 frequencies) with kernel size of 868

pixels. As a result we obtained a 64-element vector for each pixel

location with each vector entry storing the response of one Gabor

filter. We averaged the 64 element vectors from all of the 6006450

pixel locations to obtain a global description of our scene image.

To capture the distribution of pixel colors over the entire image

we created a ‘‘color’’ feature space. For this purpose, we described

each image with a two dimensional histogram with the dimensions

of hue and saturation discretized uniformly into 8 values, resulting

in a 64 element vector (8 hues68 saturations). The histogram was

computed over the entire image, binning the color values from all

of the 6006450 pixel locations to obtain a global description of our

scene image.

We then estimated the variance of the images as the distance of

each image from the average image in each of these feature spaces.

To this end we performed singular value decomposition of the

covariance matrix of the feature vectors and summed the

eigenvalues of the diagonalized covariance matrix. These eigen-

values represent the amount of variance in the feature vectors

along the direction of the eigenvectors of the covariance matrix.

Their sum captures the overall variance present in the feature

representations of the images. We performed this step separately

for the good and the bad exemplars for each scene category and

compared variance for each scene category as well as pooled over

all categories.

Simulation Analysis
In order to evaluate if a difference in variance among the

exemplars of categories can lead to the observed differences in

fMRI decoding accuracy we performed a numerical simulation of

our fMRI experiment. We modeled the neural activity elicited by

scene categories as multivariate Gaussian distributions with

isotropic covariance N mc,s2
c
:I

� �
. Activity for an exemplar was

modeled as a random draw from this distribution. To account for

the different variances between good and bad exemplars, we used

smaller values of scfor good sc~2ð Þthan bad sc~4ð Þ exemplars.

In order for the simulation to closely follow the experiments, we

estimated the mean of the multivariate Gaussian distribution for a

scene category mc from the sample mean of the patterns of voxel

activity elicited in PPA by that category for each of our eight

human subjects in turn. Note that we did not model the

correlations between voxels in this simulation.

We composed the time course of the simulated experiment to

mirror the block design of our fMRI experiment: 12 seconds of

fixation (modeled as zero neural activity) were followed by a 16-

second block of images, composed of ten image activity patterns of

1.6 seconds each, randomly drawn from the same category

distribution. Each category block was followed by 12 seconds of

fixation, and for each block the activity was drawn from a different

category distribution. We generated data for six runs, with each

run containing six blocks, one from each category in a random

order. The neural activity was then convolved with a Gamma

function to model the hemodynamic response:

h(t)~
t

p:q

� �p

:exp
p{t

q

� �
, with p = 8.6 and q = 0.547 [21].

Finally, we added normally distributed measurement noise from

N 0,s2
m

� �
. We estimated the standard deviation of the measure-

ment noise from the residuals of the univariate regression analysis

in the PPA as sm~0:75. Once we had computed the simulated

fMRI activity, we analyzed it with the same leave-one-run-out

cross validation procedure as described for the multivoxel pattern

analysis of our experimental data.

To verify that a difference in variance between good and bad

images would result in poorer decoding regardless of whether we

ran a blocked or event-related fMRI design, we also simulated a

fast event-related experiment. For this simulation we constructed

six runs with 60 trials each. Following an initial fixation period of

12 seconds duration we added activity for an image from one of

the six categories for 1.6 seconds, followed by 2.4 seconds fixation

before the presentation of the next image. We randomly

interleaved trials for 60 exemplars (10 from each of the six

categories) within a run. Including a final fixation period of 12

seconds, this resulted in a total run length of 264 seconds,

compared to 192 seconds for the blocked design. Activity for the

event-related design was convolved with the same hemodynamic

response function (HRF) as described above, and measurement

noise with the same variance was added. We then performed a

regression analysis separately on each run with regressors for each

Decoding Natural Scenes Categories
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of the six categories. Regressors were convolved with the same

HRF as the simulated neural activity. The sets of beta-weights for

the categories were used as inputs to the leave-one-run-out cross

validation analysis.

We performed the block and the event-related simulations 100

times for each of the eight subjects, both for good and bad

exemplars, each time with a new random draw of the exemplar

activity and the measurement noise. Significance of the difference

between the decoding accuracies for good and bad exemplars was

computed with a two-tailed, paired t-test over eight subjects.

Results

Behavioral Categorization Task
Participants were significantly more accurate at categorizing the

briefly presented good images than the bad images (92% and 66%

respectively; t(8) = 11.57, p,0.001; chance was 16.67%), and this

effect was significant for all six categories (see Figure 3; t(8) = 5.86,

p,0.001 for beaches; t(8) = 5.13, p,0.001 for city streets;

t(8) = 8.36, p,0.001 for forests; t(8) = 7.63, p,0.001 for highways;

t(8) = 6.03, p,0.001 for mountains; and t(8) = 3.84, p,0.01 for

offices).

Response times revealed a similar effect. Accurate responses

were significantly faster for good images than bad images (892 ms

and 1028 ms respectively; t(8) = 8.82, p,0.001), and this effect was

significant across all the categories (t(8) = 8.53, p,0.001 for

beaches; t(8) = 6.27, p,0.001 for forests; t(8) = 4.42, p,0.01 for

highways; t(8) = 5.2, p,0.001 for mountains and t(8) = 2.58,

p,0.05 for offices) except for city streets in which the difference

was marginally significant (t(8) = 2.10, p = 0.068).

Moreover, to look for more fine-grained correlations between

image rating and categorization accuracy we correlated these two

measures separately for good and bad images. We observed a

significant positive correlation between ratings and categorization

accuracy for the bad images (r = .145, p,0.05), indicating that

across the bad exemplars, images that are less representative of the

category were categorized less accurately. The same correlation

was not significant for the good images (r = 20.06, p = 0.24).

However, it should be noted that the lack of correlation here may

be due to substantially smaller variability in the ratings of good

images (SD = 0.53) than the bad images (SD = 1.25).

Multivariate fMRI Analysis
Having established that humans do indeed find good exemplars

easier to categorize than bad exemplars of a category, we asked

what effect good and bad exemplars would have on fMRI

decoding rates.

Data from one participant was excluded from the fMRI

analyses due to excessive movement and a low signal-to-noise

ratio, and only 10 runs of fMRI data were included for another

participant due to technical problems during data collection in the

final 2 runs of the session. In separate functional scans (see ROIs

section for details) we identified five ROIs (mean number of voxels

and standard deviation in parenthesis): the PPA (93628 voxels),

the RSC (55613 voxels), the LOC (72632 voxels), the FFA

(66631 voxels) and V1 (2296161 voxels).

If a particular ROI is sensitive to scene category, then it should

be sensitive as well to the degree to which an image denotes a

particular category. Thus, we should find a difference in the

decoding accuracy of good images compared to bad images. We

tested for the presence of such an effect in the decoding data in the

following way. We trained and tested a decoder on good images,

using LORO cross validation, and compared the resulting

decoding accuracy to that obtained when the decoder was trained

and tested on bad images. First, when we trained and tested the

decoder on good images, decoding accuracy (rate of correctly

predicting the viewed scene category from the voxels’ pattern

activity) was significantly above chance (16.7%) in V1 (27%,

t(7) = 2.57, p,0.05), PPA (32%, t(7) = 4.88, p,0.001) and RSC

(29%, t(7) = 5.60, p,0.001), but not in FFA and LOC (16%,

p = 0.66 and 18%, p = 0.28 respectively). When we trained and

tested the decoder on the bad images, decoding accuracy was

significantly above chance in PPA (22%, t(7) = 2.31, p,0.05) but

not in the other ROIs (17%, p = 0.53 for V1; 20% for RSC,

p = 0.11 for RSC; 19%, p = 0.09 for FFA and 18%, p = 0.21 for

LOC).

We looked for a good/bad effect by comparing the decoding

performance for good versus bad images (2-tailed paired t-test).

V1, PPA and RSC showed a significant decrement in decoding

Figure 3. Results of the behavioral categorization task. Graph depicts categorization accuracy of good (green) and bad exemplars (orange)
across categories. Error bars show standard error of the mean over nine subjects. The dashed line marks chance level (0.167). Good vs. bad
comparisons are significant for all categories; **p,0.01. ***p,0.001.
doi:10.1371/journal.pone.0058594.g003
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accuracy for bad exemplars relative to good exemplars: t(7) = 3.00,

p,0.05 for V1; t(7) = 2.76, p,0.05 for PPA and t(7) = 2.45,

p,0.05 for RSC. These data suggest, as predicted, that these

ROIs are sensitive to category information, i.e. that category-

related information in these areas is clearer for good than bad

exemplars. No such effect was found in LOC and FFA (t,1 for

both ROIs; see Figure 4), but this is not surprising given that

decoding did not exceed chance in these regions for either good or

bad exemplars. See Figure 5 for confusion matrices for V1, PPA

and RSC.

Thus, in keeping with previous research [5,14], we once again

show a correlation between activity in visual cortex and human

behavior: images that humans find easier to categorize are also

more accurately categorized by the decoder. However, unlike

previous research, this correlation extends to V1, suggesting that

differences between good and bad exemplars include features

encoded in V1.

Image Analysis
One possibility for the decoding advantage in both V1 and later

visual areas is that good exemplars are all more similar to a

particular prototype than bad exemplars. To asses whether this

might be the case, we computed a pixel-wise average image of all

60 images from a category, separately for the good and bad

exemplars (Figure 6). Specifically, we simply averaged the RGB

values at each pixel in the image. Interestingly, the average image

of the good exemplars reveals fairly clear spatial structure that

makes it possible to identify the category (e.g., a mountain peak

can be made out in the good mountain average). The same is not

true of the pixel-wise average of the bad exemplars; little

systematic structure is discernible in these images (Figure 6). This

analysis not only suggests that good exemplars are more similar to

each other in structure than bad exemplars, it is also suggestive of

a potential prototype for each category. For instance, a

prototypical mountain scene may contain a single peak in the

center; a prototypical city street scene may contain a street that

recedes in depth with tall buildings on either side.

To further explore whether good images are in fact less variable

in low-level feature space than bad images we computed how far

each image is from the average image in two feature spaces.

Because, as our pixel-wise average images illustrate, good

exemplars appear to be distinguished from bad exemplars in the

consistency of both their spatial layout and color, we chose one

feature space that capture the form (or structure) of scenes and one

that captured the distribution of colors across an image. Figure 7

shows the variance (mean square distance from the mean image)

for each feature space. In the ‘‘form’’ space (using Gabor filters),

the variance of the good exemplars is smaller than the variance of

the bad exemplars, and this is consistent for all the categories (see

the left panel of Figure 7). A similar pattern can be seen for the

color space, although it is less consistent across categories: 4 out of

the 6 categories have a smaller variance for good than bad

exemplars (see right panel of Figure 7).

In short, analysis of the images themselves suggests that good

exemplars of a category have more similar low-level image

statistics to each other than bad exemplars do. We note that this

similarity is itself a novel finding as our raters were asked only to

rate the images for how representative they were of their category.

At no point did we suggest to the raters that they match the image

to a prototype or that representative images should be similar to

one another. These more consistent low-level image statistics for

good than bad exemplars of a category not only could contribute

to the more accurate decoding of good images in the brain but it is

also suggestive of the categories being organized around a

prototype.

Simulation Analysis
Is it plausible that the differences in within-category variance

between good and bad exemplars gave rise to the differences in

decoding accuracy that we found in the fMRI data? To address

this question we performed a computer simulation of the fMRI

experiment in which we manipulated the variance in the patterns

of activity evoked by good and bad exemplars. We simulated the

neural activity for exemplars of scene categories as multivariate

Gaussian distributions around a prototype mean. So that our

prototype approximated the patterns observed in our data we

simulated the prototype by taking the mean activity at each voxel

for each of the six scene categories in the PPA from each of the

eight subjects in turn. Importantly, we used two different settings

for the variance of the category distributions, low variance to

simulate good exemplars and high variance to simulate bad

exemplars. In accordance with the image analysis results we set the

variance for bad exemplars to double the value for good

exemplars.

Neural activity patterns were assembled into a sequence of

blocks with fixation periods (zero activity) closely mirroring our

experimental design. The neural activity was then convolved with

a realistic hemodynamic response function (HRF), and normally

distributed measurement noise was added. The variance of the

measurement noise was estimated from the residuals of the

univariate regression analysis of the experimental data. We then

performed the same LORO cross validation analysis that we

performed on the experimental data. The simulation was repeated

100 times with the PPA voxel activity from each of the eight

subjects to estimate the category distribution means. Just as in our

fMRI experiment, we found significantly higher decoding

accuracy for good (low variance) than bad (high variance)

exemplars (t(7) = 20.9, p,0.001, two-tailed, paired t test; Figure 8).

We chose a block design for our experiment because of its more

robust signal compared to event-related designs [27]. Would we

expect to see a similar pattern of decoding accuracy if we had used

an event-related design? To make the comparison we also

simulated an event-related experiment with comparable total scan

Figure 4. Accuracy of decoding scene category from V1, FFA,
LOC, PPA and RSC. A decoder was trained and tested on fMRI activity
evoked by good exemplars (green), and trained and tested on fMRI
activity evoked by bad exemplars (orange). Error bars show standard
error of the mean across subjects. The dotted line marks chance level
(0.167). *p,0.05; **p,0.01.
doi:10.1371/journal.pone.0058594.g004
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Figure 5. Confusion matrices for decoding of scenes categories in V1, PPA and RSC. The decoder was trained and tested on good
exemplars (left column) and trained and tested on bad exemplars (right column). The rows of each matrix indicate the categories presented (ground
truth) and the columns indicate the predictions of the decoder. Diagonal entries are correct decoding rates for the respective categories, and off-
diagonal entries indicate decoding errors.
doi:10.1371/journal.pone.0058594.g005

Figure 6. Average images. Pixel-wise RGB average images of good (first row) and bad (second row) exemplars across the categories (columns).
doi:10.1371/journal.pone.0058594.g006
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time and the same number of image exemplars. We found the

same effect of higher decoding accuracy for good than bad

exemplars as in the block design (t(7) = 10.8, p,0.001 two-tailed,

paired t test; fig. 8), although decoding accuracy overall was lower

for the event-related than the block design, validating our design

choice.

Overall, these results suggest that the higher variance among

bad compared to good exemplars may account for the difference

in decoding that we find. Furthermore, this would be the case

regardless of the design we used. Indeed, variance is an issue

whenever one is creating a category (training) or assessing

membership (testing), because it means that any one exemplar is

a less reliable predictor of either the mean (i.e. a prototype) or

boundaries of the category. This is certainly true of our

classification analysis, but we note that the human brain could

also suffer from the same problem. In other words, participants

may rate images that share some but not all features of the

majority of members of a category as bad, resulting in a set of

images whose physical attributes vary more widely than the set of

attributes that more clearly and reliably predict the category.

Finally, we would like to note that although variance may be an

issue for the purposes of creating or assessing category member-

ship, the same variability is a benefit in distinguishing between

members of a category. For example, memory for a particular

beach will be better when the set of possible beaches share fewer

attributes [28–29]. Similarly, we would predict greater fMRI

decoding accuracy in distinguishing between exemplars when the set

of images are drawn from the bad exemplar than the good

exemplar sets. However, because we were interested in the

category signal we did not design the experiment in such a way

that we could separate out the individual exemplars.

Univariate fMRI Analysis
In our multivariate analysis we have shown that V1, PPA and

RSC contain category-related information such that in these ROIs

category is decoded more accurately from good than from bad

exemplars of natural scenes. How might these results relate to the

mean fMRI signal in these areas?

The univariate analysis revealed that the superior decoding

accuracy for good exemplars is not due to a higher BOLD signal

for good than bad exemplars. The percent signal change was

significantly higher for bad exemplars than good exemplars in PPA

(t(7) = 4.34, p,0.01; see Figure 9) but failed to reach significance in

RSC (t ,1) and V1 (t,1). These data suggest that the higher

decoding accuracy for good exemplars is due to clearer activity

patterns in these ROIs rather than higher overall BOLD signal.

Why might bad exemplars evoke greater BOLD activity in the

PPA than good exemplars? One possibility is that the increased

variance in the bad exemplars as compared to good exemplars led

to this difference. Specifically, because good exemplars are more

similar to one another, the good blocks might exhibit stronger

repetition suppression (sometimes referred to as ‘‘fMRI adapta-

tion’’) than the bad [30].

To assess this possibility we performed an additional univariate

linear regression where we defined four regressors corresponding

to first and second halves (4 time points) of the blocks of good and

bad exemplar of natural scenes. These four regressors were

modeled separately and convolved by a gamma function to

Figure 7. Variance across feature spaces. Variance of good and bad exemplars across form and color (left and right panels, respectively) spaces.
doi:10.1371/journal.pone.0058594.g007

Figure 8. Decoding accuracy for simulated fMRI activity for
good and bad exemplars. Results simulating a block design are on
the left and a fast event-related design on the right. We observe a
significant decrease in decoding accuracy from good to bad exemplars
in both designs. Error bars are SEM over eight subjects. ***p,0.001.
doi:10.1371/journal.pone.0058594.g008
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approximate the hemodynamic response [24]. We extracted the

percent signal change based on the coefficients associated with

these regressors in each participant’s V1, PPA and RSC ROIs. In

each ROI mean percent signal change obtained for each of these

four conditions was submitted to a 262 ANOVA with good versus

bad exemplars as one factor and first half versus second half of the

block as the other factor. Neither the main effects nor the

interaction were significant in V1 (F,1 for the main effect good

versus bad, p = 0.099 for the main effect first versus second half,

and p = 0.214 for the interaction) and RSC (all Fs,1). However,

in PPA, the main effect of the good (1.51 percent signal change)

versus bad (1.77 percent signal change) factor was significant

(F(7) = 18.95, MSE = 0.027, p,0.01), in keeping with the previous

univariate analysis. The main effect of first versus second half of

the block also reached significance (F(7) = 5.9, MSE = 0.070,

p,0.05). Mean percent signal chance for the first half of the

block was significantly higher than for the second half of the block

(1.75 and 1.53 respectively), reflecting the fact that the signal

diminished over the course of the block. However, the interaction

between these two factors did not reach significance (F(7) = 3.06,

MSE = 0.012, p = 0.123) indicating that the suppression was

similar for good and bad exemplars. In other words, although

there may have been repetition suppression over the course of the

block, this suppression is not sufficient to explain the overall

BOLD difference between good and bad exemplars.

What else might explain the greater activity for bad than good

exemplars in the PPA? Our behavioral data show that participants

were not only less accurate at categorizing bad exemplars than

good exemplars but they were also slower, indicating that they find

the bad exemplars harder to categorize than the good exemplars.

One possibility then, for the greater BOLD signal in PPA, is that

bad exemplars required greater attentional resources than good

exemplars of the natural scene categories [31].

General Discussion

Better Exemplars, Better Categorization and Better
Decoding of Brain Signals

Previous work has shown that natural scene categories are

distinguishable in the pattern of activity in V1, PPA, RSC and

LOC [5]. In our current study, we asked whether these regions

and human subjects were sensitive to the degree to which an image

exemplified its category. In a behavioral study we confirmed that

good exemplars of our categories were categorized significantly

faster and more accurately than bad exemplars. This benefit for

good exemplars was present for all six categories. A similar benefit

was seen in decoding category from fMRI patterns in visual cortex,

specifically PPA, RSC and V1. The difference between good and

bad exemplars was assessed by training and testing a decoder on

good and bad exemplars separately, and comparing their

accuracies. Decoding accuracy was significantly higher in V1,

PPA and RSC for good than bad exemplars. This was true despite

the fact that there was either no difference in overall BOLD signal

evoked by good and bad scenes (RSC and V1), or the signal was

actually stronger for bad scenes (PPA). These data not only

implicate all three regions in the representation of scene category,

but also show that their activity patterns mirror the fundamental

graded nature of human categories. Our decoding results also

suggest that the differences between good and bad exemplars

range from low-level features (decodable in V1) to more complex

properties represented in RSC and PPA, such as scene layout [9–

10].

Since LOC had been previously implicated in natural scene

category processing [5,15], we also explored whether LOC was

sensitive to the degree to which an image exemplified its category.

In contrast to the earlier study, decoding in LOC did not exceed

chance. The current study used a different, although not a wholly

disjoint, set of images than Walther et al. [5], and thus the lack of

significant decoding in LOC may indicate that the associations of

particular objects with a particular scene category were not as

consistent (i.e. less diagnostic of scene category) in this image set as

that used by Walther et al. [5]. In keeping with this hypothesis,

LOC failed to produce above chance decoding in a later study

[14] that used a subset of the images used here. We also note that

MacEvoy and Epstein [1], who also implicated LOC in scene

categorization, used man-made scenes that were readily identified

by the presence of diagnostic objects (e.g. a bathtub in a

bathroom).

Why are Good Exemplars Decoded Better than Bad?
One possibility for the decoding advantage in both V1 and later

visual areas is that good exemplars are all more similar to a

particular prototype than bad exemplars [32–33]. Indeed, the

pixel-wise average of good and bad exemplars revealed consistency

in spatial structure and color among good exemplars of a category.

Our analysis of the distribution of good and bad images across the

‘‘form’’ and ‘‘color’’ space further confirmed that the variance in

’’form’’ space among the good examplars was smaller than the

variance among the bad examplars, for all six categories. A similar

pattern was seen in color space, albeit less consistently across our

categories. Of course, such a difference in variance could also

explain our decoding results. In fact, our fMRI simulation results

show that differential variance among good and bad exemplars of

natural scenes leads to similar differences in decoding accuracy as

we obtained from our fMRI data. We note, however, that higher

variance among bad exemplars could be an intrinsic part of what

makes them bad exemplars, contributing to a less clear scene

category signal in the brain (in accordance with our fMRI data)

and less robust categorization (in accordance with our behavioral

data).

That good exemplars of a category are more similar to each

other in terms of low-level images statistics is consistent with

computational models suggesting that each scene category has a

unique ‘‘spatial envelop’’, which captures scene structure and

layout [34–35]. However, we note that these results are also

consistent with models of categories in which there exists a

prototype of each category and good images are more tightly

clustered around the prototype than bad images are [32–33].

Figure 9. BOLD signal. Percent change in BOLD signal in V1, PPA, and
RSC for good (green) and bad (orange) exemplar blocks. **p,0.01.
doi:10.1371/journal.pone.0058594.g009
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Indeed, our average good images are highly suggestive of a

prototype.

Moreover, given the speed with which natural scenes are

processed [1–2,4–5,8] it is reasonable to suppose that V1 would be

sensitive to differences between prototypes. In other words, the

low-level spatial envelope model and organization of a category

around a prototype need not be seen as alternative explanations of

scene category but instead different level descriptions of the same

phenomena: good exemplars are more similar to a prototype than

bad, and those features that distinguish between prototypes are

computable by even V1.

Good and Bad Exemplars and Typicality
We are not the first to use representativeness as a tool to better

understand the structure of natural scene categories. In particular,

others have used typicality ratings to explore the relationship

between natural scene categories and global image properties [35]

and semantic content models [36]. We note, however, that

although our good and bad exemplars presumably bear a close

relationship to typicality measures, we did not have our raters rate

the images for typicality per se. Instead, we asked them to rate how

representative the exemplar was of its category, and included the

labels ‘‘good’’ and ‘‘poor’’ at each end of the scale. To the extent

that our good and bad exemplars reflect differences in typicality

(i.e. the most typical exemplar is the one that shares the highest

number of features with the rest of the members of the category

[37]), our behavioral results are consistent with previous work on

typicality [38].

Summary
We have shown that the degree to which an image exemplifies a

category has consequences for the way participants categorized

those scenes and, importantly, for the neural signals they

produced. Our decoding results reveal that good exemplars

produced clearer and more discriminable patterns of neural

activity than bad exemplars of a category. Importantly, this

pattern of results is not due to a higher mean signal for good

images as PPA, RSC and V1 showed equivalent or lower BOLD

activity for good exemplars than for bad. In other words, a more

stable pattern of activity appears to underlie the representation of

good exemplars of complex scene categories. Our analysis of the

images statistics not only reveals that good images produce a more

discernible average image than bad, but also that good images in

each category are more similar to each other in structure than bad

images. These data are consistent both with low-level models of

scene categorization and models in which a category is organized

around a prototype. Finally, our simulation results suggest that the

differences in variance between good and bad images, and thus the

activity patterns they evoke, may be the cause of the superior

decoding for good compared to bad exemplars.
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