
A Codebook-Free and Annotation-Free Approach for
Fine-Grained Image Categorization

Bangpeng Yao1 Gary Bradski2 Li Fei-Fei1

1Computer Science Department, Stanford University, Stanford, CA
2Industrial Perception Inc., Palo Alto, CA

{bangpeng,feifeili}@cs.stanford.edu gary@industrial-perception.com

Abstract

Fine-grained categorization refers to the task of classify-
ing objects that belong to the same basic-level class (e.g.
different bird species) and share similar shape or visual
appearances. Most of the state-of-the-art basic-level ob-
ject classification algorithms have difficulties in this chal-
lenging problem. One reason for this can be attributed
to the popular codebook-based image representation, of-
ten resulting in loss of subtle image information that are
critical for fine-grained classification. Another way to ad-
dress this problem is to introduce human annotations of
object attributes or key points, a tedious process that is
also difficult to generalize to new tasks. In this work, we
propose a codebook-free and annotation-free approach for
fine-grained image categorization. Instead of using vector-
quantized codewords, we obtain an image representation by
running a high throughput template matching process us-
ing a large number of randomly generated image templates.
We then propose a novel bagging-based algorithm to build
a final classifier by aggregating a set of discriminative yet
largely uncorrelated classifiers. Experimental results show
that our method outperforms state-of-the-art classification
approaches on the Caltech-UCSD Birds dataset.

1. Introduction
Fine-grained image classification [1, 13, 3, 31, 24, 10,

27] refers to the task of classifying objects that belong to

the same basic-level category. Unlike basic-level catego-

rization, fine-grained classification often poses challenges

to even highly knowledgeable humans (e.g. think of pick-

ing up edible mushrooms in forests), making it an important

computer vision task that can potentially be useful in many

real-world applications.

While it is related to generic object classification, fine-

grained classification demands an algorithm to discriminate

among highly similar object classes that are often differ-
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Figure 1. Our approach compared with the codebook and human-

annotation based methods. Row 1: Codebook-based methods are

likely to encode subtly discriminative features into one codework,

resulting in loss of critical information; Row 2: Human-annotation

based methods can be tedious and laborious, and might potentially

miss key information (e.g. the red arrows point to a discriminative

feature on these two different birds); Row 3: Our approach uses

an efficient template matching method that is codebook-free and

annotation-free. This figure is best viewed in color.

entiated by only subtle differences [23]. Traditional im-

age classification approaches, however, often fail to per-

form this task satisfactorily [10]. We hypothesize that a

key weakness might reside in the way features are encoded

in most of today’s state-of-the-art image classification sys-

tems [7, 17, 28, 31]. Specifically, image patches are of-

ten encoded by a universal dictionary of visual codewords

built by clustering a large number of image patches. Such

procedure, while computationally efficient and effective for

generic object categorization, results in a large loss of finer

details that are important for differentiating fine-grained ob-

ject classes (row 1 of Fig.1).

One way of remedying the problem of automatically
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constructed codebook is to introduce more human annota-

tion in the learning stage. Instead of generating a univer-

sal codebook, several previous work has relied on detailed

human labeling to indicate discriminative attributes [27] or

key point locations [10] for fine-grained object classifica-

tion. The results are promising, but the labor cost can be

high. It is likely that different fine-grained classification

tasks require different queries of attributes and key points,

and in many cases domain experts are needed to design

these queries. Moreover, while objects like birds and cars

can be easily annotated with key point features, many ob-

jects in the visual world lack obviously visible key points

(e.g. trees, food, etc.).

The above two observations inspire us to propose a new

fine-grained object classification framework that is both

codebook free (i.e. no need of a visual codebook to encode

image regions) and annotation free (i.e. no need for tedious

human annotations of key points) - see row 3 of Fig.1. Our

algorithm captures the subtle differences of object classes

by directly matching image regions through a highly effi-

cient template matching algorithm inspired by [15, 14]. Im-

ages are then represented as feature response maps of these

highly throughput feature templates. Finally, using a novel

bagging-based algorithm, the algorithm builds a final clas-

sifier by aggregating a set of classifiers that all have large

discriminative abilities while maintaining low correlations.

The rest of the paper is organized as follows. Sec.2 de-

scribes related work. Details of our image representation

and classification algorithm are elaborated in Sec.3. Exper-

imental results that show superior performance of our al-

gorithm over existing state-of-the-art methods are given in

Sec.4. Sec.5 concludes the paper.

2. Related Work
Fine-grained classification. There is a number of re-

cent work in fine-grained image classification using vari-

ous datasets such as flowers [22], stonefly larvae [20], bird

species [29], and related leaf nodes of ImageNet [9] such as

all fungus [8].

Codebook-based approaches. Most of today’s state-

of-the-art generic image classification systems [7, 17, 28,

31] are based on encoding local image patches to visual

codewords, often resulting in coarse encoding of image

patches that are lossy in detailed information. Some recent

work [28, 33] uses sparse coding to obtain more accurate

encodings of image patches, and have demonstrated per-

formance improvement on many image classification tasks.

Our algorithm is inspired by these approaches and goes a

step further by matching image patches directly, instead of

relying on any coding schemes where information loss is

difficult to avoid.

Annotation-based approaches. To account for the sig-

nificant object articulations and subtle distinctions in fine-
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Figure 2. Template matching captures the subtle distinctions be-

tween image patches. The figure shows two templates and the

scores of matching each of them to four different regions. The

more similar the template and the image region are (in terms of

color, texture, etc.), the larger their matching score.

grained classification problems, a growing body of work

seeks to incorporate more inputs from humans, including

the humans-in-the-loop approaches [3, 27] that ask humans

to click on object parts and answer questions regarding ob-

ject attributes, and a modified postlet-like [2] algorithm for

bird recognition [10] that achieved good performances on

the Caltech-UCSD Birds Dataset [29]. But as discussed in

Sec.1, these algorithms require tedious human annotations

of object attributes or key point locations, posing serious

challenges to the situations where fully automatic learn-

ing is desired. Furthermore, it is costly to adapt these ap-

proaches to new fine-grained object classes, because the at-

tribute queries and object key points usually need to be care-

fully designed by domain experts, especially for the objects

without obvious key parts or distinct attributes (e.g. trees,

food, etc.).

Template-based approaches. Our algorithm obtains a

feature response-map of matching an image with a large

number of randomly generated image templates. This

method is in spirit similar to a number of recent work that

uses various pre-defined filters to generate image response

features, such as object detectors [18, 25], human body part

detectors [19], and cluster centers of image regions [6].

While these approaches have shown promising results in

basic-level object and scene classification tasks, they still

suffer from the issues of coarse codebook encoding ([6]

where the best results are obtained by clustering image re-

gions) or tedious human annotation ([18, 25, 19]). Further-

more, none of these representations has been tested on fine-

grained classification.

Other object classification work. It is beyond the scope

of this paper to discuss the large body of object classifica-

tion work, mostly centered around basic-object categoriza-

tion. Some seminal work such as part-based models (e.g.

[12, 30, 11]) perform well in classifying objects of mini-

mal articulation or localizing objects from the background.

However, it is unclear how to use these methods for distin-

guishing fine-grained objects that share similar visual ap-

pearance and exhibit significant articulations.
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Figure 3. An overview of our fine-grained object classification algorithm. From the set of training images, we randomly generate a large

number of image templates (denoted by red rectangles in the top-left part of this figure). An image is represented by pooling the response

maps that are obtained from matching the image with a large set of randomly generated image templates. A bagging algorithm is then used

to aggregate a set of classifiers that are trained on this representation.

3. Our Approach

An overview of our algorithm is shown in Fig.3. We

match an image at various locations with a large number

of randomly generated image templates, and use the pool-

ing result on the response maps for image representation

(Sec.3.1). To use this feature for classification, we propose

a bagging-based algorithm that aggregates a set of discrim-

inative classifiers that are guaranteed to have small correla-

tions (Sec.3.2).

3.1. Template Matching Based Representation

Intuition. Here we describe our template matching based

image representation. We generate a large number of tem-

plates by randomly sampling rectangular regions from all

the training images, as shown in Fig.3. Then an image is

represented by the response scores of matching itself with

each of the templates. Using continuous template matching

scores instead of discrete visual codewords for image repre-

sentation (codebook-free), our method is able to capture the

subtle distinction between similar image patches (as shown

in Fig.2), which is important for fine-grained classification.

Furthermore, our approach does not require tedious human

annotations (annotation-free), since all the templates are di-

rectly generated from training images.

Templates and the Matching Approach. We use a highly

optimized template matching algorithm [15] that is also re-

sistant to small image deformations. For each training im-

age 𝒪, we denote its appearance represented by 𝑆 different

feature types (e.g. color, gradient, etc.) as {𝒪𝑠}𝑆𝑠=1. An

image template is then denoted as 𝒯 =
({𝒪𝑠}𝑆𝑠=1, {𝑟, 𝑠}

)
,

where each pair of 𝑟 and 𝑠 indicates the image feature in

location 𝑟 of 𝒪𝑠.

To obtain the feature representation for an image, we first

resize it with different scale factors. We then match each re-

scaled image ℐ with each template. The similarity between

template 𝒯 and the image region centered at location 𝑐 in

image ℐ is computed by

∑
(𝑟,𝑠)

(
max

𝑐′∈ℛ(𝑐+𝑟)
𝑓𝑠(𝒪𝑠(𝑟), ℐ𝑠(𝑐′))

)
(1)

where ℛ(𝑐 + 𝑟) is a small image neighborhood centered

on location 𝑐 + 𝑟 of image ℐ, designed to accommodate

small image deformation and noise distortions. 𝒪𝑠(𝑟) is the

type-𝑠 feature value in location 𝑟 of image 𝒪, and ℐ𝑠(𝑐′) is

defined in the same way. 𝑓𝑠(𝒪𝑠(𝑟), ℐ𝑠(𝑐′)) measures the

similarity between 𝒪𝑠(𝑟) and ℐ𝑠(𝑐′). Please refer to [15]

and [14] for details of how to compute 𝑓𝑠.

To deal with object scale variations, we consider differ-

ent scales of each template. The template matching step

produces a map of response scores for each template on

each scale. We use max-pooling on a two-level spatial pyra-

mid to transform this response map to a feature vector, as

shown in Fig.4. On level 1, we take the three-largest re-

sponse scores with a constraint that their mutual distance

should be no less than 0.1× the map’s width and height.
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Figure 4. An illustrating our feature pooling approach. The image

on the left represent a response map and the bar figure on the right

is its pooling result. When we compute the three largest response

scores, we make sure that their distance should be no less than

0.1× the map’s width and height.

On level 2, we take the largest score on each image region.

This gives us a 7-dimensional vector on each scale of each

template.

The final image representation is formed by concatenat-

ing the pooling results of all the templates on all the image

scales, resulting in a No.Templates × No.Scales × 7 di-

mensional feature value.

Implementation Details. In our current framework, we

consider two different image features, color and gradients.

The color descriptor for each pixel is a 23 = 8 bit binary

value obtained by binning the R, G, and B channels, respec-

tively. The gradient descriptor for each pixel is obtained by

quantizing the gradient angle to 8 bins. To be more robust to

noise, for each pixel location, we choose the most frequent

value of color or gradients within a small neighborhood of

3×3 pixels. Using the highly optimized matching technique

proposed in [15, 14], we can match each 200 × 300 image

with tens of thousands of templates within one second on a

standard CPU. Please refer to [15, 14] for more details of

the matching approach.

3.2. Bagging Based Classification Algorithm

Motivation. In the image representation discussed in

Sec.3.1, our algorithm uses a large number of image tem-

plates, resulting in a very high-dimensional feature vec-

tor for each image. Using a larger number of templates

is advantageous because they can provide a richer image

representation and capture more subtle visual distinctions

between different fine-grained object classes. Examples

of possible templates that are sampled from an image are

shown in Fig.5(a).

However, this feature vector is over-complete (many

of the templates overlap in locations) and contain non-

discriminative elements (some templates might be sampled

from uninformative regions). Examples of redundant and

non-discriminative templates are shown in Fig.5(b). There-

fore, conventional classification algorithms such as training

a single SVM are likely to suffer from the overfitting prob-

�

(a) Examples of templates sampled from a single image. One template can

correspond to any location of the image and can be of any size.
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(b) Response maps from different templates.

Figure 5. (a) From an image, we can generate a large number

of templates by randomly sampling image regions. (b) Illustra-

tion of discriminative templates, redundant templates, and non-

discriminative templates. Red color in the response maps indicates

large matching score, while blue indicates small matching score.

lem on this feature representation.

Formulation of the Algorithm. We propose to train a set

of SVM classifiers on this feature representation, and aggre-

gate the results of all the classifiers, as shown in Fig.3. Our

method guarantees that the correlation between the clas-

sifiers are small, so that aggregating them together will

achieve better performance [4, 5]. By combining multi-

ple classifiers, our method tries to make a full usage of all

available template matching results, which is more desir-

able than using feature reduction algorithms such as PCA,

as shown in [21]. Furthermore, instead of using the tra-

ditional bagging method which randomly selects elements

from image feature vectors, we directly minimize the clas-

sification performance of bagging with respect to a set of

constraints that guarantee the weak correlation between all

the classifiers.

Our novel classification algorithm is formulated as fol-

lows. The set of training images are represented by

{x𝑖, 𝑦𝑖}𝑁𝑖=1 where x𝑖 is the feature representation for the



+����
��7
���� ���
����
�����
��

Figure 6. A 2D illustration of our optimization approach. In the

initialization stage, we learn classifiers on disjoint sets of features

(in the 2D case, one classifier per feature element). We then alter-

natively update all the classifiers to maximize their joint discrimi-

native ability while maintaining low correlations. Note that in our

problem, the feature dimension is very high.

𝑖-th image and 𝑦𝑖 is the class label. Denoting that our bag-

ging algorithm contains 𝑃 classifiers, each corresponds to a

set of feature weights w𝑝, our learning objective is

min
w1,⋅⋅⋅ ,w𝑃

𝑃∑
𝑝=1

(
𝑁∑
𝑖=1

ℓ (w𝑝 ⋅ x𝑖, 𝑦𝑖) + 𝐶∥w𝑝∥1
)

(2)

𝑠.𝑡. ∀𝑝 ∕= 𝑞, ∣w𝑝 ⋅w𝑞∣ < 𝑇

where ℓ(⋅, ⋅) is a loss function, 𝐶 and 𝑇 are the parameters

that control the regularization of w and the correlation tol-

erance between all the classifiers. From Eq.2, we can see

that our method maximizes the discriminative ability of all

the classifiers (in the objective function) while maintaining

low correlation among them (due to the constraint).

During the testing stage, the classification result of an

image represented by x is the average of the confidence

scores obtained by all the 𝑃 classifiers.

Optimization. Eq.2 is not a globally convex problem.

We use the Convex-Concave Produce (CCCP) [32] for op-

timization, alternating among different w𝑝’s. In the initial-

ization stage, we randomly partition the whole image fea-

ture vector to 𝑃 disjoint blocks of equal length, each corre-

sponds to the matching results obtained from 𝑀
𝑃 templates

where 𝑀 is the number of templates. For each block, we

train an SVM classifier which results to a weight vector that

has non-zero values on the features of the corresponding

blocks. Therefore after initialization, we have 𝑃 sets of fea-

ture weights w
(0)
𝑝 that are mutually orthogonal.

We then alternatively optimize each w𝑝. In step 𝑡 when

we optimize w𝑝, the objective function becomes

w(𝑡)
𝑝 = argmin

w𝑝

(
𝑁∑
𝑖=1

ℓ(w𝑝 ⋅ x𝑖, 𝑦𝑖) + 𝐶∥w𝑝∥1 + const

)

𝑠.𝑡. ∣w𝑝 ⋅w(𝑡)
𝑞 ∣ < 𝑇, 𝑞 = 1, ⋅ ⋅ ⋅ , 𝑝− 1

∣w𝑝 ⋅w(𝑡−1)
𝑟 ∣ < 𝑇, 𝑟 = 𝑝+ 1, ⋅ ⋅ ⋅ , 𝑃 (3)

Eq.3 is convex, which is solved by an interior point algo-

rithm.

4. Experiments and Analysis

4.1. Dataset and Experiment Setup

We test the performance of our algorithm on the Caltech-

UCSD Birds dataset (CUB-200) [29] which is widely used

for evaluating fine-grained image classification tasks [3, 31,

27, 10]. The CUB-200 dataset contains photos of 200 bird

species. In each class, there are 15 training images and 10

to 25 testing images. Using the same setting as in [10], we

consider a fine-grained classification task on 14 bird species

from the vireos and woodpeckers families. We use the train-

ing split provided by [29], where there are a total of 420

training images (original plus their left-right mirrored im-

ages) and 492 testing images. Following a standard image

normalization procedure on this dataset similar to [31], all

the images are cropped to be centered on the locations of

the birds and contain 1.5× the size of the provided bound-

ing boxes, and re-sized such that the smaller dimension is

150 pixels.

In our implementation, we generate 100 templates from

each training image. The location, width, and height of all

the templates are randomly sampled from uniform distri-

butions, with the only constraint that the width (or height)

of the template should not be smaller than 0.1× or larger

than 0.4× the width (or height) of the image. In the tem-

plate matching stage, for each image we not only consider

its original size, but also resize it with the scaling factors of

0.75 and 1.33. Therefore the overall length of the feature

vector for each image is 420× 100× 3× 7 = 882000. We

then use the method described in Sec.3 for classification,

where the bagging repetition number (𝑃 value in Eq.2) is

set to 80.

4.2. Results and Analysis

The performance of our method, denoted as Ours-full

in Tbl.1, is 44.73% mean-average precision, whereas the

performance of training a single SVM classifier on the same

Classification method mAP

Codebook-based
cSIFT [26]+SPM [17] 37.12%

MKL [3] 37.02%

Annotation-based Birdlet [10] 40.25%

Our method
Ours-SVM 39.76%

Ours-Full 44.73%
Table 1. Classification results on the CUB Birds dataset. The

performance is measured by mean average precision (mAP). The

best result is marked by bold font. We compare our method with

both codebook-based and annotation-based approaches. Our full

method (Ours-Full) achieves the best performance.
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Figure 7. Ours-SVM classification performance with respect to the

number of templates generated from each training image. Color-

SIFT+SPM is used as a baseline method.

feature (Ours-SVM in Tbl.1) is 39.76%.

Analysis of “codebook-free”. We first compare our

method with the approaches that are based on encoding lo-

cal image features to codewords. We consider two such al-

gorithms that have been applied to this dataset: color-SIFT

(cSIFT) [26] for image representation and spatial pyramid

matching (SPM) [17] for classification, and multiple-kernel

learning [3]. Results of the two methods reported in [10] are

shown in Tbl.1. We observe that even Ours-SVM outper-

forms both colorSIFT+SPM and MKL, demonstrating the

advantage of template matching over codeword encoding

on this task.

Analysis of “annotation-free”. Tbl.1 also compares our

method with the “Birdlet” approach [10], which normal-

izes the visual features by localizing different parts of birds.

Based on the key points (such as beaktip, eyes, etc.) anno-

tated by humans, the parts are obtained by training a set of

part detectors. Tbl.1 shows that our bagging-based method

outperforms Birdlet (44.73% vs. 40.25%). We achieve this

performance gain without using any additional key points

annotation.

Analysis of the bagging-based classification algorithm.
To evaluate the effectiveness of our bagging-based algo-

rithm, we compare it with some baseline approaches using

the same image representation.

∙ Ours-SVM: We train a single SVM classifier on the

template matching response scores (as in Tbl.1). Here

we further generate different number of templates, and

evaluate how classification performance changes with

respect to the number of templates.

∙ Ours-PCA: Because the image representation is over-

complete, it might intrinsically lie in a lower dimen-

sional feature space. Therefore we use principle com-

ponent analysis (PCA) [16] for feature dimension re-

duction. The feature dimension is selected to keep

��	)

���

���)

���
� 

!"
�

���
� 

(#
*

���
� 

+%

���
� 

,�
��

���
���

� 
%�

���
�

���
� 

%�
���

�

���
� 

%�
���

��

Figure 8. Evaluation of our full method as compared to various

baselines using the same image representation, as well as different

parameters in our method.

98% of the total energy.

∙ Ours-RF: One of the most prominent bagging ap-

proaches is to aggregate a set of randomized decision

trees, i.e. random forest (RF) [5]. RF has been ap-

plied to fine-grained image classification problems be-

fore [31]. Similar to [31], on the interior tree nodes we

train SVM classifiers based on a set of 500 randomly

sampled features rather than randomly generating fea-

ture weights. We repeat this procedure for 50 times

and select the best classifier for each node.

∙ Ours-Bagging: In this experiment, we train SVM clas-

sifiers based on completely randomly generated fea-

ture elements, without considering the correlation be-

tween these classifiers as in Eq.2.

∙ Ours-Full: The full algorithm described in Sec.6. Here

we use three different number of bagging repetitions

(40, 80, and 120). The corresponding algorithms

are denoted as Ours-Full40, Ours-Full80, and Ours-

Full120, respectively.

Fig.7 shows that the classification performance increases

when we generate more templates. But the performance

gain is very small after having 80 templates for each image.

The reason is that the generated templates will largely over-

lap with each other if the number of templates from each

image is too large.

From Fig.8, we observe that the bagging based ap-

proaches (Ours-RF, Ours-Bagging, and Ours-Full) gener-

ally perform better than the others (Ours-SVM and Ours-

PCA) on the over-complete and noisy image representa-

tion. Furthermore, in Ours-Full, generating 80 templates

from each image is better than using 40 templates, while

the difference between using 80 and 120 templates is small.

This observation is similar to that on the Ours-SVM method
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Figure 9. In each row, the bounding boxes are generated based

on ground-truth boxes (the first column) and a parameter 𝛿. For

each bounding box whose size and image location are (𝑤, ℎ) and

(𝑥, 𝑦), we generate four parameters Δ𝑠𝑤,Δ𝑠ℎ,Δ𝑙𝑥,Δ𝑙𝑦 from a

uniform distribution 𝒰 [0, 𝛿]. We reset the bounding box size and

location to (𝑤 +Δ𝑠𝑤𝑤, ℎ+Δ𝑠ℎℎ) and (𝑥+Δ𝑙𝑥𝑥, 𝑦 +Δ𝑙𝑦𝑦),
respectively. We can see that when 𝛿 is large, the bounding box

can be very different from the ground truth.

shown in Fig.7.

Robustness to non-accurate or missing object locations.
In the above experiments, we have made use of the bound-

ing boxes of birds provided in [29] to normalize the images,

as in most previous works on this dataset [3, 31, 10]. How-

ever, these accurately annotated bounding boxes might not

be available in real applications. (Imagine we run a bird

detector such as [11] on the dataset.) Here we investigate

the performance of our method when the bounding boxes

of birds are inaccurate or missing.

We randomly shift and re-scale the bounding boxes. For

each image, we randomly generate four values between 0

and a constant 𝛿 ∈ [0, 1] which determines to what degree

we want to shift and re-scale the bounding box along the

horizonal and vertical directions, respectively. The larger 𝛿
is, the more likely that the bounding box will be different

from the ground truth. Fig.9 shows the bounding boxes in

some example images where 𝛿 is 0, 0.2, and 0.4.

We also consider the situation where the bounding boxes

are unavailable. In this case, we need to perform classifica-

tion based on the whole image without knowing the loca-
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Figure 10. Results of using different bounding box settings (larger

𝛿 values indicate that the bounding boxes are more different from

their ground truth) or no bounding box.

tions of the birds. To compare our method with existing al-

gorithms, we implement a baseline by using a pyramid his-

togram on Locality-constrained Linear Coding (LLC) [28]

of SIFT and color features. Our baseline achieves similar

performance as the color-SIFT + SPM implemented in [10].

Fig.10 shows the results of comparing our algorithm and

the baseline on different bounding box settings. The results

show that the classification performance decreases as the

bounding box locations become more and more difference

from the ground truth. However we observe that the perfor-

mance of our method drops by only 1% when 𝛿 = 0.3. Even

when 𝛿 = 0.4 where the bounding boxes can be very differ-

ent from the ground truth as shown in Fig.9, our method still

achieves a 40.27% mean-average precision, which is com-

parable with the Birdlet method and higher than the code-

book based algorithms in Tbl.1. Furthermore, Fig.10 shows

that the performance with no bounding box is better than

the situation where the bounding box contains many errors.

Speed of our algorithm. Feature extraction is usually the

most time consuming part in most image classification sys-

tems. In our approach, with the highly optimized template

matching approach, we can match tens of thousands of tem-

plates to an image, and the class label of an image can be

predicted within three seconds on a single standard CPU.

5. Conclusion

In this paper, we propose a codebook free and annota-

tion free approach for fine-grained image classification. We

propose to match an image with a large set of templates

for image representation, and develop a bagging based al-

gorithm for classification. One direction of future work is

to delve deeper into the templates to perform joint image

classification and pose normalization.
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