Finding “It”: Weakly-Supervised Reference-Aware Visual Grounding in Instructional Videos

De-An Huang*, Shyamal Buch*, Lucio Dery, Animesh Garg, Li Fei-Fei, Juan Carlos Niebles
Stanford University
{dahuang, shyamal, ldery, garg, feifeili, jniebles}@cs.stanford.edu

Abstract

Grounding textual phrases in visual content with standalone image-sentence pairs is a challenging task. When we consider grounding in instructional videos, this problem becomes profoundly more complex: the latent temporal structure of instructional videos breaks independence assumptions and necessitates contextual understanding for resolving ambiguous visual-linguistic cues. Furthermore, dense annotations and video data scale mean supervised approaches are prohibitively costly. In this work, we propose to tackle this new task with a weakly-supervised framework for reference-aware visual grounding in instructional videos, where only the temporal alignment between the transcription and the video segment are available for supervision. We introduce the visually grounded action graph, a structured representation capturing the latent dependency between grounding and references in video. For optimization, we propose a new reference-aware multiple instance learning (RA-MIL) objective for weak supervision of grounding in videos. We evaluate our approach over unconstrained videos from YouCookII and RoboWatch, augmented with new reference-grounding test set annotations. We demonstrate that our jointly optimized, reference-aware approach simultaneously improves visual grounding, reference-resolution, and generalization to unseen instructional video categories.

1. Introduction

Connecting vision and language has emerged as a prominent multi-disciplinary research problem [11]. The visual grounding problem of connecting natural language descriptions with spatial localization in images has proved to be a critical link in solving these multi-modal tasks [19, 28, 43]. While there have been numerous studies from both natural language and vision communities that aim to address visual grounding [13, 15, 20, 25, 43, 51], both the sentences and images are obtained in a relatively controlled setting with standalone image-sentence pairs. In this work, we aim to expand this scope by studying visual grounding in instructional videos, where both the language transcription and the visual appearance are unconstrained as in real-world situations.

Visual grounding in instructional video poses two unique challenges compared to standalone image-based visual grounding: (1) Step descriptions rely heavily on pronouns and referring expressions to provide implicit links to crucial visual and linguistic context. In other words, the referring expressions (e.g. “it” in Fig. 1) no longer fully specify the visual appearance of entities. (2) Annotations linking the grounding and contextual references remains prohibitively

* indicates equal contribution lead author
costly in unconstrained videos. This is due to the dense nature of the graph-based annotations and the sheer scale of instructional video data [47]. While these challenges have been tackled separately, including situated language understanding in natural language processing [6, 8, 21, 26, 33] and weakly-supervised object localization [9, 13, 35, 36, 40, 46] in computer vision, simultaneously solving both for unconstrained videos remains an unsolved challenge.

To our knowledge, this is the first work to examine the challenging task of visual grounding in instructional videos. Thus, our first contribution is to formulate this key visual understanding task for the video domain. We introduce the *visually grounded action graph* as a structured representation to explicitly capture the latent dependencies between reference and grounding variables, and formulate grounding in videos as optimization of this graph.

Next, we address the two key technical challenges introduced by instructional video, namely context-dependent ambiguity and the prohibitive cost of labels for supervised approaches. The second contribution of this work is to present a novel visual grounding model that is both reference-aware and weakly-supervised. Our joint model is reference-aware as it explicitly resolves the situated and context-dependent meaning of referring expressions and goes beyond previous visual grounding works designed for independent image/sentence pairs. Our approach is also weakly-supervised in that it requires no explicit grounding supervision and only uses temporally aligned transcription and video input as supervision. The latent structure of instructional videos fundamentally breaks the independence assumption of prior standalone image-based approaches. Thus, we introduce the first reference-aware multiple instance learning (RA-MIL) framework to more effectively leverage predicted references to improve visual grounding optimization.

Because this is a new task for video understanding, our third contribution is to provide reference-grounding test set annotations for two main instructional video benchmarks, namely YouCookII [56] and RoboWatch [45]. We evaluate our new approach for weakly-supervised, reference-aware visual grounding in instructional videos by optimizing on over two thousand unconstrained YouTube cooking videos of the YouCookII dataset. We show that our joint approach improves grounding by explicitly modeling the latent references between sentences. We “close the loop” by further demonstrating that our learned visual grounding representations can in turn improve reference resolution within our joint framework. Finally, we demonstrate that our approach improves model generalizability to unseen instructional video categories by evaluation on RoboWatch.

2. Related Work

Weakly-Supervised Localization and Visual Grounding. Our task for visual grounding in videos builds from prior work on visual grounding with stand-alone image-sentence pairs, which aims to match entities in the caption to bounding boxes within the image. This is related to weakly-supervised object localization [9, 10, 13, 35, 36, 40, 46]. We generalize this notion to context-dependent referring expression localization, which adds another dimension of complexity from language understanding to our grounding problem. Recent works also aim to ground expressions in phrases beyond object categories [15, 20, 32, 34, 39, 43, 49, 54]. However, most assume the availability of ground truth annotation [15, 39, 49, 53], and all assume standalone independent image-sentence pairs [43, 18]. In this work, we jointly address the challenges from weak supervision and situated language in the instructional video domain.

Multiple Instance Learning (MIL) in Vision. MIL has been an effective framework for weakly-supervised learning in several applications, including image classification [50], object localization [13], tracking [5], and instance segmentation [37]. In this work, we extend the MIL approach of visual grounding in images [19] to instructional video and propose Reference-Aware MIL (RA-MIL) to effectively learn the situated referring expression in instructional video.

Learning from Instructional Video. In this work, we use the transcription in the instructional video for weakly-supervised visual grounding. This use of transcription as supervision has been utilized in several contexts, such as action detection [55], object state discovery [2], and procedural knowledge discovery [1, 29, 45]. The most related to our work is the visual-linguistic reference resolution (VLRR) by [16], which focuses on learning entity references in the instructional video. Our work goes a step further and leverages references to solve the weakly-supervised visual grounding in instructional video.

Reference Resolution for Visual Tasks. We utilize reference resolution to improve visual grounding in instructional video. Recent work has used reference for improving visual tasks, such as image and 3D scene understanding [14, 24], and actor recognition [41, 44]. Here, we demonstrate that reference resolution is mutually beneficial for the challenging task of visual grounding for video understanding.

Situated Language Understanding. Situated language is a term in the natural language processing community capturing the notion that our own understanding of language is learned from situations and entities within them [21]. Our modeling of situated referring expression in the transcription is related to procedural text understanding in NLP [3, 6, 8, 21, 26, 30, 33]. Our work goes a step further and studies the situated language in the transcription jointly with the aligned video.

3. Technical Approach

Our goal is weakly-supervised visual grounding in instructional video. This is challenging since (1) the desired grounding output is latent at training, and (2) the entities
Visually Grounded Action Graph (G)

Instructional Video (V)

Figure 2: A visually grounded action graph (G) is an action graph with object box nodes b_{ik} and the corresponding grounding edges d_{ij} to model the visual grounding of the entities e_{ij}. This graph serves as the joint representation between the visual grounding within actions a_i and reference resolution r_{ij} between them. This reformulates visual grounding and reference resolution as finding the best set of edges (D, R) in the graph given the nodes. See Section 3.1.

3.1. Visual Grounding Task in Videos

Goal. Since both the groundings and references are latent and interdependent, there is a clear need to model them in a unified manner. Inspired by the “action graph” for reference resolution in natural language text [16, 21], we propose a new visually grounded action graph that explicitly captures the latent dependencies between grounding and reference (Sec. 3.1). We propose a joint framework for reference-aware visual grounding to effectively infer this graph from input video and transcription (Sec. 3.2 and 3.4). Because such dense graph annotations incur prohibitive cost in videos, we propose a new reference-aware multiple instance learning (RA-MIL) method for weakly-supervised learning (Sec. 3.3).

Visually Grounded Action Graphs.

Within the transcriptions can be highly context-dependent, with references that are also latent. We address this by formulating it as a joint optimization of a visually grounded action graph that explicitly captures the latent dependencies between grounding and reference (Sec. 3.1). We propose a joint framework for reference-aware visual grounding to effectively infer this graph from input video and transcription (Sec. 3.2 and 3.4). Because such dense graph annotations incur prohibitive cost in videos, we propose a new reference-aware multiple instance learning (RA-MIL) method for weakly-supervised learning (Sec. 3.3).

3.2. Reference-Aware Visual Grounding: Model

In the previous section, we formulated reference-aware visual grounding as optimizing the grounding edges D in the visually grounded action graph G. We now define how we parameterize our model for the probability of a grounding, $P(D|E, A, B, R)$. We decompose the full grounding model $P(D|E, A, B, R)$ into the aggregation of edge probabilities $\prod_{d \in D} P(d|E, A, B, R)$. Crucially, while instructional videos break standard independence assumptions, we can observe conditional independence given E, A, B nodes and the references R in the graph, which we also learn to infer (see Section 3.4). For $P(d|E, A, B, R)$, we model the probability of grounding an entity e_{ij} to an object box b_{ik}.

Formally, the grounding model is:

$$P(d_{ij} = (l, k)|E, A, B, R) = \text{sigmoid}(\psi(b_{lk})^T \phi^R(e_{ij})),$$

where $\phi^R(e_{ij})$ is a reference-aware entity embedding that incorporates the information of R and A when embedding e_{ij}, and $\psi(b_{lk})$ is an end-to-end trainable visual embedding.
Intuitively, we aim to learn the grounding model by learning a visual-semantic embedding that measures the similarity of an entity and a object box. We define these two embeddings: **Reference-Aware Entity Embedding** $\phi^R_{ij}(e_{ij})$. Given an entity (e.g., “mixture”), our goal is to embed it in a way that captures the action that it is referring to (e.g., “mix mayo and parsley”). We thus utilize a recursive definition for our entity embedding that is able to combine information from the referring action [16]. Thus, the entity embedding is:

$$\phi^R_{ij}(e_{ij}) = wordEmb(e_{ij}) + \phi^R_{ij}(a_o), \quad (2)$$

where $o = r_{ij}$ and $\phi^R_{ij}(a_o) = RN_{N\theta_v}([\phi^R_{ij}(e_{op})]_p)$. Here, $wordEmb(\cdot)$ is the standard word embedding function (we use GloVe [38] here), $RN_{N\theta_v}$ is a recurrent neural network (RNN) embedding function [23] that takes in $\phi^R_{ij}(e_{op})$, a list of entity embeddings of entities e_{op}, action a_o. Here, our reference-aware entity embedding also contains the information from its referring action. This utilization of reference information in visual grounding sets our method apart from grounding models designed only for images. We show that this is important for correctly grounding entities in instructional video, where the entity is often context-dependent. **Visual Embedding** $\psi(b_{lk})$. We use a deep convolutional neural network to extract the visual representation of our object boxes. In addition, an affine layer W_V is added to embed the 4096-dimensional fully-connected layer representation to the dimension of the entity embedding. Formally, this can be written as $\psi(b_{lk}) = W_V(CNN_{N\theta_v}(b_{lk})).$

3.3. Reference-Aware Visual Grounding: RA-MIL

We have described the parameterization of our reference-aware visual grounding model $P(D|E, A, B, R)$. Now, we discuss the optimization objective to learn $P(D|E, A, B, R)$ with only weak supervision from temporal alignments between transcription and video segments. Inspired by recent work in visual grounding in images [13, 18], we formulate weakly-supervised visual grounding in videos as a Multiple Instance Learning (MIL) problem [4]. Herein, the supervision is provided only through the temporal alignment between the sentence and the video segment: for an entity e_{ij} in step l, it should be grounded to one object box b_{lk} from the set of all object boxes in the corresponding video segment, and there is no explicit training label for which box it is. The key challenge of naively applying an image-based framework to the video domain is that sentence-video pairs no longer follow a strict independence assumption. This is consequential in two key ways: (1) temporal dependence is reflected in the transcription language, which may refer to the current entity implicitly or with pronouns (e.g., “it”), and (2) visual grounding of the same entity is possible in multiple instruction steps with relatively high confidence, particularly in the referring actions. Because segments from the same video are heavily correlated, image-based strategies [13, 19] for negative selection can induce errors even for the labels in standard MIL approaches which assume independence.

RA-MIL We address both challenges by proposing a new Reference-Aware Multiple Instance Learning (RA-MIL) objective to train a model to explicitly represent the dependencies between groundings caused by the references. More specifically, based on the weak supervision from the alignment (i.e. for step l, e_{ij} should be grounded to b_{lk} for some k), we first propose the following learning constraints:

$$\max_{D_l} P(D_l|\bar{G}_l, B_l) = \max_{D_l} P(D_l|\bar{G}_l, B_m)$$

and

$$\max_{D_l} P(D_l|\bar{G}_l, B_l) = \max_{D_m} P(D_m|\bar{G}_m, B_l), \quad (3)$$

for $m, n \neq l$, where $B_l = \{b_{lk}\}$ is the set of all object box nodes in the segment depicting action step l, and $\bar{G}_l = \{E_{l,1}, A_{l,1}, R_{l,1}\}$ be the subgraph up to segment l, excluding the grounding. Intuitively, the first constraint in Eq. (3) means this sub-graph \bar{G}_l should have a higher probability of grounding to a box in B_l in the same video segment rather than the B_m of a different segment. Likewise, we have the
symmetric constraint for \(B_l \) given \(\tilde{G}_t \) of a different step.

While the model can directly utilize the reference information by operating on the subgraph \(G_t \) and can be trained with weak-supervision for reference-aware visual grounding in instructional video, we note that the constraints in Eq. (3) do not fully utilize the reference information. Consider Figure 4 as an example: while “it” is indeed grounded to the blue bounding box in the second step, it is not visually correct to ground it to the the bowl full of greens in the previous step, since it is the same entity. In this case, the MIL constraints in Eq. (3) are forcing the model to differentiate objects that are in fact the same with the same penalty as completely unrelated entities. Based on this intuition, we propose the following overall training loss to effectively utilize reference for weakly-supervised visual grounding:

\[
\mathcal{L}_{RA-MIL} = \sum_l \left[\sum_m \gamma_{lm} \cdot \max(0, S^R_{lm} - S^R_{ll} + \Delta) + \sum_m \gamma_{ml} \cdot \max(0, S^R_{ml} - S^R_{ll} + \Delta) \right],
\]

where \(S^R_{lm} = \sum_j \max_{k} \langle \phi^R(e_{mj}), \psi(b_{lk}) \rangle \) refers to the alignment score for steps \(l \) and \(m \) analogous to the image-sentence score in [18], and \(\gamma_{lm} \) is a reference-based penalty with a value of 1.0 if step \(l \) is not in the set of inferred entity-action references in step \(m \). If step \(l \) is present the reference set, then we set \(0 < \gamma_{lm} < 1 \). In this manner, the objective encourages the action graph to be grounded in the aligned video, while distinguishing penalties based on the degree to which the predicted grounding is related to the target entity.

We emphasize that RA-MIL incorporates reference-awareness in two key aspects: (1) it explicitly imposes the constraints in Eq. (3) based on the subgraph \(G_t \) to incorporate reference information of a given entity based on the relevant prior set of actions – this sets our approach apart from previous standalone image-sentence grounding methods that operate solely based on the entity expression itself [13, 19, 43]; (2) we incorporate reference-based relaxation to improve negative constraints during MIL, as per Eq. (4). We show in our experiments that both reference aspects of RA-MIL are key for visual grounding in instructional videos.

3.4. Grounding-Aware Reference Resolution

We have discussed our reference-aware visual grounding model \(P(D|E, A, B, R) \) and our weakly-supervised training approach (RA-MIL) conditioned on the reference edges \(R \). Now, we discuss how we update the contextual references given the groundings \(D \) with \(P(R|E, A, B, D) \), as illustrated in Figure 5. Inspired by recent frameworks using neural networks for graph optimization [17, 52], we formulate the reference edge model by proposing a hierarchical entity-action pointer network for reference resolution, based on Prt-Net [48]. A key difference between our proposed model and a standard Prt-Net is that we wish to link entities with prior action steps, but these exist at different hierarchical levels in the graph. Intuitively, this single-mapping formulation for reference resolution [21] captures the notion that some entities are causally-linked direct outputs of prior steps, where full dependency chains are obtained by traversal. Thus, we first encode the actions \(a_t \) as action embeddings \(\phi_a(a_t) \) using a hierarchical RNN [27]. Reference resolution occurs during decoding by a content-based attention mechanism: an RNN encodes the entity embeddings \(\phi^D_e(e_{ij}) \) into hidden state vectors \(h_{ij}^d \), which are used to “point” back to the encoder’s action embeddings or the “background action” (⊙ in Fig. 5) if the entity has no reference. Formally, this is:

\[
P(r_{ij} = e_t|E, A, B, D) = \text{softmax}(u^t_{ij}),
\]

where \(u^t_{ij} = \phi_a(a_t)\top W_{at} h_{ij}^d \), and \(H_{ij} \) represents all the previous entities that have been processed before \(e_{ij} \). We rely on the RNN to capture the complex dependencies between \(r_{ij} \) and \(H_{ij} \). Importantly, we note that the entity embedding \(\phi^D_e(e_{ij}) \) here is grounding-aware as it summarizes the visual information in the linked object box. To this end,
Figure 6: Qualitative results of our reference-aware visual grounding approach with RA-MIL. (a, b, c) Our approach improves visual grounding by explicitly resolving the meaning of ambiguous context-dependent referring expressions during optimization. We highlight improvements with (a) expressions that are outputs of prior steps (“pizza”), (b) pronouns (“it”), and (c) implicit direct objects (denoted as [∅] [16, 21]). (d, e) Since references are also inferred by our joint model, incorrect reference predictions can lead to lower grounding quality, compared with standalone image approaches (DVSA [18]). Note that we show portions of the output visually grounded action graph above, and include longer visualizations in the supplement.

we define φ_p^n(e_i) = W_p^n(wordEmb(d(e_i)); CNN(b_i)), where W_p is a linear transformation to combine information from both the entity and the object box into a single embedding. We verify in our experiments that reference resolution improves grounding in a mutually beneficial manner.

3.5. Learning & Inference

Visual Grounding. As the objective for RA-MIL is fully differentiable, we are able to use backpropagation to optimize the full reference-aware visual grounding model with weak-supervision. Once the reference-aware grounding edge model in Section 3.2 is trained, the inference for argmax_p^n P(D|E, A, B, R) is a greedy score maximization in the aligned action, since we assume conditional independence between grounding edges given inferred references.

Reference Resolution. We follow the hard-EM approach in [16] for reference resolution. We apply a cross entropy classification loss over the decoding output in Eq. (5), comparing against the current best estimated graph. Inference can be a single forward pass of our reference resolution model. We initialize the reference edges R by unsupervised reference resolution from [16]. We alternate training our grounding and reference models after initialization.

4. Experiments

Given a referring expression such as “mixture” in the instructional video, our goal is to visually ground it to the corresponding object bounding box in the video, while also resolving its contextual reference. In this section, we discuss our experiments to evaluate our joint approach for grounding, reference resolution, and generalizability.1

Dataset and Annotation. For weakly-supervised training, we use the YouCookII dataset [56], which is a large-scale dataset of over 2000 unconstrained instructional videos from YouTube. Each video recipe contains 3 to 15 steps (i.e. actions in our graph), where each step description is a temporally-aligned imperative sentence provided by the dataset. Because we are proposing a new task, for evaluation we provide new annotations for reference-grounding for a subset containing representative videos. Annotations and procedure details are provided in our supplementary material, as well as discussion of automatic speech recognition (ASR) output as a potential source of instructional transcription input. We emphasize that none of this new information is used during training for our reference-aware visual grounding model for our main experiments.

Furthermore, for our generalizability analysis, we leverage the test set of the RoboWatch dataset [45], which contains instructional videos annotated with groundtruth temporal intervals and step captions. Once again, we annotate extra ground truth information for reference and grounding in each video. In total, we provide over 15 hours of video with dense entity-action node, reference, and grounding annotations.

1Please refer to our project website for supplementary material.
Table 1: Weakly supervised visual grounding results (Top-1 accuracy) on YouCookII. We observe improvement in visual grounding across simple, medium, and hard graph complexity subsets with our method. See Section 4.1 for details.

<table>
<thead>
<tr>
<th>Method</th>
<th>YC-S</th>
<th>YC-M</th>
<th>YC-H</th>
<th>YC-All</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proposal Upper Bnd.</td>
<td>67.4%</td>
<td>65.1%</td>
<td>64.1%</td>
<td>65.5%</td>
</tr>
<tr>
<td>Random</td>
<td>6.5%</td>
<td>10.2%</td>
<td>8.7%</td>
<td>8.4%</td>
</tr>
<tr>
<td>DVSA [18]</td>
<td>17.9%</td>
<td>22.5%</td>
<td>18.2%</td>
<td>20.7%</td>
</tr>
<tr>
<td>Ours w/o Relaxation</td>
<td>26.6%</td>
<td>25.5%</td>
<td>23.6%</td>
<td>25.2%</td>
</tr>
<tr>
<td>Ours Full (RA-MIL)</td>
<td>28.6%</td>
<td>27.7%</td>
<td>24.0%</td>
<td>26.7%</td>
</tr>
</tbody>
</table>

Figure 7: Reference resolution results (Sec. 4.2) on YouCookII subset. Our proposed entity-action pointer network model outperforms the VLRR [16] baseline, and we observe visual grounding can improve reference resolution.

Implementation Details. We parse the step description by the Stanford CoreNLP parser [31] into actions and entities. For each video, we subsample five frames per video segment for both training and testing. For each frame, we use the RPN from Faster R-CNN [42] for proposing the object boxes in the frames. For comparison to prior work [18], we use the top-20 proposal detections in a frame. Since YouCookII does not have parsed entity/action annotations, we leverage automatic parsing for training only, and provide corrected entity and action nodes as input during inference. We use Adam [22] for optimization and a learning rate 0.001. We clip gradients elementwise at 5 and use 0.3 dropout for regularization. Additional implementation details are included as part of supplementary material.

4.1. Evaluating Visual Grounding

Experimental Setup. First, we learn our model by optimizing on all the instructional videos in the YouCookII dataset [56] with only weak supervision from transcription-video temporal alignment.Parsed action A, entity E and generated object box B nodes are provided as input, as per Section 3.1. Inference on reference resolution and visual grounding follows Section 3.5. We follow prior work [12, 43] and compute accuracy as the ratio of phrases for which the grounded bounding box overlaps with the ground-truth by more than 0.5 Intersection-over-Union (IoU).

Grounding Approaches. We compare to the following models and variations of our model for visual grounding:
- Deep Visual-Semantic Alignment (DVSA) [18]. This is a standard weakly-supervised image-based visual grounding method without the reference information, which leverages standard multiple-instance learning. Notably, we compare to this standalone image approach since it can most directly be considered an ablation of our method without reference.
- Ours w/o Relaxation. This method uses the loss in Eq. (4), but does not utilize the reference information in negative selection (γ). Importantly, it still grounds the full subgraph G_t, which means it does incorporate reference information. This baseline is an ablation of our method indicating the need for both reference-aware aspects of RA-MIL.
- Ours Full (RA-MIL). This is our full joint model leveraging the full RA-MIL formulation, as in Section 3.

Limitations. Since grounding is highly dependent on the input bounding box nodes, we also report the upper bound performance if the best matching proposals were chosen by some method. We observe that this is approximately 65%, which is less than upper bounds of 78% reported on standalone image datasets for visual grounding like Flickr30K [43] and may reflect difficulties introduced by noisy images in unconstrained instructional video. We discuss additional limitations due to the multiple-instance learning paradigm and parsing errors during training in the supplementary.

Results. The results of these weakly-supervised visual grounding models on YouCookII are shown in Table 1. Our full method outperforms the baseline and ablation methods, including DVSA [18] which is not reference-aware. We observe that grounding the subgraph G_t containing the reference information to resolve the meaning of referring expressions, rather than the raw entity itself is important. Qualitative results are shown in Figure 6. We observe the resolved meaning of the referring expression indeed improves the grounding performance, though overall it remains limited by constraints of weak supervision and dependency on input bounding boxes. By grounding G_t, RA-MIL links referring actions with the visual appearance of the entity in the current and contextual frames. We include longer-form graph visualizations and additional discussion in our supplementary. While reference can help visual grounding in the

Table 2: Generalizability to unseen instructional video classes (RoboWatch). We observe stronger generalization performance with our reference-aware visual grounding method. See Section 4.3 for details.

<table>
<thead>
<tr>
<th>Method</th>
<th>RW-Cook</th>
<th>RW-Misc</th>
<th>RW-All</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proposal Upper Bnd.</td>
<td>63.6%</td>
<td>48.4%</td>
<td>56.3%</td>
</tr>
<tr>
<td>Random</td>
<td>10.4%</td>
<td>6.2%</td>
<td>9.0%</td>
</tr>
<tr>
<td>DVSA [18]</td>
<td>22.4%</td>
<td>12.6%</td>
<td>17.5%</td>
</tr>
<tr>
<td>Ours w/o Relaxation</td>
<td>23.8%</td>
<td>10.4%</td>
<td>18.0%</td>
</tr>
<tr>
<td>Ours Full (RA-MIL)</td>
<td>26.8%</td>
<td>14.3%</td>
<td>19.8%</td>
</tr>
</tbody>
</table>
For this self-contained experiment, we compare against the prior Visual-Linguistic Reference Resolution approach (VLRR) in [16], and report the F1 measure as defined in [21] over different supervision levels. We benchmark performance on a subset of YouCookII, performing multiple 2:1 train-test splits of the 90 recipes and varying the ratio of the provided graphs for training. Full experiment details and discussion of grounding impact during our weakly-supervised reference training is included in the supplement. The results are shown in Figure 7. Here, ratio 0.0 means no input graphs are used for training, and ratio 1.0 means that all 60 training graphs are used. Understandably, the unsupervised VLRR baseline has slightly higher performance with no labels in the training set. This is likely due to strong constraints inherent to the unsupervised VLRR model design, which are not present in our weakly-supervised pointer network architecture. However, we observe that our entity-action pointer network quickly outperforms the VLRR baseline even with a few additional labels. Furthermore, as the training set increases to sufficient size, visual grounding ultimately proves effective for improving reference resolution. We emphasize that the overall number of graphs at ratio 1.0 is still far smaller than the overall training set, which is used in the main reference-aware visual grounding experiments.

4.3. Generalizability

We further evaluate the ability of our model to generalize to unseen classes of instructional video in the RoboWatch dataset [45], which includes 20 classes that each correspond to a top “How to” web query. We draw inspiration from prior work in action localization [7] for our experiment design. Here, we train the models on YouCookII as before, but run inference on the RoboWatch test set, augmented with new reference and visual grounding groundtruth annotations. We also examine performance on subsets with cooking-specific (containing unseen recipes) and miscellaneous videos, which includes classes such as “How to Unclog Bathroom Drain” and “How to Clean a Coffee Maker”. In all cases, we ensure that there is no recipe or video overlap with YouCookII.

We report generalization performance in Table 2, and include qualitative visualizations in Figure 8. We observe that our full approach with RA-MIL outperforms the other methods at generalization. For cooking-specific videos, we observe stronger generalization to visual grounding for unseen recipes. Interestingly, we also show some improved generalization to the “Misc” subset as well, despite the domain gap between the cooking videos in YouCookII and the other instruction categories present here. The decrease in the proposal upper bound for miscellaneous tasks indicates that generalizability of these models is also limited by the visual encoder and proposals method. This suggests that improving proposals, particularly for the noisy images present in unconstrained videos, may be critical for general application of this technique for practical purposes.

5. Conclusion

We propose a new reference-aware approach for weakly-supervised visual grounding in instructional video. We introduce the visually grounded action graph and formulate the task as optimization for both reference and grounding edges. Our proposed Reference-Aware MIL (RA-MIL) effectively leverages references for visual grounding in a unified framework. We provide new annotations over two main instructional video datasets for visually-grounded action graphs. Our experiments verify that resolving the meaning of situated and context-dependent referring expression is important for visual grounding in instructional video, and that visual grounding can further improve reference resolution. Finally, we show that our joint reference-aware approach improves generalizability to unseen instructional video categories.

Acknowledgements. This research was sponsored in part by grants from Toyota Research Institute (TRI) and the Office of Naval Research (N00014-15-1-2813). This article reflects the authors’ opinions and conclusions, and not of any Toyota entity. We thank our anon. reviewers, L. Zhou, O. Sener, S. Yeung, J. Ji, and J. Emmons for their helpful comments and discussion.
References

[34] V. K. Nagaraja, V. I. Morariu, and L. S. Davis. Modeling context between objects for referring expression understanding. In ECCV, 2016.

[49] L. Wang, Y. Li, and S. Lazebnik. Learning deep structure-preserving image-text embeddings. In CVPR, 2016. 2

