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Abstract. This paper deals with recognizing human actions in still im-
ages. We make two key contributions. (1) We propose a novel, 2.5D rep-
resentation of action images that considers both view-independent pose
information and rich appearance information. A 2.5D graph of an action
image consists of a set of nodes that are key-points of the human body,
as well as a set of edges that are spatial relationships between the nodes.
Each key-point is represented by view-independent 3D positions and local
2D appearance features. The similarity between two action images can
then be measured by matching their corresponding 2.5D graphs. (2) We
use an exemplar based action classification approach, where a set of rep-
resentative images are selected for each action class. The selected images
cover large within-action variations and carry discriminative information
compared with the other classes. This exemplar based representation of
action classes further makes our approach robust to pose variations and
occlusions. We test our method on two publicly available datasets and
show that it achieves very promising performance.

1 Introduction

Humans can effortlessly recognize many human actions from still images, such
as “playing violin” and “riding a bike”. In recent years, much effort has been
made in computer vision [1–8] with the goal of making this process automatic.
Automatic recognition of human actions in still images has many potential ap-
plications, such as image search and personal album management.

Considering the close relationship between actions and human poses, in this
paper, we aim to develop a robust action recognition approach by modeling
human poses. The idea of using human poses for action recognition has been
studied in some previous work which either detect local pose features [4, 6] or
model the spatial configuration between human body parts and objects [2, 3, 7,
8]. However, while such approaches sound promising, the winning method [9] in
the recent PASCAL challenge [10] simply treats action recognition as an image
classification problem, without explicitly modeling human poses.

The challenges in modeling human poses for action recognition are illustrated
in Fig.2. On the one hand, because of the variations of camera angles, the same
human pose can correspond to very different body parts configurations on the 2D



2 B. Yao and L. Fei-Fei

���������	�
���
���
�	�
����������	���������
���	����������

��������
�
������	���	�
�	������	�����

���	� 
����
��������	�	
��

!��
�����"�����
#����
�
��	
��

$
�%�
�������
�����&������

Fig. 1. An overview of our action recognition algorithm. We represent an action image
as a 2.5D graph consisting of view-independent 3D pose and 2D appearance features.
In recognition, the 2.5D graph is matched with a set of exemplar graphs for each action
class, allowing more robust handling of within-action variations.

image plane, which poses challenges in reliable measurement of action similari-
ties. On the other hand, human poses in the same action can change drastically,
while very similar human poses might correspond to many different human ac-
tions, and therefore it is difficult to build a single pose model to distinguish one
action from all the others.

In this paper, we propose a novel action recognition approach (Fig.1) to
address the above two challenges. Specifically, we make two key contributions:

– 2.5D graph for action image representation. We propose a 2.5D graph
representation for action images. The nodes of the graph are key-points of
the human body represented by view-independent 3D positions and rich 2D
appearance features. The edges are relative distances between the key-points.
Estimating the similarity between two action images then becomes matching
their corresponding graphs.

– Exemplar-based action classification. Considering that a single pose
model is not enough to distinguish one action from all the others, we propose
an exemplar based approach for action classification. For each action class,
we select a minimum set of “dominating images” that are able to cover all
within-class pose variations and capture all between-class distinctions.

The rest of this paper is organized as follows. Related work is discussed
in Sec.2. The 2.5D graph representation of action images and exemplar-based
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(a) (b)

Fig. 2. (a) The same action might contain very large pose variations. (b) Due to
different camera angles, even the same human pose looks differently in 2D images.

action recognition algorithm are elaborated in Sec.3 and Sec.4, respectively. Ex-
periments are represented in Sec.5. We conclude our paper in Sec.6.

2 Related Work

Human poses have been used for action recognition in existing literatures. Both
global silhouette [2] and local pose units [4, 6] have been adopted for distin-
guishing different human actions. In [3, 7], action recognition is treated as a
human-object interaction problem, where spatial relationships between different
body parts and objects are modeled. The interactions are also represented as a
set of bases of action attribute-object-pose in [5]. While most of such approaches
rely on annotations of human poses, a weakly-supervised method was proposed
to model human-object interactions in [8]. All those methods, however, model
human poses in 2D only, and therefore are difficult to deal with the within-class
pose variations caused by camera angle changes, as shown in Fig.2(b).

There has been some work for view-independent action recognition, mostly
dealing with videos. [11] renders Mocap data from multiple viewpoints, which
is time and storage consuming. [12] projects 2D features to a 3D visual hull.
Manifold based warping methods are adopted in [13]. View-invariant feature de-
scriptors have also been proposed [14, 15]. Most of such methods rely on temporal
information, and therefore are not suitable to our problem.

In this work, we aim at view-independent action recognition from single im-
ages. We extract key-points of the human body [16] and then convert the 2D
key-points to 3D positions without any supervision [17, 18]. The 3D positions of
key-points allow us to rotate human skeletons from different views to the same
view-point (Fig.1), hence making view-independent matching possible. Inspired
by [19], where it shows that the combined pose and appearance features help
improve action recognition performance, our 2.5D action graph is constructed
by combining the view-independent 3D human skeletons and 2D appearance
features [20, 21]. 2.5D graph representations have been used in computer vision
systems before [22–24]. While most of these papers focus on modeling scene lay-
ers or rigid objects such as human faces, our method is designed for recognizing
articulated objects such as human bodies.
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Fig. 3. (a) Illustration of an image and its corresponding 2.5D action graph. The his-
tograms represent appearance features extracted from the corresponding image regions.
(b) The human body skeleton from the other views.

While the majority of work in computer vision are model based, exemplar
based methods have also been applied in object recognition [25–27] and video
classification [28]. Different from most previous work where all training samples
are treated as candidate exemplars, our method aims at selecting a compact
set of images for each action class that are able to cover the within-class pose
variation and capture all between-class distinctions. We show that the problem is
essentially a minimum dominating set problem [29], and can be solved by using
an improved reverse heuristic algorithm [30].

3 A 2.5D Graph of Human Poses and Appearances

3.1 The 2.5D Graph Representation

The term, 2.5D graph, is borrowed from stereoscopic vision [31]. It refers to the
outcome of reconstructing 3D information from 2D but the appearance cues are
still 2D. A graphical illustration of our 2.5D representation of action images
are shown in Fig.3. It combines view-independent 3D configuration of human
skeletons and 2D appearance features.

A 2.5D graph 𝒢ℐ representing an action image ℐ consists of 𝑉 nodes con-
nected by 𝐸 edges. The nodes correspond to a set of key points of the human
body, as shown in Fig.3. A node 𝑣 is represented by the 3D position of this node
lℐ𝑣 and 2D appearance features fℐ𝑣 extracted in a local image region surrounding
this point. An edge 𝑒 is a three-dimensional vector 𝛥lℐ𝑒 = lℐ𝑣 − lℐ𝑣′ , where node 𝑣
and node 𝑣′ are connected by 𝑒. Note that our model allows the human body to
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rotate in 3D (as shown in Fig.3(b)), which will result in different 3D positions
of key-points and hence edge vectors. Also, because some key points might be
outside of the boundary of the image, we introduce an auxiliary variable ℎℐ

𝑣 for
each 𝑣, and a ℎℐ

𝑒 for each 𝑒. ℎℐ
𝑣 = 1 if key-point 𝑣 is within the boundary of

image ℐ, otherwise ℎℐ
𝑣 = 0. Similarly, ℎℐ

𝑒 = 1 if and only if both two points
connected by 𝑒 are within the image boundary.
Implementation details. We consider 15 key-points of human bodies: top
head, left-middle-right shoulders and hips, left-right elbows, wrists, knees, and
ankles. Given an image, the 3D position of these points are obtained by first
using pictorial structure [16] to estimate their positions in 2D, and then using the
method in [17] with additional constraints [32] to recover the depth information.
The key-point locations are then normalized such that the center of the torso is
at (0, 0, 0), and the height of the torso (distance between middle shoulder and
middle hip) is 100 pixels. Although human pose estimation itself is challenging
and the 3D points we obtain are not perfect, our approach can still achieve very
good action recognition performance, even comparing with the setting that uses
ground-truth key-point locations. We will show this in Sec.5.

The detailed process of using pictorial structure to estimate 2D key-points
locations is as follows. Following the standard settings in [10], we assume that
there is a bounding box surrounding each person whose action is to be recognized.
As in [33], the image is normalized by extending the bounding box to contain
1.5× the original size of the bounding box, and cropping and resizing it such that
the large image dimension is 300 pixels. To deal with the situation that the legs
are outside of the image boundary, we train a full human detector and an upper
body detector excluding the key-points below hips. Given a normalized image, if
the calibrated response score obtained from the full body detector is larger than
0.8 times of the score obtained from the upper body detector, we regard that the
full human body is visible, otherwise upper body only. Because of the provided
bounding boxes of the humans, the detection results are very reliable in almost
all the images. Based on whether full body or only upper body is visible, we use
the appropriate pictorial structure [16] model to estimate the location of the key
points, considering or ignoring the key-points below hips. In our experiments
(Sec.5), we re-train a pictorial structure model on each dataset, where the body
part detectors are obtained using the deformable part models [34].

The appearance feature fℐ𝑣 is a two-level spatial pyramid [21] of SIFT [20]
features with locality-constrained linear coding [35] in a 60 × 60 image region
centered at point 𝑣 of image ℐ. We consider two image sizes, one is the normalized
image of which the larger dimension is 300 pixels, the other is the image where
the length of the torso is 100 pixels. We use a 512 codebook size for SIFT features,
and therefore the dimensionality for fℐ𝑣 is 2560. If the point 𝑖 is outside of the
image boundary, then all values of fℐ𝑣 are set to 0.

3.2 Measuring Similarity of 2.5D Graphs

To use the 2.5D graph constructed in Sec.3.1 for action recognition (details in
Sec.4), we need to match a graph 𝒢ℐ to a “template graph” 𝒢ℳ and compute
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(a) walking (b) riding a bike

(c) playing guitar (d) playing trumpet

Fig. 4. The 3D representation of human body key-points allows us to rotate one image
to the same view-point of the other image, and thus achieve view-independent similarity
matching. In each subfigure, from left to right: human in profile view, its pose in frontal
view, and the other human with the same action in the frontal view.

their similarity. As described in Sec.3.1, the graph 𝒢ℐ is denoted by {fℐ𝑣 , ℎℐ
𝑣 , 𝑣 =

1, ⋅ ⋅ ⋅ , 𝑉 ;𝛥lℐ𝑒 , ℎℐ
𝑒 , 𝑒 = 1, ⋅ ⋅ ⋅ , 𝐸}. The template graph 𝒢ℳ is denoted as {fℳ𝑣 , ℎℳ

𝑣 ,
wℳ

𝑣 , 𝑣 = 1, ⋅ ⋅ ⋅ , 𝑉 ;𝛥lℳ𝑒 , ℎℳ
𝑒 ,wℳ

𝑒 , 𝑒 = 1, ⋅ ⋅ ⋅ , 𝐸}, where wℳ
𝑣 and wℳ

𝑒 are the
feature weights for the corresponding node and edge. How to obtain the weights
will be described in Sec.4.

When matching the similarity between 𝒢ℐ and 𝒢ℳ, we deal with the 2D
appearance features (nodes) and 3D pose features (edges) separately. The sim-
ilarity between the appearance features if node 𝑣 is simply the weighted his-
togram intersection between fℐ𝑣 and fℳ𝑣 , denoted as wℳ

𝑣 ⋅ 𝐼 (fℐ𝑣 , fℳ𝑣 )
. For the

pose features, as shown in Fig.4, the 3D representation allows us to rotate the
3D key-point locations {lℐ𝑣}𝑉𝑣=1 to the same view-point of {lℳ𝑣 }𝑉𝑣=1, and then
match the view-independent similarity score.

Let Lℐ and Lℳ be 𝑉 × 3 matrices of the 3D positions of the key-points in
ℐ and ℳ. We want to find a 3 × 3 rotation matrix R∗ that rotates Lℐ to the
same view of Lℳ, i.e.

R∗ = argmin
𝑅
∥Lℳ −RLℐ∥2 (1)

We use a least-square method [36] to find R∗. Let UDV𝑇 a singular decom-

position of Lℳ𝑇
Lℐ , and define S = I if det(Lℳ𝑇

Lℐ) ≥ 0, otherwise S =
diag(1, ⋅ ⋅ ⋅ , 1,−1). Then we have R∗ = USV𝑇 . Fig.4 gives some example re-
sults of rotating an image to similar view-points of the other images.
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Combining the similarity values obtained from appearance and pose features,
the similarity between 𝒢ℐ and 𝒢ℳ is

𝒮 (𝒢ℐ ,𝒢ℳ)
= exp

{∑
𝑣

ℎℐ
𝑣ℎ

ℳ
𝑣 ⋅wℳ

𝑣 ⋅ 𝐼 (fℐ𝑣 , fℳ𝑣 )
(2)

+
∑
𝑒

ℎℐ
𝑒ℎ

ℳ
𝑒 ⋅wℳ

𝑒 ⋅ (R∗𝛥lℐ𝑒 −𝛥lℳ𝑒
)}

𝒮(⋅, ⋅) is not symmetric, i.e. in most situations 𝒮 (𝒢ℐ ,𝒢ℳ) ∕= 𝒮 (𝒢ℳ,𝒢ℐ).
4 Exemplar-Based Action Recognition

4.1 Dominating Sets of Action Classes

We adopt an exemplar-based approach for action recognition. Exemplar-based
approaches allow using multiple exemplars to represent an action class, enabling
more flexibility in overcoming the challenge of large within-action pose variations
(Fig.2(b)). Rather than matching a testing image with all the training images
as in most previous exemplar-based systems, for each action class, we select
a small set of representative training images that are able to cover all pose
variations of this action while maximizing the distinction between this action and
all the others. Selecting such images is equivalent to theminimum dominating set
problem [29, 30] in graph theory, and therefore we call those images dominating
images, denoted as 𝐷𝑜𝑚(𝑘) for class 𝑘.

To formally define the dominating images of human actions, we first define
the coverage set of an image ℐ, 𝐶𝑜𝑣(ℐ). The images in 𝐶𝑜𝑣(ℐ) belong to the
same class as ℐ, and each image has a larger similarity value with ℐ than all the
images of different classes. Mathematically speaking, assume we have a set of
training images {ℐ1, ⋅ ⋅ ⋅ , ℐ𝑁}, where each ℐ𝑖 is associated with an action class
label 𝑦𝑖 ∈ {1, ⋅ ⋅ ⋅ ,𝐾}. The coverage set of ℐ is defined as

𝐶𝑜𝑣 (ℐ) =
{
ℐ𝑖 ∣ 𝒮

(𝒢ℐ𝑖 ,𝒢ℐ) > 𝑇 + 𝜂, 𝑇 = max
∀𝑗,𝑦𝑗 ∕=𝑦

𝒮 (𝒢ℐ𝑗 ,𝒢ℐ)} , (3)

where 𝑇 is the maximum similarity between ℐ and images of the other classes.
𝜂 > 0 controls the margin of the similarity difference. As shown in Fig.5, 𝐶𝑜𝑣 (ℐ)
defines a set of images where the 3D pose configurations and visual appearances
are similar to ℐ. For an action class 𝑘, the dominating image set 𝐷𝑜𝑚(𝑘) are a
minimum set of images such that the joint of their coverage sets contain all the
images of class 𝑘, i.e.

∀ ℐ𝑖 where 𝑦𝑖 = 𝑘, ∃ ℐ𝑗 ∈ 𝐷𝑜𝑚(𝑘) such that 𝒮 (𝒢ℐ𝑖 ,𝒢ℐ𝑗
)
> 𝑇𝑗 + 𝜂 (4)

If there exist another ˜𝐷𝑜𝑚(𝑘) satisfies the above condition, ∣𝐷𝑜𝑚(𝑘)∣ ≤ ∣˜𝐷𝑜𝑚(𝑘)∣,
where ∣𝐷𝑜𝑚(𝑘)∣ is the number of images in 𝐷𝑜𝑚(𝑘).
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Fig. 5. Illustration of the dominating images of “using a computer”. The images sur-
rounded by red, blue, and green rectangles are dominating images. Dotted ellipses
representing the corresponding coverage sets. The images surrounded by gray are im-
ages of the other actions, which are used to define the boundary of the coverage sets.

4.2 Obtaining Minimum Dominating Sets for Each Action

Our method of obtaining the minimum dominating sets consists of two steps.
Firstly, we learn image-specific feature weights Wℐ =

{
wℐ

𝑣 , 𝑣 = 1, ⋅ ⋅ ⋅ , 𝑉 ;wℐ
𝑒 ,

𝑒 = 1, ⋅ ⋅ ⋅ , 𝐸} for each image ℐ to maximize ∣𝐶𝑜𝑣 (ℐ) ∣. Then we use an improved
reverse heuristic method [30] to find the images that belong to 𝐷𝑜𝑚(𝑘) for each
class 𝑘. We elaborate on the two steps separately.

For each image ℐ, Wℐ maximizes the distinction between ℐ and images of
the other action classes. Finding a globally optimalWℐ , however, is not a con-
vex problem, because which images belong to 𝐶𝑜𝑣 (ℐ) is uncertain. We therefore
resort to a suboptimal solution which aims at separating within-class similari-
ties from between-class similarities. We compute the histogram intersections of
appearance features and distances of the key-point 3D positions between ℐ and
each image ℐ𝑖. This results to a feature vector[

ℎℐ𝑖
𝑣 ℎℐ

𝑣 ⋅ 𝐼
(
fℐ𝑖
𝑣 , fℐ𝑣

)
, 𝑣 = 1, ⋅ ⋅ ⋅ , 𝑁 ;ℎℐ𝑖

𝑒 ℎℐ
𝑒 ⋅R∗𝛥lℐ𝑖

𝑒 −𝛥lℐ𝑒 , 𝑒 = 1, ⋅ ⋅ ⋅ , 𝐸]
. (5)

If ℐ𝑖 and ℐ belong to the same class, this vector is regarded as a positive sample,
otherwise negative. We then train a binary SVM classifier to discriminate positive
samples from negative samples. The obtained SVM feature weights areWℐ .

Based on Wℐ learned for each image that belong to class 𝑘, i.e. 𝑦 = 𝑘, we
can compute their coverage sets (Eq.3) and then find 𝐷𝑜𝑚(𝑘). But finding the
minimum dominating set is also a NP-hard problem. We use the improved reverse
heuristic (IRH) method [30], which selects the samples in 𝐷𝑜𝑚(𝑘) iteratively for
each 𝑘. The heuristic rule is, on the one hand, the images have large coverage sets
are more likely to be selected; on the other hand, the images that are covered by
many other ones are less likely to be selected. In order to incorporate the latter
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– For each class 𝑘 ∈ {1, ⋅ ⋅ ⋅ ,𝐾}, denote all the images of this class as 𝐼𝑚(𝑘).
– Initialize 𝐷𝑜𝑚(𝑘) = ∅.

1. Compute 𝐶𝑜𝑣(ℐ) and 𝑅𝑒𝑎𝑐ℎ(ℐ) for each ℐ ∈ 𝐼𝑚(𝑘);
2. Find ℐ∗ ∈ 𝐼𝑚(𝑘) that maximizes 𝐶𝑜𝑣(ℐ)− 𝜆 ⋅𝑅𝑒𝑎𝑐ℎ(ℐ);
3. Add ℐ∗ to 𝐷𝑜𝑚(𝑘), and remove all ℐ ∈ 𝐶𝑜𝑣𝑒𝑟(ℐ∗) from 𝐼𝑚(𝑘);
4. If 𝐼𝑚(𝑘) ∕= ∅, return to step 1.

Fig. 6. The improved reverse heuristic method for selecting dominating images for each
action class.

heuristic rule, we define the reachability of an image ℐ,
𝑅𝑒𝑎𝑐ℎ (ℐ) = {ℐ𝑖 ∣ 𝒮 (𝒢ℐ ,𝒢ℐ𝑖

)
> 𝑇𝑖 + 𝜂, 𝑦𝑖 = 𝑦

}
(6)

Based on the coverage set and reachability set of each image, the IRH method
are shown in Fig.6.

4.3 Action Recognition Using the Dominating Sets

To recognize the human action in a test image ℐ ′, we construct a 2.5D graph for
this image and match it with the dominating images in all the action classes. The
action class that correspond to the largest normalized similarity is the recognition
result, i.e.

𝑘′ = argmax
𝑘
𝒮(ℐ ′, 𝑘), where 𝒮(ℐ ′, 𝑘) = arg max

ℐ𝑖∈𝐷𝑜𝑚(𝑘)

𝒮(ℐ ′, ℐ𝑖)
𝑇𝑖

(7)

5 Experiments

We carry out experiments on two publicly available datasets: the people play-
ing musical instrument (PPMI) dataset [37] and the PASCAL VOC 2011 action
classification dataset [10]. In all the experiments described below, all training
processes are conducted on only training images, including human pose esti-
mation, etc. Please refer to Sec.3 and Sec.4 for implementation details of our
approach. On both datasets, we use mean Average Precision (mAP) for perfor-
mance evaluation.

5.1 Results on the PPMI Dataset

The PPMI dataset [37] is a collection of images of people interacting with twelve
different musical instruments: bassoon, cello, clarinet, erhu, flute, French horn,
guitar, harp, recorder, saxophone, trumpet, and violin. It is a 24-class classi-
fication problem. For each instrument, there are images of people playing the
instrument, as well as images of people holding the instrument but not playing.
We use the normalized images on this dataset. For each class, there are 100
images for training and 100 images for testing.
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Fig. 7. Comparison of different methods on the PPMI dataset. The performances are
evaluated by mean Average Precision. Magenta colors indicate existing methods. Green,
blue, and cyan colors indicate our method or control experiments.

We compare our approach with a number of control settings and some state-
of-the-art classification systems described below.

– Bag-of-Words (BOW) baseline: Extract SIFT features [20] and use bag-of-
words for classification. The codebook size for SIFT features is 1024.

– Locality-constrained linear (LLC) coding + spatial pyramid: Image features
are multi-scale, multi-resolution color-SIFT [38] features with locality-constrained
linear coding [35]. The features are max-pooled on a three-level image pyra-
mid [21] with linear SVM for classification. This is the best result reported
in the website of the dataset.

– Control - 3D pose only: 2D image appearances are not used for image repre-
sentation. Everything else is the same as our method. This is equivalent to
setting 𝐼

(
fℐ𝑣 , f

ℳ
𝑣

)
to 0 in Eq.2.

– Control - 2D pose only: Using only the original 2D locations for recognition,
without rotating 3D key-point positions when matching two images.

– Control - 2D appearance only: The location of 3D key-points are not used
for image representation. Everything else is the same as our method. This is
equivalent to setting

(
R∗𝛥lℐ𝑒 −𝛥lℳ𝑒

)
to 0 in Eq.2.

– Control - 2.5D graph + SVM: Using the 2.5D graph for image representation,
and train a multiclass classifier based on 2D appearances and 3D poses.

– Control - using ground-truth key-points: Instead of using pictorial structure
to estimate the 2D key-point locations. We use ground-truth positions of
key-points.

– Control - using all training images as exemplars: Instead of selecting dom-
inating images for each action, we match a testing image to all training
images for classification.

The mAP of different methods are shown in Fig.7. Our method outperforms
the existing methods by achieving a 43.9% mAP, even comparing with LLC,
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Fig. 8. Examples of dominating images selected from the PPMI training set.

which is the current best result on this dataset. Because the images of peo-
ple playing some musical instruments are very similar (e.g. playing saxophone
and playing bassoon, as shown in Fig.8.), using human pose only cannot achieve
very good performance on this dataset. But 3D poses achieve much better results
than 2D poses. Using the local appearance features extracted based on the key-
point positions, our appearance feature performs comparable with LLC. The full
2.5D graph representation, which combines the 3D position information and 2D
appearance information, outperforms both methods that use any one of them.
This shows that our method effectively captures the complementary information
between poses and appearances. Our full model also performs better than train-
ing a multiclass SVM classifier on the 2.5D graph features, demonstrating the
effectiveness of the exemplar-based classification.

In Fig.7, our method is only 0.7% worse than the approach that uses ground-
truth key-point locations to construct the 2.5D graphs. This shows that although
our 2.5D graphs are constructed based on imperfect key-point locations (using
the criteria in [39], our key-point detection accuracy is 65.7%), it can still achieve
satisfactory recognition performance. Finally, our method performs comparable
with the approach that uses all training images as exemplars. But our classifi-
cation is much faster because we only need to match each testing image with
3.6 images (the average number of selected dominating images) per class, as
compared with matching 100 images in the “all-exemplars” setting.

Fig.8 shows the dominating images selected from some action classes. On the
classes of people playing the instrument, human poses are very similar in each
class. Therefore the dominating images mainly capture with-class appearance
variations. On the classes of people holding the instruments but not playing, the
variations in both human pose and image appearance are captured.
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5.2 Results on the PASCAL Dataset

The PASCAL 2011 action dataset contains around 8,000 images of ten ac-
tions: “jumping”, “phoning”, “playing instrument”, “reading”, “riding bike”,
“riding horse”, “running”, “taking photo”, “using computer”, and “walking”.
The dataset also contains images that do not belong to any of the ten actions.
All images are downloaded from flickr, and represent very large variations in
both human pose and appearance.

We compare our approach with a number of methods that achieve good
performance on the challenge [10]. The results are shown in Table 1. We observe
that our method performs the best on three out of the ten classes, especially on
the classes of “jumping” and “playing instrument” which contain large human
pose variations, and obtains the highest mean average precision over all the
classes. On the classes of “riding a horse” and “riding a bike”, our method does
not perform as good as ATTR PART, which explicitly detects objects such as
horses and bikes in the images and relies on independent dataset to train the
object detectors. Table 1 also shows that using pose features only, our method
achieves better performance thatn POSELETS, demonstrating the effectiveness
of our view-independent 3D pose representation.

Table 1. Results on the PASCAL 2011 action dataset. The numbers are percentage
of mean average precision. The best results are marked by bold fonts.

Action
HOBJ CON- RF POSE ATTR Our Method
DSAL TEXT SVM LETS PART Pose App. Full

jumping 71.6 65.9 66.0 59.5 66.7 64.6 68.9 72.4

phoning 50.7 41.5 41.0 31.3 41.1 41.2 44.5 48.3

playing instrument 77.5 57.4 60.0 45.6 60.8 68.3 72.9 77.7

reading 37.8 34.7 41.5 27.8 42.2 36.0 39.2 43.2

riding bike 86.5 88.8 90.0 84.4 90.5 81.4 86.6 89.0

riding horse 89.5 90.2 92.1 88.3 92.2 80.4 87.1 90.0

running 83.8 87.9 86.6 77.6 86.2 79.4 83.0 86.8

taking photo 25.1 25.7 28.8 31.0 28.8 21.6 25.1 27.9

using computer 58.9 54.5 62.0 47.4 63.5 51.5 56.9 60.5

walking 59.2 59.5 65.9 57.6 64.2 52.8 59.7 62.1

mean 64.1 60.6 63.4 55.1 63.6 57.7 62.4 65.8

6 Conclusion

In this paper, we propose a 2.5D graph for action image representation. The 2.5D
graph integrates 3D view-independent pose features and 2D appearance features.
An exemplar-based approach is used for action recognition, where a small set of
images that are able to cover the large with-action pose variations are used as
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the exemplars for each class. One direction of future research is to study how the
alignment of 3D positions can provide better usage of 2D appearance features.
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