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Abstract

In this paper, we consider two action recogni-
tion problems in still images. One is the con-
ventional action classification task where we
assign a class label to each action image; the
other is a new problem where we measure the
similarity between action images. We achieve
the goals by using a mutual context model to
jointly model the objects and human poses
in images of human actions. Experimental re-
sults show that our method not only improves
action classification accuracy, but also learns
a similarity measure that is largely consistent
with human perception.

1. Introduction

Human action recognition in still images is attracting
much attention in computer vision (Laptev & Mori,
2010). Many recent works use contextual informa-
tion (Gupta et al., 2009; Yao & Fei-Fei, 2010b) to help
improve the recognition performance. Compared to
the methods that directly associate low-level image
descriptors with class labels (Yao & Fei-Fei, 2010a;
Delaitre et al., 2010), context (e.g. estimating human
pose, detecting objects) provides deeper understand-
ing of human actions.

Following the method of Yao & Fei-Fei (2010b), in
this paper we consider human actions as interactions
between humans and objects, and jointly model the
relationship between them using the mutual context
model. As shown in Fig.1, our method allows objects
and human poses to serve as mutual context to facili-
tate the recognition of each other, based on which we
address two action recognition tasks:
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Figure 1. Objects and human poses can facilitate the
recognition of each other in the actions of human-object
interactions, as shown in the cricket bowling image. Based
on the recognition of objects and human poses, we consider
two tasks: action classification and measuring action simi-
larity. “→” indicates that the left image is more similar to
the left-most cricket bowling image than the right one.

∙ Conventional action classification where we assign
a class label to each action image.

∙ Measuring the similarity between different action
images. The goal is to make the similarity mea-
sure consistent with human perception.

The second task, measuring action similarity, is very
different from conventional action classification prob-
lems. As shown in Fig.2, human actions lie in a rel-
atively continuous space and different actions can be
correlated. We humans are able to distinguish small
changes in human poses as well as capture the rela-
tionship of different actions from the objects or scene
background. However it is difficult to capture all these
subtleties by simply assigning action images into sev-
eral independent classes as in the conventional action
classification problem. In this work, by explicitly con-
sidering objects and human poses, we obtain a dis-
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(a) A human action can be more related to some actions
than others. 𝐷1 < 𝐷2 because the left-most two images
have similar human poses. 𝐷3 < 𝐷2 because the right-most
two images are from the same sport and the objects “cricket
ball” and “cricket stump” are present in both images.

�� � 

(b) Human actions lie in a continuous space. Humans are
able to capture the difference between different images even
if they belong to the same action class. 𝐷4 < 𝐷5 because
the left two images have very similar human poses.

Figure 2. Examples of the distance between different im-
ages of human actions denoted by 𝐷𝑖.

tance1 measure of action images which is largely con-
sistent with human annotation.

1.1. Related Work

Our method builds upon the mutual context model
(Yao & Fei-Fei, 2010b) that explores the relationships
between objects and human poses in human actions.
The model presented in this paper is more flexible and
discriminative in that: (1) it learns an overall rela-
tionship between different actions, objects, and hu-
man poses, rather than modeling each action class
separately; (2) it can deal with any number of ob-
jects, instead of being limited to the interactions be-
tween one human and one object; (3) it incorporates
a discriminative action classification component which
takes global image information into consideration.

While different objects and annotations of action
classes can be represented by discrete indexes, human
poses lie in a space where the location of body parts
changes continuously. To make the joint modeling of
actions, objects, and human poses easier, we discretise
possible layouts of human body parts into a set of rep-
resentative poses, termed as atomic poses (as shown in
Fig.3). Our atomic poses are discovered in a similar

1Small distance indicates large image similarity.

manner as poselets (Bourdev & Malik, 2009). While
poselets are local detectors for specific body parts, the
atomic poses consider the whole human body and can
be thought of as a dictionary of human poses.

In the rest of this paper, we first elaborate on the
mutual context model and distance measure method in
Sec.2, and then present experimental results in Sec.3.

2. Algorithm

In this section, we describe the mutual context model
that jointly models a set of actions 𝒜, objects 𝒪,
and atomic poses ℋ. We first introduce the model
(Sec.2.1), then describe how to obtain the atomic poses
(Sec.2.2) and the model learning approach (Sec.2.3).
Finally we show our approach to classify action im-
ages (Sec.2.4) and measure action distance (Sec.2.5).

2.1. Mutual Context Model Representation

Given an image 𝐼 with annotations of action class
𝐴 ∈ 𝒜, bounding boxes of objects 𝑂 ∈ 𝒪 and body
parts in the human pose 𝐻 ∈ ℋ, our model learns the
strength of the interactions between them. We further
make the interaction conditioned on image evidence,
so that the components that are harder to recognize
play less important roles in the interaction. Our model
is represented as

Ψ(𝐴,𝑂,𝐻, 𝐼) = 𝜙1(𝐴,𝑂,𝐻) + 𝜙2(𝐴, 𝐼) (1)

+ 𝜙3(𝑂, 𝐼) + 𝜙4(𝐻, 𝐼) + 𝜙5(𝑂,𝐻)

where 𝜙1 models the compatibility between 𝐴, 𝑂, and
𝐻; 𝜙2−4 models the image evidence using state-of-the-
art action classification, object detection, and pose es-
timation approaches; 𝜙5 considers the spatial relation-
ship between objects and body parts. We now elabo-
rate on each term in Eqn.1.

Compatibility between actions, objects, and hu-
man poses. 𝜙1(𝐴,𝑂,𝐻) is parameterized as

𝜙1(𝐴,𝑂,𝐻) (2)

=

𝑁ℎ∑

𝑖=1

𝑀∑

𝑚=1

𝑁𝑜∑

𝑗=1

𝑁𝑎∑

𝑘=1

1(𝐻=ℎ𝑖) ⋅ 1(𝑂𝑚=𝑜𝑗) ⋅ 1(𝐴=𝑎𝑘) ⋅ 𝜁𝑖,𝑗,𝑘

where 𝑁ℎ is the the total number of atomic poses (see
Sec.2.2) and ℎ𝑖 is the 𝑖-th atomic pose in ℋ (similarly
for 𝑁𝑜, 𝑜𝑗 , 𝑁𝑎, and 𝑎𝑘). 𝜁𝑖,𝑗,𝑘 represents the strength
of the interaction between ℎ𝑖, 𝑜𝑗 , and 𝑎𝑘. 𝑀 is the
number of object bounding boxes within the image,
and 𝑂𝑚 is the object class label of the 𝑚-th box.

Modeling Actions. 𝜙2(𝐴, 𝐼) is parameterized by
training an action classifier based on the extended im-
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age regions of the humans. We have

𝜙2(𝐴, 𝐼) =

𝑁𝑎∑

𝑘=1

1(𝐴=𝑎𝑘) ⋅ 𝜂𝑇𝑘 ⋅ 𝑠(𝐼) (3)

where 𝑠(𝐼) is an 𝑁𝑎-dimensional output of a one-vs-
all discriminative classifier. 𝜂𝑘 is the feature weight
corresponding to 𝑎𝑘.

Modeling objects. Inspired by Desai et al. (2009),
we model objects in the image using object detection
scores in each detection bounding box and the spatial
relationships between these boxes. Denoting the de-
tection scores of all the objects for the 𝑚-th box as
𝑔(𝑂𝑚), 𝜙3(𝑂, 𝐼) is parameterized as

𝜙3(𝑂, 𝐼) =

𝑀∑

𝑚=1

𝑁𝑜∑

𝑗=1

1(𝑂𝑚=𝑜𝑗) ⋅ 𝛾𝑇𝑗 ⋅ 𝑔(𝑂𝑚) + (4)

𝑀∑

𝑚=1

𝑀∑

𝑚′=1

𝑁𝑜∑

𝑗=1

𝑁𝑜∑

𝑗′=1

1(𝑂𝑚=𝑜𝑗) ⋅1(𝑂𝑚′=𝑜𝑗′ )
⋅𝛾𝑇𝑗,𝑗′ ⋅𝑏(𝑂𝑚,𝑂𝑚′

)

where 𝛾𝑗 is the weights for object 𝑜𝑗 . 𝛾𝑗,𝑗′ encodes the
weights for geometric configurations between 𝑜𝑗 and

𝑜𝑗′ . 𝑏(𝑂
𝑚, 𝑂𝑚′

) is a bin function with a grid represen-
tation as in Desai et al. (2009) that models the rela-
tionship between the 𝑚-th and 𝑚′-th bounding boxes.

Modeling human poses. 𝜙4(𝐻, 𝐼) models the
atomic pose that 𝐻 belongs to and the likelihood of
observing image 𝐼 given that atomic pose. We have

𝜙4(𝐻, 𝐼) (5)

=

𝑁ℎ∑

𝑖=1

𝐿∑

𝑙=1

1(𝐻=ℎ𝑖) ⋅
(
𝛼𝑇𝑖,𝑙 ⋅ 𝑝(x𝑙

𝐼 ∣x𝑙
ℎ𝑖
) + 𝛽𝑇𝑖,𝑙 ⋅ 𝑓 𝑙(𝐼)

)

where 𝛼𝑖,𝑙 and 𝛽𝑖,𝑙 are the weights for the location and
appearance of the 𝑙-th body part in atomic pose ℎ𝑖.
𝑝(x𝑙

𝐼 ∣x𝑙
ℎ𝑖
) is the Gaussian likelihood of observing x𝑙

𝐼 ,
the joint of the 𝑙-th body part in image 𝐼, given the
standard joint location of the 𝑙-th body part in atomic
pose ℎ𝑖. 𝑓

𝑙(𝐼) is the output of a detector for the 𝑙-th
body part in this image.

Spatial relationship between objects and body
parts. We achieve a better modeling of objects and
human body parts by considering their spatial rela-
tionships. 𝜙5(𝐻,𝑂) is parameterized as

𝜙5(𝐻,𝑂) (6)

=
𝑀∑

𝑚=1

𝑁ℎ∑

𝑖=1

𝑁𝑜∑

𝑗=1

𝐿∑

𝑙=1

1(𝐻=ℎ𝑖) ⋅ 1(𝑂𝑚=𝑜𝑗) ⋅ 𝜆𝑇𝑖,𝑗,𝑙 ⋅ 𝑏(x𝑙
𝐼, 𝑂

𝑚)

where 𝑏(x𝑙
𝐼 , 𝑂

𝑚) denotes the spatial relationship be-
tween the 𝑙-th body part in 𝐼 and the 𝑚-th object

bounding box. We again use the bin function as in
Desai et al. (2009). 𝜆𝑖,𝑗,𝑙 encodes the weights for this
relationship when the object class of 𝑂𝑚 is 𝑜𝑗 .

2.2. Obtaining Atomic Poses

In this section, we discuss a clustering method to ob-
tain atomic poses. Given the training images, we first
align the annotations of each image so that the torsos
of all the humans have the same position and size, and
normalize the range of variations of both position and
orientation to [−1, 1]. If there is a missing body part
due to occlusion, we fill in the annotation with the av-
erage annotation values for that particular part. We
then use hierarchical clustering with the max linkage
measure to obtain a set of clusters, where each cluster
represents an atomic pose. Given two images 𝑖 and
𝑗, their distance is measured by

∑𝐿
𝑙=1w

𝑇 ⋅ ∣x𝑙
𝑖 − x𝑙

𝑗 ∣,
where x𝑙

𝑖 denotes the position and orientation of the
𝑙-th body part in image 𝑖, w is a weight vector (0.15
and 0.1 for location and orientation components re-
spectively), 𝐿 is the number of body parts.

The atomic poses can be thought of as a dictionary
of human poses, where the layouts of body parts de-
scribed by the same atomic pose are similar. Intu-
itively, human pose estimation performance can be im-
proved by using a prior which is learned from the im-
ages of the same atomic pose, as compared to relying
on a single model for all the images. Therefore, we es-
timate the spatial relationship between body parts in
the pictorial structure (Felzenszwalb & Huttenlocher,
2005) model for each atomic pose respectively, which
will be used in our model inference stage (Sec.2.4).

2.3. Model Learning

Our model (Eqn.1) is a standard Conditional Random
Field (CRF) with no hidden variables. We use a belief
propagation method (Pearl, 1988) with Gaussian pri-
ors to learn the model parameters {𝜁, 𝜂, 𝛾, 𝛼, 𝛽, 𝜆}. All
object detectors and body part detectors are trained
using the deformable parts model (Felzenszwalb et al.,
2010), while the action classifier is trained using the
spatial pyramid method (Lazebnik et al., 2006). A
constant 1 is appended to each feature vector so that
the model can learn biases between different classes.

Conditioned on the image appearance information in
𝜙2 ∼ 𝜙5, our model learns the strength of the com-
patibility between a set of actions, objects, and hu-
man poses in 𝜙1. Fig.3 visualizes the connectivity
structure learned from the sports dataset (described
in Sec.3.1). Each connection is obtained by marginal-
izing 𝜁 in Eqn.2 with respect to the other concept, e.g.



Classifying Actions and Measuring Action Similarity by Modeling the Mutual Context

Figure 3. The learned con-
nectivity map of actions,
poses, and objects using the
sports (Gupta et al., 2009)
dataset. Thicker lines in-
dicate stronger connections
while thinner connections in-
dicate weaker connections.
We did not show the connec-
tions between actions and
objects because they are
tricky (e.g. “tennis serving”
connects with “tennis ball”
and “tennis racket”). We
also ignore connections that
are very weak.

the strength of the connection between pose ℎ𝑖 and
object 𝑜𝑗 is estimated by

∑𝑁𝑎

𝑘=1 exp(𝜁𝑖,𝑗,𝑘).

Fig.3 shows that our method learns meaningful action-
object-pose interactions, such as the connection be-
tween “tennis forehand” and the fourth atomic pose
which is a reasonable gesture for the action, the ob-
ject “volleyball” and the last atomic pose, etc.

2.4. Recognition I: Action Classification,
Object Detection, and Pose Estimation

Given a new image, inference on Eqn.1 gives us the
results of action classification, object detection, and
human pose estimation. We initialize the model infer-
ence with the SVM action classification results using
the spatial pyramid representation (Lazebnik et al.,
2006), object bounding boxes obtained from indepen-
dent object detectors (Felzenszwalb et al., 2010), as
well as initial pose estimation results from a picto-
rial structure model (Sapp et al., 2010) estimated from
all training images, regardless of the belongingness of
different atomic poses. We then iteratively perform
the following three steps until a local maximum of
Ψ(𝑉,𝑂,𝐻, 𝐼) is reached.

Updating the layout of human body parts. From
the current inference result, we compute the marginal
distribution of the human pose over all atomic poses:
{𝑝(𝐻=ℎ𝑖)}𝑁ℎ

𝑖=1. From this distribution, we refine the
prior of the joint location of each body part 𝑙 in this
image using a mixture of Gaussians

∑𝑁ℎ

𝑖=1[𝑝(𝐻=ℎ𝑖) ⋅
𝒩 (x𝑙

ℎ𝑖
)], where 𝒩 (x𝑙

ℎ𝑖
) is the prior distribution for

body part 𝑙 in the 𝑖-th atomic pose estimated in
Sec.2.2. Furthermore because the pictorial structure
inference can be very efficient if the part dependen-
cies are Gaussians, we use a Gaussian distribution to
approximate each mixture of Gaussians. Then we use

pictorial structure with these new Gaussian distribu-
tions to update the pose estimation results.

Updating the object detections. With the current
pose estimation result as well as the marginal distribu-
tion of atomic poses and action classes, we use a greedy
forward search method (Desai et al., 2009) to update
the object detection results. We use (𝑚, 𝑗) to denote
the score of assigning the 𝑚-th object bounding box
to object 𝑜𝑗 , which is initialized as

(𝑚, 𝑗) =

𝑁ℎ∑

𝑖=1

𝐿∑

𝑙=1

𝑝(𝐻=ℎ𝑖) ⋅ 𝜆𝑇𝑖,𝑗,𝑙 ⋅ 𝑏
(
x𝑙
𝐻 , 𝑂

𝑚
)

(7)

+

𝑁ℎ∑

𝑖=1

𝑁𝑎∑

𝑘=1

𝑝(𝐻=ℎ𝑖) ⋅ 𝑝(𝐴=𝑎𝑘) ⋅ 𝜁𝑖,𝑗,𝑘 + 𝛾𝑇𝑗 ⋅ 𝑔(𝑂𝑚)

Initializing the labels of all the windows to be back-
ground, the forward search repeats the following steps

1. Select (𝑚∗, 𝑗∗) = argmax{(𝑚, 𝑗)}.
2. Label the 𝑚∗-th object detection window as 𝑜𝑗∗

and remove it from the set of detection windows.

3. Update (𝑚, 𝑗) = (𝑚, 𝑗)+𝛾𝑇𝑗,𝑗∗ ⋅𝑏(𝑂𝑚, 𝑂𝑚∗
)+𝛾𝑇𝑗∗,𝑗 ⋅

𝑏(𝑂𝑚∗
, 𝑂𝑚).

until (𝑚∗, 𝑗∗) < 0. After this step, all object bound-
ing boxes are assigned to either an object label or the
background.

Updating the action and atomic pose labels.
Based on the current pose estimation and object detec-
tion results, we optimize Ψ(𝐴,𝑂,𝐻, 𝐼) by enumerating
all possible combinations of 𝐴 and 𝐻 labels.

2.5. Recognition II: ComputingActionDistance

Based on our model inference results, we measure the
distance between two action images considering not
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only action classes but also objects and human poses
in the action. For an image 𝐼, we use our mutual
context model to infer marginal distributions on the
action classes 𝑝(𝐴∣𝐼) and atomic poses 𝑝(𝐻∣𝐼) respec-
tively. We also obtain a 𝑁𝑜-dimensional vector whose
𝑗-th component is set to 1 if the object 𝑜𝑗 is detected
in image 𝐼, or 0 otherwise. We normalize this vector
to obtain a distribution 𝑝(𝑂∣𝐼) for all the objects in
this image. We then measure the distance between
two images 𝐼 and 𝐼 ′ by

2 ⋅𝐷(𝑝(𝐴∣𝐼), 𝑝(𝐴∣𝐼 ′)) +𝐷(𝑝(𝑂∣𝐼), 𝑝(𝑂∣𝐼 ′))
+ 2 ⋅𝐷(𝑝(𝐻∣𝐼), 𝑝(𝐻∣𝐼 ′)) (8)

where 𝐷 (described below) indicates the distance be-
tween two probability distributions. We assign a lower
weight to objects because the performance of object
detection is not as good as action classification and
pose estimation (Sec.3.2). In this paper we consider
two distance measures (𝐷) for probabilities:

− Total variance 𝑇 (p,q) =
∑

𝑖

∣𝑝𝑖 − 𝑞𝑖∣.

− Chi square statistic 𝜒2(p,q) =
∑

𝑖

(𝑝𝑖 − 𝑞𝑖)2
𝑝𝑖 + 𝑞𝑖

.

Note that our model (Sec.2.1) jointly considers human
actions, objects, and human poses, and therefore the
probability distribution estimated from each of them
considers image appearance as well as contextual in-
formation from the other two. Our distance measure
further takes into account the three components to-
gether. In Sec.3.3.2 we show that our approach cap-
tures much semantic level differences between images
of human actions and the results are largely consistent
with human perceptions as shown in Fig.2.

3. Experiment

3.1. The Six-Class Sports Dataset

We carry out experiments on the six-class sports
dataset (Gupta et al., 2009). For each action there are
30 training images and 20 testing images. The objects
that we consider are: cricket bat, ball, and stump in
“cricket batting” and “cricket bowling”; croquet mal-
let, ball, and hoop in “croquet shot”; tennis racket and
ball in “tennis forehand” and “tennis serving”; volley-
ball and net in “volleyball smash”.

We train an upper-body detector on this dataset using
Felzenszwalb et al. (2010). The detector works almost
perfectly because of the relatively clean image back-
ground. We normalize the images based on the size of
the detection boxes such that we do not need to search
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Figure 4. Action classification performance of different
methods on the sports dataset.

over scales in human pose estimation. We obtain 12
atomic poses on this dataset (shown in Fig.3).

3.2. Action Classification, Object Detection,
and Human Pose Estimation

The action classification results are shown in Fig.4. We
also compare our method with other approaches for
object detection and human pose estimation in Tbl.1.
Following the convention in Ferrari et al. (2008), a
body part is considered correctly localized if the end-
points of its segment lie within 50% of the ground-
truth segment length from their true positions. As in
PASCAL VOC (Everingham et al., 2007), an object
detection bounding box is considered correct if the ra-
tio between its intersection with the ground truth and
its union with the ground truth is greater than 50%.

We observe that our method achieves better perfor-
mance than the baselines in almost all experiments.
We obtain better action classification and pose esti-
mation results compared to Yao & Fei-Fei (2010b) be-
cause we use stronger body part detectors and incorpo-
rate the discriminative action classification component
in the model of this paper. Please refer to Yao & Fei-
Fei (2010b) for more analysis and comparison of the
mutual context model and the other approaches.

3.3. Distance between Action Images

3.3.1. Human Perception of Action Distances

Before we evaluate our distance metric described in
Sec.2.5, we study how humans measure the similar-
ity between action images. First, we are interested in
whether humans agree with one another on this task.
In every trial of our experimental study, we give a hu-
man subject one reference image and two comparison
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Table 1. Object detection and pose estimation results on
the sports data. We use average precision and detection
accuracy to measure the performance of object detection
and pose estimation respectively. We bold the best perfor-
mance in each experiment. Note that the object detection
result is not directly comparable to that of Yao & Fei-Fei
(2010b), because in this paper we detect each object in
all testing images, while in that paper the object is only
detected in images of the action classes that could con-
tain the object (e.g. detecting “volleyball” in “volleyball
smash” images).

Object Detection

Method
Felzenszwalb Desai et Our
et al. (2010) al. (2009) Method

cricket bat 17% 18% 20%
cricket ball 24% 27% 32%
cricket stump 77% 78% 77%
croquet mallet 29% 32% 34%
croquet ball 50% 52% 58%
croquet hoop 15% 17% 22%
tennis racket 33% 31% 37%
tennis ball 42% 46% 49%
volleyball 64% 65% 67%

volleyball net 4% 6% 9%

overall 36% 37% 41%

Human Pose Estimation

Method
Yao & Fei-Fei Andriluka et Our
(2010b) al. (2009) Method

head 58% 71% 76%
torso 66% 69% 77%

left/right 44% 44% 52%
upper arms 40% 40% 45%
left/right 27% 35% 39%
lower arms 29% 36% 37%
left/right 43% 58% 63%
upper legs 39% 63% 61%
left/right 44% 59% 60%
lower legs 34% 71% 77%

overall 42% 55% 59%

images (as shown in Fig.5(a)), and ask the subject to
annotate which of the two comparison images is more
similar to the reference image. We generate two trials
of experiments for every possible combination of ac-
tion classes from the sports dataset, and therefore our
experiment consists of 2× (6 +𝐶6,2) = 252 trials. We
give the same 252 trials to eight subjects.

Fig.5(a) summarizes the consistency of the received re-
sponses. We observe that in most situations the eight
subjects agree with each other (54% 8:0 as compared
to 4% 4:4), even in many confusing trials. For exam-
ple as shown in Fig.5(a), all eight subjects believe the
“volleyball smash” image is closer to the “tennis fore-
hand” image than the “croquet shot” image because
the former two images have similar human poses.
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(a) X-axis represents the degree of consistency when hu-
mans measure the similarity between different action im-
ages, e.g. “7:1” means seven of the eight subjects have the
same annotation in a given trial. Y-axis is the percentage
of the corresponding trials in all the 252 trials. We also
show the images in two trials where the degree of consis-
tency is “8:0 (the left comparison image is more similar to
the reference image)” and “4:4” respectively.
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(b) Examples of action similarities obtained from human
annotation. In each row, the reference image is indicated
by a yellow bounding box. The magenta numbers are the
similarity with the corresponding reference image.

Figure 5. Human annotations of action distance.

Having shown that humans tend to give similar anno-
tations in measuring the similarity between different
action images, we obtain the ground truth similarity
between action images by averaging annotations from
different human subjects. We give each subject an
annotation task where an image 𝐼𝑟𝑒𝑓 is treated as the
reference image for 50 trials. In each trial we randomly
select two different test images to compare with 𝐼𝑟𝑒𝑓 .
Five of the eight subjects are assigned this task, result-
ing in 250 pairwise rankings of the 120 test images for
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𝐼𝑟𝑒𝑓 . We then use the edge flow method (Jiang et al.,
2011) to convert these pairwise rankings to a similarity
vector s = {𝑠(𝐼𝑟𝑒𝑓 , 𝐼𝑖)}120𝑖=1, where 𝑠(𝐼

𝑟𝑒𝑓 , 𝐼𝑖) denotes
the ground truth similarity between 𝐼𝑟𝑒𝑓 and 𝐼𝑖. We
obtain s by solving an optimization problem

minimize M ⋅ s = 1 (9)

𝑠.𝑡. s ર 0, ∥s∥2 ≤ 1

where M is a 250× 120 sparse matrix where 𝑀𝑗,𝑘 = 1
and 𝑀𝑗,𝑙 = −1 if the 𝑗-th pairwise ranking indicates
that 𝐼𝑘 is more similar to 𝐼𝑟𝑒𝑓 than 𝐼 𝑙.

We repeat the above procedure to obtain a similarity
vector for each test image. Fig.5(b) shows examples of
action similarities. Note that 𝑠(𝐼𝑟𝑒𝑓 , 𝐼𝑖) is asymmet-
ric because we obtain the similarity values by treating
each test image as the reference image separately.

3.3.2. Evaluating the Distance Metric

In this section, we evaluate the approaches of comput-
ing the distance between different action images. With
the ground truth similarities of each reference image
against all the other images obtained from human an-
notation (Sec.3.3.1), our goal is to automatically find
the images that correspond to large similarity (small
distance) values.

Our distance metric is evaluated in the following way.
Denote the ground truth similarity between an im-
age 𝐼 and the reference image 𝐼𝑟𝑒𝑓 as 𝑠(𝐼𝑟𝑒𝑓 , 𝐼).
We have a ground truth ranking of all the images
{𝐼𝑔𝑡1 , 𝐼𝑔𝑡2 , ⋅ ⋅ ⋅ } such that 𝑠(𝐼𝑟𝑒𝑓 , 𝐼𝑔𝑡𝑖) ≥ 𝑠(𝐼𝑟𝑒𝑓 , 𝐼𝑔𝑡𝑗 )
if 𝑖 ≤ 𝑗. Using our distance metric we obtain an-
other ranking of all the images {𝐼𝑟𝑒1 , 𝐼𝑟𝑒2 , ⋅ ⋅ ⋅ } by sort-
ing their distance with the reference image in ascend-
ing order. The precision of using this distance metric
to find 𝑛 neighboring images for 𝐼𝑟𝑒𝑓 is evaluated by∑𝑛

𝑖=1 𝑠(𝐼
𝑟𝑒𝑓 , 𝐼𝑟𝑒𝑖)

/∑𝑛
𝑖=1 𝑠(𝐼

𝑟𝑒𝑓 , 𝐼𝑔𝑡𝑖) . Average preci-
sion of using all the test images as reference images is
adopted for performance evaluation.

We compare our distance metric (Eqn.8) with a base-
line approach that is based on spatial pyramid im-
age classification (Lazebnik et al., 2006). In that ap-
proach, an image is represented by the six-dimensional
confidence scores obtained from one-vs-all SVM clas-
sification. The distance between the confidence scores
is used to measure the distance between two images.
We also compare our method with some control ap-
proaches that use each of the three components (ac-
tion, object, and human pose) of Eqn.8 individually.

We observe from Fig.6 that our method outperforms
the baseline and all the other control settings. The
two probability distance measures, 𝜒2 and 𝑇 , achieve
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Figure 6. Comparison of different distance metrics evalu-
ated by average precision with respect to the number of
similar images in top of the ranking. “MC” denotes “mu-
tual context” and “SPM” is “spatial pyramid matching”.

very similar performance in all the methods. Among
the three components, using actions only performs the
best while using objects only performs the worst. The
reason might be that, objects are usually small such
that the human annotations put less weights to objects
compared with that of actions or human poses. Also,
Tbl.1 shows that object detection does not perform as
well as pose estimation or action classification, making
it less reliable when using objects only for distance
computation.

Fig.7 shows the top 20 images obtained using our
method and the baseline spatial pyramid method. We
observe that our results are significantly more consis-
tent with human perception. Our method can not only
find the images that have the same action as the ref-
erence image, but also capture the detailed similarity
of semantic meaning such as human pose. For exam-
ple, in Fig.7(b), the “volleyball smash” image returns
17 images of the same action, and the humans in the
next 3 images have similar poses as the human in the
reference image.

4. Conclusion

In this paper, we show that the joint modeling of ac-
tions, objects, and human poses can not only improve
the performance of action classification, object detec-
tion, and pose estimation, but also lead to an action
distance measure approach whose output is largely
consistent with human annotations. Our future work
will be applying our method on larger datasets.
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(a) Comparison of our distance metric and the baseline on
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(b) Comparison of our distance metric and the baseline on
a “volleyball smash” image.

Figure 7. Examples of the top-ranked images obtained
from our method and the baseline approach that only re-
lies on action classification (Lazebnik et al., 2006). In each
case, the top-left image surrounded by a yellow rectangle is
the reference image, and all the other images are organized
in a row major order with respect to ascending distance
values to the corresponding reference image.


