
BUCH ET AL.: END-TO-END, SINGLE-STREAM TEMPORAL ACTION DETECTION 1

End-to-End, Single-Stream Temporal Action
Detection in Untrimmed Videos

Shyamal Buch1

shyamal@cs.stanford.edu

Victor Escorcia2

victor.escorcia@kaust.edu.sa

Bernard Ghanem2

bernard.ghanem@kaust.edu.sa

Li Fei-Fei1

feifeili@cs.stanford.edu

Juan Carlos Niebles1

jniebles@cs.stanford.edu

1 Stanford Vision and Learning Lab
Dept. of Computer Science
Stanford University, USA

2 Image and Video Understanding Lab
Visual Computing Center
KAUST, KSA

Abstract

In this work, we present a new intuitive, end-to-end approach for temporal action
detection in untrimmed videos. We introduce our new architecture for Single-Stream
Temporal Action Detection (SS-TAD), which effectively integrates joint action detection
with its semantic sub-tasks in a single unifying end-to-end framework. We develop a
method for training our deep recurrent architecture based on enforcing semantic con-
straints on intermediate modules that are gradually relaxed as learning progresses. We
find that such a dynamic learning scheme enables SS-TAD to achieve higher overall de-
tection performance, with fewer training epochs. By design, our single-pass network is
very efficient and can operate at 701 frames per second, while simultaneously outper-
forming the state-of-the-art methods for temporal action detection on THUMOS’14.

1 Introduction
The ubiquity of cameras has led to a tremendous volume of untrimmed video data – much of
which is focused on human activities. As such, temporal localization of human actions has
emerged as a fundamental building block towards general video understanding. Analogous
to object detection in images, temporal action localization is the task whereby computer
vision algorithms must detect both the temporal bounds of actions and provide the corre-
sponding action categories for each distinct detection. This can prove challenging for long,
untrimmed video sequences, where models must be robust to variations in the frequency and
temporal length of actions relative to the overall video length, which can exceed hours.

The fundamental nature of this problem has generated significant research interest in the
past few years. Recent progress can be broadly categorized into three types of approaches, as
shown in Figure 1. The first group [15, 29] performs analysis at the level of individual frames
or groups of frames, applies temporal smoothing, and merges into detections. The second

c© 2017. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

Citation
Citation
{Montes, Salvador, Pascual, and Giro-i Nieto} 2016

Citation
Citation
{Yeung, Russakovsky, Jin, Andriluka, Mori, and Fei-Fei} 2015

2 BUCH ET AL.: END-TO-END, SINGLE-STREAM TEMPORAL ACTION DETECTION

Proposals

Classifiers

SS-TAD

Frame-level Classifiers

Merging/Smoothing

Untrimmed
Video Input

Action
Detections

(a) (b) (c)

Figure 1: There have been a few dominant approaches for temporal action localization: (a)
frame-level analysis followed by a separate merging step to obtain detections, (b) proposals
generation followed by a separate classification over the proposals. (c) We present a new
end-to-end model (SS-TAD) along a third approach that outputs action detections directly
from a single-pass over the input video stream.

group [4, 20] does a first series of passes through the video to generate temporal proposals,
and subsequently applies a classifier to each proposal to obtain the detection. The trade-off
between these two is that the first group tends to offer simpler models that do not require
multi-stage training at the cost of detection performance, while the latter approach generally
offers superior performance, but has separate training of the proposal and classifier stages
and can require multiple passes through the data at test time. This motivates approaches
in the third group: modular architectures that can offer the end-to-end trainability and ef-
ficiency of the first group of approaches, while providing the superior performance of the
latter. There is a strong precedent for such an approach: we draw inspiration for our model
design from how single-pass object detectors such as SSD [14] and YOLO [18] improved
upon multi-stage detectors such as Faster R-CNN [19] by offering tighter integration of pro-
posals and classification sub-components. Our approach is one of the first within this group
and significantly outperforms earlier approaches both in accuracy and efficiency.

In this paper, we introduce a new intuitive, end-to-end architecture (SS-TAD) for efficient
temporal action localization in untrimmed video sequences. We describe our intermediate
recurrent memory modules for temporal action detection, and our process by which we en-
force semantic constraints which are relaxed later for general performance. Our framework
processes the video in a single pass, and directly outputs the temporal bounds and corre-
sponding action classes for the detections. Furthermore, we demonstrate experimentally that
our efficient architecture achieves state-of-the-art performance on temporal action detection,
while simultaneously providing a high FPS processing speed.

2 Related Work
Here, we review relevant recent work in video action categorization, temporal action detec-
tion in videos, and analogous work in object detection.
Action Recognition and Detection. There has been substantial literature on the problem
of action recognition on short video clips [9]. Here, the task is to take pre-segmented video
clips of a single action and provide the action class present in the video. Approaches include
frame-level analysis with typical object classification networks, global representations [9],

Citation
Citation
{Escorcia, Caba, Niebles, and Ghanem} 2016

Citation
Citation
{Shou, Wang, and Chang} 2016

Citation
Citation
{Liu, Anguelov, Erhan, Szegedy, and Reed} 2015

Citation
Citation
{Redmon, Divvala, Girshick, and Farhadi} 2016

Citation
Citation
{Ren, He, Girshick, and Sun} 2015

Citation
Citation
{Herath, Harandi, and Porikli} 2016

Citation
Citation
{Herath, Harandi, and Porikli} 2016

BUCH ET AL.: END-TO-END, SINGLE-STREAM TEMPORAL ACTION DETECTION 3

or local models of temporal structure of motions [5, 6]. Recent work [24], such as 3D-
convolutional networks (C3D), aim to improve on such methods by capturing more local
information in the temporal region. However, such models are limited to classification tasks
in short clips and for actions with relatively small duration.

An extension of action recognition work is spatiotemporal localization of actions in
videos, where the task is to provide three-dimensional tubes or bounding boxes across time
on the actors of interest in addition to the classification [3, 8, 10, 25, 28, 31]. Due to high
computational complexity, these algorithms are also typically run on shorter-form videos.
Thus, while such algorithms provide additional information beyond the temporal bounds,
the high computational cost means these algorithms are not well-suited for analysis of long,
untrimmed video sequences with sparse actions, where efficient processing is paramount.
Temporal Action Localization. Approaches for temporal action localization can be grouped
in three categories. In the first group (Fig.1(a)), we find methods for action detection that
perform frame or segment-level classification, as in [15, 29]. These approaches require post-
processing smoothing and merging steps to obtain the temporal bounds, and are furthermore
not as performant at temporal detection as the multi-stage methods of the second group.

Next in Fig.1(b), we find the recent development of temporal action proposals [1, 2, 4,
20, 21] as a first stage towards temporal action localization, whereby these methods pro-
vide high-recall temporal window candidates. These candidates are then passed as input to
later classification stages, which can provide a classification score or further refinement of
the temporal bounds, as in [1, 20, 21]. Unfortunately, such multi-stage methods treat pro-
posals and classification as two independent, sequential processing stages, which inhibits
collaboration between them and leads to repeated computation between the two stages.

Our framework belongs to the third group (Fig.1(c)). We introduce an end-to-end train-
able method that tightly integrates proposal generation and classification, which results in a
more efficient and effective architecture for unified temporal action detection. Recently, [30]
offers an end-to-end trainable framework based on reinforcement learning, but this approach
requires learning a separate policy for each class, and does not provide tight localization
bounds when compared with other work. Other recent work [13, 22, 23, 27] have investi-
gated use of neural recurrent models for temporal modeling, but rely on depth, pose, or other
information for action detection, which may not be readily available for many datasets.
Object Detection. In many ways, this progression of action localization models parallels the
development of object detection frameworks. Initial approaches to object detection adopted
object proposal generation as a distinct preprocessing stage that independently provided win-
dows to an object classifier [7], with later frameworks implementing the generation of object
proposals with deep network architectures. An example of this is the Region Proposal Net-
work (RPN) from [19], integrated with Faster R-CNN. However, we draw inspiration from
subsequent generation of object detection architectures such as YOLO [17] and SSD [14],
which provided a unified end-to-end approach for simultaneously outputting object propos-
als alongside their predicted classifications. Our approach to temporal action detection is
inspired by these developments and introduces a framework that tightly integrates temporal
proposals with action classifiers to achieve effective temporal localization of human actions.

3 Technical Approach
Our overall goal is to generate temporal action detections from an input untrimmed video
sequence. Figure 2 provides an overview of our model and approach. Given an input video

Citation
Citation
{Gaidon, Harchaoui, and Schmid} 2011

Citation
Citation
{Gaidon, Harchaoui, and Schmid} 2014

Citation
Citation
{Tran, Bourdev, Fergus, Torresani, and Paluri} 2015

Citation
Citation
{Chen, Xiong, Xu, and Corso} 2014

Citation
Citation
{Gkioxari and Malik} 2015

Citation
Citation
{Jain, van Gemert, J{é}gou, Bouthemy, and Snoek} 2014

Citation
Citation
{van Gemert, Jain, Gati, and Snoek} 2015

Citation
Citation
{Yao, Gall, and Gool} 2010

Citation
Citation
{Yu and Yuan} 2015

Citation
Citation
{Montes, Salvador, Pascual, and Giro-i Nieto} 2016

Citation
Citation
{Yeung, Russakovsky, Jin, Andriluka, Mori, and Fei-Fei} 2015

Citation
Citation
{Buch, Escorcia, Shen, Ghanem, and Niebles} 2017

Citation
Citation
{Caba, Niebles, and Ghanem} 2016

Citation
Citation
{Escorcia, Caba, Niebles, and Ghanem} 2016

Citation
Citation
{Shou, Wang, and Chang} 2016

Citation
Citation
{Shou, Chan, Zareian, Miyazawa, and Chang} 2017

Citation
Citation
{Buch, Escorcia, Shen, Ghanem, and Niebles} 2017

Citation
Citation
{Shou, Wang, and Chang} 2016

Citation
Citation
{Shou, Chan, Zareian, Miyazawa, and Chang} 2017

Citation
Citation
{Yeung, Russakovsky, Mori, and Fei-Fei} 2016

Citation
Citation
{Li, Lan, Xing, Zeng, Yuan, and Liu} 2016

Citation
Citation
{Singh, Marks, Jones, Tuzel, and Shao} 2016

Citation
Citation
{Singh and Cuzzolin} 2016

Citation
Citation
{Wang and Tao} 2016

Citation
Citation
{Girshick, Donahue, Darrell, and Malik} 2014

Citation
Citation
{Ren, He, Girshick, and Sun} 2015

Citation
Citation
{Redmon, Divvala, Girshick, and Farhadi} 2015

Citation
Citation
{Liu, Anguelov, Erhan, Szegedy, and Reed} 2015

4 BUCH ET AL.: END-TO-END, SINGLE-STREAM TEMPORAL ACTION DETECTION

ɸ

…

Input
videoTime

…

Memory
Module (P)

Memory
Module (C)

Temporal Action
Detections

…
…

SS-TAD

Visual
Encoder Recurrent Memory Modules

ɸ

ɸ

δ

δ

δ

Figure 2: SS-TAD model architecture. Given an input video stream, we represent each non-
overlapping “time step” t with a visual encoding over δ frames. This visual encoding is the
input to two recurrent memory modules that are semantically-constrained to learn proposals
and classification-based features. These features are combined before providing the final
temporal action detection output. Please refer to Section 3.1 for additional details.

sequence X = {xl}L
l=1 with L frames, our model should provide as output (1) the temporal

boundaries and (2) the corresponding action class of any activities contained within. Im-
portantly, the model must be able to disregard irrelevant background information while still
retaining relevant action information – a particularly challenging task on untrimmed video
datasets. In this section, we introduce the technical details of Single Stream Temporal Action
Detection (SS-TAD), our new efficient model for end-to-end temporal action detection.

3.1 Model
The temporal action detection task is the natural product of two main sub-tasks: (1) tem-
poral action proposals, which provides temporal bounds where non-background actions are
occurring, and (2) local action classification, which provides frame or time-step resolution
classification. Rather than providing explicit solutions to these sub-tasks as done in prior
work, we propose an efficient model design that focuses on providing the detections directly
with information gained by implicitly solving these sub-tasks during inference.

Our model consists of three main components: our input visual encoding, our two re-
current memory modules, and our final output. We draw inspiration for our intuitive design
from single-shot object detector frameworks, such as YOLO and SSD [14, 18]. Our visual
encoder is reponsible for encoding lower-level spatiotemporal information from the video,
while the two memory modules are responsible for selectively aggregating relevant context
for the joint temporal action detection task. For our final output detections, we leverage these
feature encodings from both memory modules to output the final temporal bounds and asso-
ciated class scores. In contrast with prior work, our approach provides end-to-end temporal
action detections with a single pass over the input video stream.

Visual Encoder. We capture lower-level spatiotemporal visual information from the
input video frames by leveraging a 3D-Convolutional (C3D) network [24]. We choose C3D
as it has been shown to effectively capture visual and motion information over small time
clips with δ frames [20, 24], which have been demonstrated as effective building blocks in
prior work for temporal action detection [1, 4, 20]. Since we process each frame only once,
we essentially discretize the input video stream into T = L/δ non-overlapping time steps,
similar to [1], where each time step has a visual encoding φ({xi, . . . ,xi+δ−1}). We substitute

Citation
Citation
{Liu, Anguelov, Erhan, Szegedy, and Reed} 2015

Citation
Citation
{Redmon, Divvala, Girshick, and Farhadi} 2016

Citation
Citation
{Tran, Bourdev, Fergus, Torresani, and Paluri} 2015

Citation
Citation
{Shou, Wang, and Chang} 2016

Citation
Citation
{Tran, Bourdev, Fergus, Torresani, and Paluri} 2015

Citation
Citation
{Buch, Escorcia, Shen, Ghanem, and Niebles} 2017

Citation
Citation
{Escorcia, Caba, Niebles, and Ghanem} 2016

Citation
Citation
{Shou, Wang, and Chang} 2016

Citation
Citation
{Buch, Escorcia, Shen, Ghanem, and Niebles} 2017

BUCH ET AL.: END-TO-END, SINGLE-STREAM TEMPORAL ACTION DETECTION 5

the fc8 layer with a linear layer initialized from the PCA matrices released publicly by [4].
Semantically-Constrained Recurrent Memory Modules. A key component of our

model is the introduction of recurrent memory modules, which are semantically constrained
during training as a way to induce better training and test-time performance. The purpose
of this component is to accumulate evidence across time as the video sequence progresses
relevant to both distinguishing background from action and between classes. Each memory
module consists of a multi-layer gated recurrent unit (GRU)-based network. Each module
takes as input the visual encoder output φ for that time step t, as well as the hidden state
representation from the previous time step. The output of each memory module is the hidden
state embedding of the final GRU layer in that corresponding module.

As illustrated in Figure 3, a key aspect of the design of our memory modules is that they
are semantically constrained during the training process. This means we train the modules
so that their hidden embedding is useful to solve intermediate semantically meaningful tasks.
While we strictly enforce the constraints early in the training process, we find that the best
models are obtained when the semantic constraints are relaxed later in the training procedure.

Our final design incorporates two such memory modules, which operate in parallel. We
combine both output embeddings together before proceeding to generate the final output
detections. Below, we describe the different constraints applied to each module, with corre-
sponding training loss functions defined in Section 3.2.

Semantic Constraints: Memory Module (P). Under semantic constraints, the goal of
this module is to capture and accumulate relevant information with regard to temporal pro-
posals, which allows the network to discern if the video under consideration contains back-
ground or action over several temporal scales.

During learning, we semantically constrain this module by training it to generate a vector
m(t)

prop with confidence scores corresponding to K proposals. This vector is the sigmoid output
from a fully connected layer that operates on top of the hidden state of the recurrent network,
and is trained with the loss Lprop defined in Section 3.2. We adopt the convention from
[1], where each proposal is right-aligned; that is, at a given time step t each proposal has
an anchored ending boundary at frame b(t)e = tδ , with a varying starting boundary b(t)s ∈{

b(t)e − kδ +1
}K

k=1
. Since this supervision signal would be generated over each time step t

at training, we are able to consider multiple temporal scales and positions with a single pass
over the input data.

We emphasize that these intermediate semantic outputs m(t)
prop are not directly used dur-

ing inference for the overall detection task. Instead, this module forwards the hidden state
embedding h(t)prop of its final hidden layer for the final detection task.

Semantic Constraints: Memory Module (C). While the previous memory module is
focused on capturing the “actionness” of multiple temporal intervals ending at a time step
t, the classification-focused memory module is focused on retaining features representing
the precise class encoding of the immediate past. To encourage this, at training time we
semantically-constrain this module whereby the visual content at each time step is associated
with a (C+1)-dimensional vector m(t)

cls with softmax confidence scores for each class and an
extra dimension for the background class. This is passed as input to the loss Lcls (Sec. 3.2).
Note again that m(t)

cls is not generated during inference, and the state embedding h(t)cls is what
is actually forwarded to the final detection task.

Output Detections. We create a joint embedding hdet = hprop||hcls by concatenating the
feature representation outputs from the two memory modules, taken from the final recurrent

Citation
Citation
{Escorcia, Caba, Niebles, and Ghanem} 2016

Citation
Citation
{Buch, Escorcia, Shen, Ghanem, and Niebles} 2017

6 BUCH ET AL.: END-TO-END, SINGLE-STREAM TEMPORAL ACTION DETECTION

Memory Module (P or C)

h

(P or C)
semantic
constraint

semantic constraint
supervision (train-only)

To remainder of network…
(train + inference)

Stacked Gated Recurrent Unit (GRU)

(P) (C)
or

Figure 3: Each recurrent memory module consists of multiple gated-recurrent units (GRUs),
and provides the final hidden state encoding h as output. We apply semantic constraints on
our recurrent memory modules during training to improve overall detection performance.

layer in each. For a given time step t, we calculate the final detection output D(t) = fout(hdet)
as a function of this embedding. Here, D(t) ∈ [0,1]K×(C+1) is a tensor of score values such
that D(t) ⇔ {(b(t)s ,b(t)e ,v(t)k)}K

k=1 where b(t)s ,b(t)e correspond to right-aligned temporal inter-

vals as defined in the proposals-based semantic constraints above, and v(t)k ∈ [0,1]C+1 is the
corresponding classification score vector for this interval.

3.2 Training
Our end goal for training is to estimate the model parameters in our architecture, such that
we maximize our performance on the final temporal action detection task. Our end-to-end
architecture and corresponding loss functions are fully differentiable, enabling training with
backpropagation by design. Note that our single-pass design for the model means the re-
current modules must be robust when we unroll the full model over long input sequences at
test time. We encourage this robustness by adopting a similar data augmentation mechanism
during training as proposed in [1]. Briefly, this approach involves dense sampling of over-
lapping, long training window segments to encourage hidden state robustness. We provide
additional discussion of this in our Supplementary Material.

Semantic Constraints: Loss Functions. To encourage better state representations of
action context in the memory modules described in Section 3.1, we define loss functions
Lprop,Lcls for supervision on each module, respectively.

During training, we constrain the proposals-focused memory module according to a
multi-label loss function on the semantic output z(t) = m(t)

prop defined in Section 3.1. For
a training video X with corresponding groundtruth y, the loss at time t is given by a weighted
binary cross entropy objective:

Lprop =−
K

∑
k=1

wk
0y(t)k logz(t)k +wk

1

(
1− y(t)k

)
log
(

1− z(t)k

)
, (1)

where the weights wk
0,w

k
1 are calculated proportional to the frequency of positive and nega-

tive proposals in the training set at each scale k.
We penalize the classification-focused memory module at each time step with a weighted

log-likelihood loss on the output m(t)
cls, with corresponding groundtruth class index y(t):

Lclass =−w(t) log
(

m(t)
cls[y

(t)]
)
, (2)

Citation
Citation
{Buch, Escorcia, Shen, Ghanem, and Niebles} 2017

BUCH ET AL.: END-TO-END, SINGLE-STREAM TEMPORAL ACTION DETECTION 7

where w(t) is set to some constant ρ if y(t) indicates the segment is background, and 1 other-
wise. This weight is tuned to the relative frequency of the background class.

Temporal Action Detections. We define our main joint detection loss Ldet which is
applied to the final detections D(t) output at each time step t by the model. We have two
components to this loss. First, we define a loss function over the classification output v(t)k
corresponding to each temporal interval:

Ldetcls =−
K

∑
k=1

w(t)
k log

(
v(t)k [y(t)k]

)
, (3)

Second, to encourage the network to provide tighter localization bounds, we define an
additional loss based on the localization stage in [20] to make the optimal confidence score
associated with the correct class a direct function of the overlap o between the groundtruth
temporal annotation and the output temporal detection:

Ldetloc =
1
2
·

K

∑
k=1

(

v(t)k [y(t)k]
)2

(
o(t)k

)α −1

 ·1[y(t)k > 0], (4)

where the indicator 1[y(t)k > 0] is 1 if y(t)k does not indicate the background class. We discuss
additional context for this localization loss in the Supplementary Material.
Thus, our overall detection loss is:

Ldet = Ldetcls +λdetloc ·Ldetloc, (5)

Overall. We backpropagate the cumulative loss from all loss functions above at every
time step t, so the total loss for all training examples (X ,y) in the batch X is:

L= ∑
(X ,y)∈X

∑
t
(λprop ·Lprop +λcls ·Lcls +λdet ·Ldet). (6)

where λ∗ are weighting parameters to normalize the contribution of each loss component to
the overall training loss. We demonstrate in Section 4 that dynamically adjusting the terms
λprop and λcls is effective during training, such that we have an increased importance placed
on these sub-tasks for the overall detection earlier in training, but focus more on the overall
detection output in the later stages. In this manner, we effectively train the network with
a dynamic curriculum learning-style approach by enforcing semantic constraints on easier
sub-tasks before relaxing them to focus training on the main overall detection task.

4 Experiments
We empirically evaluate the effectiveness of our unified end-to-end architecture for the task
of temporal action detection. As our experiments show, our method achieves state-of-the-art
performance while achieving some of the fastest processing speeds in the literature.

4.1 Experimental Setup
Dataset. To evaluate our model against prior work, we use the temporal action localization
subset of the THUMOS’14 dataset [11]. This subset with 22+ hours of video consists of

Citation
Citation
{Shou, Wang, and Chang} 2016

Citation
Citation
{Jiang, Liu, Roshanprotect unhbox voidb@x penalty @M {}Zamir, Toderici, Laptev, Shah, and Sukthankar} 2014

8 BUCH ET AL.: END-TO-END, SINGLE-STREAM TEMPORAL ACTION DETECTION

a validation set of 200 and test set of 213 untrimmed videos annotated with the temporal
intervals that depict human actions. As is standard practice, we leverage the “validation set"
as our training data, performing an 80-20 split for hyperparameter optimization. To enable
direct comparisons with prior work, we adopt the experimental settings from recent prior
work on temporal action detection [1, 21].

Implementation details. We implement our model using PyTorch, with training exe-
cuted on Titan X Maxwell GPUs. We initialize the conv1 through fc7 layers of the visual
encoder with pretrained weights released by the authors of [24] from the Sports1M dataset.
For training efficiency, we fix layers prior to fc8. We vary the number of stacked recurrent
layers and hidden state size in our memory modules, as well as the number of temporal in-
tervals K considered at each time step. We optimize our model parameters with the adam
update rule [12] and a learning rate of 0.001. For our best performing model, we relax the
semantic constraints by a factor (dsc = 0.5) every 5K batch iterations for MM-P (λprop) and
every 8.5K for MM-C (λcls), with a batch size of 128 training instances. We provide sample
output detections, implementation code, and trained models in the Supplementary Material.1

4.2 Results

mAP @ tIoU threshold 0.3 0.5 0.7
Wang et al. (2014) [26] 14.6 8.5 1.5

Oneata et al. (2014) [16] 28.8 15.0 3.2
Yuan et al. (2015) [32] 33.6 18.8 -

Yeung et al. (2016) [30] 36.0 17.1 -
Shou et al. (2016) [20] 36.3 19.0 5.3
Buch et al. (2017) [1] 37.8 23.0 -
Shou et al. (2017) [21] 40.1 23.3 7.9

SS-TAD (Ours) 45.7 29.2 9.6

Category [20] Ours Category [20] Ours
Baseball Pitch 0.149 0.193 Hammer Throw 0.191 0.416
Basketball Dunk 0.201 0.385 High Jump 0.2 0.22
Billiards 0.076 0.046 Javelin Throw 0.182 0.52
Clean and Jerk 0.248 0.541 Long Jump 0.348 0.717
Cliff Diving 0.275 0.639 Pole Vault 0.321 0.489
Cricket Bowling 0.157 0.151 Shotput 0.121 0.16
Cricket Shot 0.138 0.103 Soccer Penalty 0.192 0.264
Diving 0.176 0.269 Tennis Swing 0.193 0.123
Frisbee Catch 0.153 0.22 Throw Discus 0.244 0.074
Golf Swing 0.182 0.205 Volleyball Spiking 0.046 0.108

Table 1: Temporal Action Detection Results on THUMOS’14. SS-TAD provides state-
of-the-art performance (mAP) on action detection at different temporal overlap thresholds,
while still maintaining an efficient single-pass, end-to-end design. (“-” denotes not reported).

Performance. We summarize the results of applying our model to the task of temporal
action detection on THUMOS’14 in Table 1. We observe that our model provides state-of-
the-art performance for this task for both low and high overlap thresholds, which indicates
that the output detections are more precisely localizing the groundtruth action intervals in
the input untrimmed video sequences compared with prior state-of-the-art approaches.

Ablation. We verify the efficacy of our semantically-constrained memory modules by
performing an ablation study on our architecture. We examine three variants of the architec-
ture: (1) semantic constraints with relaxation during training (our full model), (2) semantic
constraints with no relaxation, and (3) no semantic constraints. Other hyperparameters are
fixed for fair comparison. As we see in Figure 4, adding semantic constraints reduces the
number of training epochs needed to reach a particular performance level. However, if we
enforce these throughout training, the overall performance of the model suffers after conver-
gence, compared against the model trained with no semantic constraints. Overall, our full
model strikes a balance between the two: by enforcing semantic constraints on the memory
modules early, the model learns to tackle the overall detection task quicker, and by relaxing
the semantic constraints gradually the model converges to a higher performance value.

1Please see https://github.com/shyamal-b/ss-tad/.

Citation
Citation
{Buch, Escorcia, Shen, Ghanem, and Niebles} 2017

Citation
Citation
{Shou, Chan, Zareian, Miyazawa, and Chang} 2017

Citation
Citation
{Tran, Bourdev, Fergus, Torresani, and Paluri} 2015

Citation
Citation
{Kingma and Ba} 2014

Citation
Citation
{Wang, Qiao, and Tang} 2014

Citation
Citation
{Oneata, Verbeek, and Schmid} 2014

Citation
Citation
{Yuan, Pei, Ni, Moulin, and Kassim} 2015

Citation
Citation
{Yeung, Russakovsky, Mori, and Fei-Fei} 2016

Citation
Citation
{Shou, Wang, and Chang} 2016

Citation
Citation
{Buch, Escorcia, Shen, Ghanem, and Niebles} 2017

Citation
Citation
{Shou, Chan, Zareian, Miyazawa, and Chang} 2017

Citation
Citation
{Shou, Wang, and Chang} 2016

Citation
Citation
{Shou, Wang, and Chang} 2016

https://github.com/shyamal-b/ss-tad/

BUCH ET AL.: END-TO-END, SINGLE-STREAM TEMPORAL ACTION DETECTION 9

0 2 4 6 8 10 12
Epochs

0.5

0.6

0.7

0.8

0.9

1.0

R
e
la

ti
v
e
 m

A
P

S.C. + relaxation

S.C. + no relaxation

No S.C.

Figure 4: Results from ablation analysis of semantically-constrained (S.C.) memory mod-
ules in SS-TAD. We plot relative mAP compared to our best performing model against num-
ber of training epochs. Our best performing model leverages both semantically-constrained
memory modules while also relaxing constraints during training. See Section 4.2.

Processing Speed. Since our model has a single-stream, end-to-end design, it is also
very efficient. We benchmark our model on a GeForce GTX Titan X (Maxwell) GPU 2, and
find that it operates at 701 FPS. In other words, it can process the input frame data from a 60
minute, 30 FPS video in ∼2.5 minutes. For comparison, both approaches from 2017 [1, 21]
in Table 1 have significantly lower FPS for overall temporal action detection. Notably, both
of these methods are bottlenecked by the classification and proposal stages, respectively,
which were from [20]. Thus, SS-TAD offers a significant boost in both performance and
processing speed. We provide additional discussion in our Supplementary Material.

Qualitative Results. In Figure 5(a), we provide example positive detections from our
model on action classes such as BasketballDunk, Diving, FrisbeeCatch, and BaseballPitch
(Fig. 5(a)i-iv, respectively). We observe that our model is able to provide strong temporal
localization of actions in videos overall, while still maintaining a single-stream, end-to-end
design. Importantly, SS-TAD is able to provide localizations over long, untrimmed video
sequences. Additionally, in Fig. 5(a)iii-iv, we see that the model is able to correctly localize
the actions across different camera angles and temporal distortions (e.g. slow-motion edit-
ing). Furthermore, as we observe in Figure 5(c), SS-TAD is able to provide localization and
correct classification of different actions occuring in the same video. However, there remain
challenging cases for the model. Videos with high frequencies of camera cuts, shots over
oblique angles during the action frame, or strong temporal editing lead to weaker localiza-
tion or misclassification. Two such examples are shown in Figure 5(b). We include additional
discussion of these cases in our Supplementary Material, along with video visualizations of
our qualitative results which more clearly illustrate these cases.

5 Conclusion
In conclusion, we have presented SS-TAD, a new intuitive end-to-end model for single-
stream temporal action detection in untrimmed video sequences. We propose a method for
training our architecture which leverages the semantic sub-tasks of temporal action detection
as dynamically-adjusted semantic constraints to improve training and test-time performance.

2Later versions of PyTorch/newer GPU architectures (e.g. Titan X Pascal) may yield higher FPS.

Citation
Citation
{Buch, Escorcia, Shen, Ghanem, and Niebles} 2017

Citation
Citation
{Shou, Chan, Zareian, Miyazawa, and Chang} 2017

Citation
Citation
{Shou, Wang, and Chang} 2016

10 BUCH ET AL.: END-TO-END, SINGLE-STREAM TEMPORAL ACTION DETECTION

(a)

(b)

(c)

i ii

iii iv

i ii

i

Key
Pos/Neg Detection
Ground-truth

/

Figure 5: Qualitative results of SS-TAD on THUMOS’14, including both (a,c) positive
and (b) negative detections. We show a key frame from the video with the detections and
groundtruth along a time axis below each image. Detections are marked as positive if the
temporal overlap (tIoU) with groundtruth is greater than 0.5 and the correct action label is
provided. See Section 4.2 + Supplementary Material for discussion and video visualizations.

We empirically evaluate our model on the standard THUMOS’14 benchmark, and find that
our model is very efficient and provides state-of-the-art performance for temporal action
detection. Future work may leverage this model as a base component for more complex
video understanding tasks, such as activity understanding and dense video captioning.

Acknowledgements
This research was sponsored, in part, by the Stanford AI Lab-Toyota Center for Artificial
Intelligence Research, Toyota Research Institute (TRI), and by the King Abdullah University
of Science and Technology (KAUST) Office of Sponsored Research. This article reflects the
opinions and conclusions of its authors and not TRI or any other Toyota entity. We thank our
anonymous reviewers and De-An Huang for their comments and discussion.

BUCH ET AL.: END-TO-END, SINGLE-STREAM TEMPORAL ACTION DETECTION 11

References
[1] Shyamal Buch, Victor Escorcia, Chuanqi Shen, Bernard Ghanem, and Juan Carlos

Niebles. SST: Single-Stream Temporal Action Proposals. In CVPR, 2017.

[2] Fabian Caba, Juan Carlos Niebles, and Bernard Ghanem. Fast temporal activity pro-
posals for efficient detection of human actions in untrimmed videos. In CVPR, 2016.

[3] Wei Chen, Caiming Xiong, Ran Xu, and Jason J. Corso. Actionness ranking with lattice
conditional ordinal random fields. In CVPR, 2014.

[4] Victor Escorcia, Fabian Caba, Juan Carlos Niebles, and Bernard Ghanem. DAPs: Deep
action proposals for action understanding. In ECCV, 2016.

[5] Adrien Gaidon, Zaid Harchaoui, and Cordelia Schmid. Actom sequence models for
efficient action detection. In Computer Vision and Pattern Recognition (CVPR), 2011
IEEE Conference on, pages 3201–3208. IEEE, 2011.

[6] Adrien Gaidon, Zaid Harchaoui, and Cordelia Schmid. Activity representation with
motion hierarchies. International journal of computer vision, 107(3):219–238, 2014.

[7] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierar-
chies for accurate object detection and semantic segmentation. In CVPR, June 2014.

[8] Georgia Gkioxari and Jitendra Malik. Finding action tubes. In IEEE Conference on
Computer Vision and Pattern Recognition, CVPR, pages 759–768, 2015.

[9] Samitha Herath, Mehrtash Harandi, and Fatih Porikli. Going deeper into action recog-
nition: A survey. arXiv preprint arXiv:1605.04988, 2016.

[10] Mihir Jain, Jan C. van Gemert, Hervé Jégou, Patrick Bouthemy, and Cees G. M. Snoek.
Action localization with tubelets from motion. In CVPR, 2014.

[11] Y.-G. Jiang, J. Liu, A. Roshan Zamir, G. Toderici, I. Laptev, M. Shah, and R. Suk-
thankar. THUMOS challenge: Action recognition with a large number of classes.
http://crcv.ucf.edu/THUMOS14/, 2014.

[12] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[13] Yanghao Li, Cuiling Lan, Junliang Xing, Wenjun Zeng, Chunfeng Yuan, and Jiaying
Liu. Online human action detection using joint classification-regression recurrent neu-
ral networks. In European Conference on Computer Vision, pages 203–220. Springer,
2016.

[14] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, and Scott Reed.
SSD: Single Shot MultiBox Detector. arXiv preprint arXiv:1512.02325, 2015.

[15] Alberto Montes, Amaia Salvador, Santiago Pascual, and Xavier Giro-i Nieto. Temporal
activity detection in untrimmed videos with recurrent neural networks. In 1st NIPS
Workshop on Large Scale Computer Vision Systems, December 2016.

[16] Dan Oneata, Jakob Verbeek, and Cordelia Schmid. The LEAR submission at THUMOS
2014. 2014.

http://crcv.ucf.edu/THUMOS14/

12 BUCH ET AL.: END-TO-END, SINGLE-STREAM TEMPORAL ACTION DETECTION

[17] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look once:
Unified, real-time object detection. arXiv preprint arXiv:1506.02640, 2015.

[18] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look
once: Unified, real-time object detection. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 779–788, 2016.

[19] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster R-CNN: Towards
real-time object detection with region proposal networks. In Advances in Neural Infor-
mation Processing Systems (NIPS), 2015.

[20] Zheng Shou, Dongang Wang, and Shih-Fu Chang. Temporal action localization in
untrimmed videos via multi-stage CNNs. In CVPR, 2016.

[21] Zheng Shou, Jonathan Chan, Alireza Zareian, Kazuyuki Miyazawa, and Shih-Fu
Chang. CDC: Convolutional-de-convolutional networks for precise temporal action
localization in untrimmed videos. arXiv preprint arXiv:1703.01515, 2017.

[22] Bharat Singh, Tim K. Marks, Michael Jones, Oncel Tuzel, and Ming Shao. A multi-
stream bi-directional recurrent neural network for fine-grained action detection. In The
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2016.

[23] Gurkirt Singh and Fabio Cuzzolin. Untrimmed video classification for activity detec-
tion: submission to activitynet challenge. CVPRW, 2016.

[24] Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo Torresani, and Manohar Paluri.
Learning spatiotemporal features with 3D convolutional networks. In ICCV, 2015.

[25] Jan C van Gemert, Mihir Jain, Ella Gati, and Cees GM Snoek. APT: Action localization
proposals from dense trajectories. In BMVC, 2015.

[26] Limin Wang, Yu Qiao, and Xiaoou Tang. Action recognition and detection by combin-
ing motion and appearance features. THUMOS14 Action Recognition Challenge, 1:2,
2014.

[27] Ruxing Wang and Dacheng Tao. UTS at ActivityNet 2016. CVPRW, 2016.

[28] A. Yao, J. Gall, and L. Van Gool. A Hough transform-based voting framework for
action recognition. In CVPR, June 2010.

[29] Serena Yeung, Olga Russakovsky, Ning Jin, Mykhaylo Andriluka, Greg Mori, and
Li Fei-Fei. Every moment counts: Dense detailed labeling of actions in complex
videos. arXiv preprint arXiv:1507.05738, 2015.

[30] Serena Yeung, Olga Russakovsky, Greg Mori, and Li Fei-Fei. End-to-end learning of
action detection from frame glimpses in videos. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 2678–2687, 2016.

[31] Gang Yu and Junsong Yuan. Fast action proposals for human action detection and
search. In CVPR, 2015.

[32] Jun Yuan, Yong Pei, Bingbing Ni, Pierre Moulin, and Ashraf Kassim. ADSC submis-
sion at THUMOS challenge 2015. In CVPR THUMOS Workshop, volume 1, 2015.

