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Abstract

In this paper, we propose to learn temporal embeddings
of video frames for complex video analysis. Large quanti-
ties of unlabeled video data can be easily obtained from the
Internet. These videos possess the implicit weak label that
they are sequences of temporally and semantically coher-
ent images. We leverage this information to learn tempo-
ral embeddings for video frames by associating frames with
the temporal context that they appear in. To do this, we
propose a scheme for incorporating temporal context based
on past and future frames in videos, and compare this to
other contextual representations. In addition, we show how
data augmentation using multi-resolution samples and hard
negatives helps to significantly improve the quality of the
learned embeddings. We evaluate various design decisions
for learning temporal embeddings, and show that our em-
beddings can improve performance for multiple video tasks
such as retrieval, classification, and temporal order recov-
ery in unconstrained Internet video.

1. Introduction
Video data is plentiful and a ready source of information

– what can we glean from watching massive quantities of
videos? At a fine granularity, consecutive video frames are
visually similar due to temporal coherence. At a coarser
level, consecutive video frames are visually distinct but se-
mantically coherent.

Learning from this semantic coherence present in video
at the coarser-level is the main focus of this paper. Purely
from unlabeled video data, we aim to learn embeddings for
video frames that capture semantic similarity by using the
temporal structure in videos. The prospect of learning a
generic embedding for video frames holds promise for a va-
riety of applications ranging from generic retrieval and sim-
ilarity measurement, video recommendation, to automatic
content creation such as summarization or collaging. In this
paper, we demonstrate the utility of our video frame embed-
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Figure 1. The temporal context of a video frame is crucial in deter-
mining its true semantic meaning. For instance, consider the above
example where the embeddings of different semantic classes are
shown in different colors. The middle frame from the two wed-
ding videos correspond to visually dissimilar classes of “church
ceremony” and “court ceremony”. However, by observing the
similarity in their temporal contexts we expect them to be seman-
tically closer. Our work leverages such powerful temporal context
to learn semantically rich embeddings.

dings for several tasks such as video retrieval, classification
and temporal order recovery.

The idea of leveraging sequential data to learn embed-
dings in an unsupervised fashion is well explored in the Nat-
ural Language Processing (NLP) community. In particular,
distributed word vector representations such as word2vec
[23] have the unique ability to encode regularities and pat-
terns surrounding words, using large amounts of unlabeled
data. In the embedding space, this brings together words
that may be very different, but which share similar contexts
in different sentences. This is a desirable property we would
like to extend to video frames as well as shown in Fig. 1.
We would like to have a representation for frames which
captures the semantic context around the frame beyond the
visual similarity obtained from temporal coherence.

However, the task of embedding frames poses multiple
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challenges specific to the video domain: 1. Unlike words,
the set of frames across all videos is not discrete and quan-
tizing the frames leads to a loss in information; 2. Tempo-
rally proximal frames within the same video are often visu-
ally similar and might not provide useful contextual infor-
mation; 3. The correct representation of context surround-
ing a frame is not obvious in videos. The main contribution
of our work is to propose a new ranking loss based embed-
ding framework, along with a contextual representation spe-
cific to videos. We also develop a well engineered data aug-
mentation strategy to promote visual diversity among the
context frames used for embedding.

We evaluate our learned embeddings on the standard
tasks of video event retrieval and classification on the
TRECVID MED 2011 [28] dataset, and compare to several
recently published spatial and temporal video representa-
tions [7, 33]. Aside from semantic similarity, the learned
embeddings capture valuable information in terms of the
temporal context shared between frames. Hence, we also
evaluate our embeddings on two related tasks: 1. tem-
poral frame retrieval, and 2. temporal order recovery in
videos. Our embeddings improve performance on all tasks,
and serves as a powerful representation for video frames.

2. Related Work
Video features. Standard tasks in video such as classifica-
tion and retrieval require a well engineered feature repre-
sentation, with many proposed in the literature [1, 8, 13, 21,
25, 26, 27, 29, 32, 39, 40]. Deep network features learned
from spatial data [10, 15, 33] and temporal flow [33] have
also shown comparable results. However, recent works in
complex event recognition [41, 44] have shown that spa-
tial Convolutional Neural Network (CNN) features learned
from ImageNet [2] without fine-tuning on video, accompa-
nied by suitable pooling and encoding strategies achieves
state-of-the-art performance. In contrast to these methods
which either propose handcrafted features or learn feature
representations with a fully supervised objective from im-
ages or videos, we try to learn an embedding in an unsu-
pervised fashion. Moreover, our learned features can be ex-
tended to other tasks beyond classification and retrieval.

There are several works which improve complex event
recognition by combining multiple feature modalities [12,
24, 36]. Another related line of work is the use of sub-
events defined manually [7], or clustered from data [20] to
improve recognition. Similarly, Yang et al. used low dimen-
sional features from deep belief nets and sparse coding [42].
While these methods are targeted towards building features
specifically for classification in limited settings, we propose
a generic video frame representation which can capture se-
mantic and temporal structure in videos.
Unsupervised learning in videos. Learning features with
unsupervised objectives has been a challenging task in the

image and video domain [9, 22, 37]. Notably, [22] devel-
ops an Independent Subspace Analysis (ISA) model for fea-
ture learning using unlabeled video. Recent work from [5]
also hints at a similar approach to exploit the slowness prior
in videos. Also, recent attempts extend such autoencoder
techniques for next frame prediction in videos [31, 35].
These methods try to capitalize on the temporal continuity
in videos to learn an LSTM [43] representation for frame
prediction. In contrast to these methods which aim to pro-
vide a unified representation for a complete temporal se-
quence, our work provides a simple yet powerful represen-
tation for independent video frames and images.
Embedding models. The idea of learning and represent-
ing temporal continuity has been discussed in pioneering
works like [3]. More recent works such as word2vec [23]
learn embeddings such that words with similar contexts are
closer to each other. Another interesting model based on
a Markovian approach was also proposed in [6]. A related
idea in computer vision is the embedding of text in the se-
mantic visual space [4, 18] based on large image datasets
labeled with captions or class names. While these methods
focus on different scenarios for embedding text, the aim of
our work is to generate an embedding for video frames.

3. Our Method
Given a large collection of unlabeled videos, our goal

is to leverage their temporal structure to learn an effective
embedding for video frames. We wish to learn an embed-
ding such that the context frames surrounding each target
frame can determine the representation of the target frame,
similar to the intuition from word2vec [23]. For example,
in Fig. 1, context such as “crowd” and “cutting the cake”
provides valuable information about the target “ceremony”
frames that occur in between. This idea is fundamental to
our embedding objective and helps in capturing semantic
and temporal interactions in video.

While the idea of representing frames by embeddings is
lucrative, the extension from language to visual data is not
straightforward. Unlike language we do not have a natural,
discrete vocabulary of words. This prevents us from using a
softmax objective as in the case of word2vec [23]. Further,
consecutive frames in videos often share visual similarity
due to temporal coherence. Hence, a naive extension of [23]
does not lead to good vector representations of frames.

To overcome the problem of lack of discrete words, we
use a ranking loss [14] which explicitly compares multiple
pairs of frames across all videos in the dataset. This ensures
that the context in a video scores the target frame higher
than others in the dataset. We also handle the problem of vi-
sually similar frames in temporally smooth videos through a
carefully designed sampling mechanism. We obtain context
frames by sampling the video at multiple temporal scales,
and choosing hard negatives from the same video.
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Figure 2. Visualizations of the temporal context of frames used in:
(a) our model (full), (b) our model (no future), and (c) our model
(no temporal). Green boxes denote target frames, magenta boxes
denote contextual frames, and red boxes denote negative frames.

3.1. Embedding objective

We are given a collection of videos V , where each
video v ∈ V is a sequence of frames {sv1, . . . , svn}. We
wish to obtain an embedding fvj for each frame svj . Let
fvj = f(svj ;We) be the temporal embedding function
which maps the frame svj to a vector. The model embed-
ding parameters are given by We, and will be learned by our
method. We embed the frames such that the context frames
around the target frame predict the target frame better than
other frames. The model is learned by minimizing the sum
of objectives across all videos. Our embedding loss objec-
tive is shown below:

J(We) =
∑
v∈V

∑
svj∈v
s− 6=svj

max (0, 1− (fvj − f−) · hvj) , (1)

where f− is the embedding of a negative frame s−, and
the context surrounding the frame svj is represented by the
vector hvj . Note that unlike the word vector embedding
models in word2vec [23], we do not use an additional linear
layer for softmax prediction on top of the context vector.

Another alternative could be a regression loss. However,
as noted in [31], this can lead to low training error by simply
blurring the representation of all frames in a video. We also
experimented with multiple loss functions, and empirically
found the ranking loss to perform the best.

3.2. Context representation

As we verify later in the experiments, the choice of con-
text is crucial to learning good embeddings. A video frame
at any time instant is semantically correlated with both past
and future frames in the video. Hence, a natural choice for
context representation would involve a window of frames
centered around the target frame, similar to the skip-gram

idea used in word2vec [23]. Along these lines, we propose
a context representation given by the average of the frame
embeddings around the target frame. Our context vector
hvj for a frame svj is:

hvj =
1

2T

T∑
t=1

fvj+t + fvj−t, (2)

where T is the window size, and fvj is the embedding of
the frame svj . This embedding model is shown in Fig. 2(a).
For negatives, we use frames from other videos as well as
frames from the same video which are outside the temporal
window, as explained in Sec. 3.4.

Two important characteristics of this context representa-
tion is that it 1. makes use of the temporal order in which
frames occur and 2. considers contextual evidence from
both past and future. In order to examine their effect on
the quality of the learned embedding, we also consider two
weaker variants of the context representation below.
Our model (no future). This one-sided contextual repre-
sentation tries to predict the embedding of a frame in a video
only based on the embeddings of frames from the past as
shown in Fig. 2(b). For a frame svj , and window size T the
context hnofuture

vj is given by:

hnofuture
vj =

1

T

T∑
t=1

fvj−t. (3)

Our model (no temporal). An even weaker variant of con-
text representation is simple co-occurrence without tempo-
ral information. We also explore a contextual representation
which completely neglects the temporal ordering of frames
and treats a video as a bag of frames. The context hnotemp

vj

for a target frame svj is sampled from the embeddings cor-
responding to all other frames in the same video:

hnotemp
vj ∈ {fvk | k 6= j}. (4)

This contextual representation is visualized in Fig. 2(c).

3.3. Embedding function

In the previous sections, we introduced a model for rep-
resenting context, and now move on to discuss the embed-
ding function f(sij ;We). In practice, the embedding func-
tion can be a CNN built from the frame pixels, or any un-
derlying image or video representation. However, follow-
ing the recent success of ImageNet trained CNN features
for complex event videos [41, 44], we choose to learn an
embedding on top of the fully connected fc6 layer feature
representation obtained by passing the frame through a stan-
dard CNN [19] architecture. In this case, the underlying



Figure 3. Multi-resolution sampling and hard negatives used in our
full context model (T = 1). For a target frame (green), we sample
context frames (magenta) at varying resolutions, as shown by the
rows in this figure. We take hard negatives as examples in the same
video that fall outside the context window (red).

representation is pre-trained from ImageNet domain which
is vastly different from the TRECVID domain. Note that
our method is agnostic to the choice of this underlying fea-
ture. Our learning procedure is still unsupervised, since we
do not use any labels to learn our embeddings from these
representations. We use a simple model with a fully con-
nected layer followed by a rectified linear unit (ReLU) and
local response normalization (LRN) layer, with dropout reg-
ularization. In this architecture, the learned model param-
eters We correspond to the weights and bias of our affine
layer.

3.4. Data augmentation

We found that a careful strategy for sampling context
frames and negatives is important to learning high quality
embeddings in our models. This helps both in handling the
problem of temporal smoothness and prevents the model
from overfitting to less interesting video-specific properties.
Multi-resolution sampling. Complex events progress at
different paces within different videos. Densely sampling
frames in slowly changing videos can lead to context win-
dows comprised of frames that are visually very similar to
the target frame. On the other hand, a sparse sampling of
fast videos could lead to context windows only composed of
disjoint frames from unrelated parts of the video. We over-
come these problems through multi-resolution sampling as
shown in Fig. 3. For every target frame, we sample context
frames from multiple temporal resolutions. This ensures a
good trade-off between visual variety and semantic related-
ness in the context windows.
Hard negatives. The context frames, as well as the target to
be scored are chosen from the same video. This causes the
model to cluster frames from the same video based on less
interesting video-specific properties such as lighting, cam-
era characteristics and background, without learning any-
thing semantically meaningful. We avoid such problems by
choosing hard negatives from within the same video as well.
Empirically, this improves performance for all tasks. The
negatives are chosen from outside the range of the context

window within a video as depicted in Fig. 3.

3.5. Implementation details

The context window size was set to T = 2, and the em-
bedding dimension to 4096. The learning rate was set to
0.01 and gradually annealed in steps of 5000. The train-
ing is typically completed within a day on 1 GPU with
Caffe [11] for a dataset of approximately 40000 videos. All
videos were first down-sampled to 0.2 fps before training.

4. Experimental Setup

Our embeddings are aimed at capturing semantic and
temporal interactions within complex events in a video, and
thus we require a generic set of videos with a good variety
of actions and sub-events within each video. Most stan-
dard datasets such as UCF-101 [34] and Sport-1M [15] are
comprised of short video clips capturing a single sports ac-
tion, making them unsuitable for our purpose. Fortunately,
the TRECVID MED 2011 [28] dataset provides a large set
of diverse videos collected directly from YouTube. More
importantly, these videos are not simple single clip videos;
rather they are complex events with rich interactions be-
tween various sub-events within the same video [7]. Specif-
ically, we learn our embeddings on the complete MED11
DEV and TEST sets comprised of 40021 videos. A sub-
set of 256 videos from the DEV and TEST set was used
for validation. The DEV and TEST sets are typical random
assortments of YouTube videos with minimal constraints.

We compare our embeddings against different video rep-
resentations for three video tasks: video retrieval, complex
event classification, and temporal order recovery. All ex-
periments are performed on the MED11 event kit videos,
which are completely disjoint from the training and valida-
tion videos used for learning our embeddings. The event
kit is composed of 15 event classes with approximately
100− 150 videos per event, with a total of 2071 videos.

We stress that the embeddings are learned in an unsuper-
vised setting since we only use the temporal and semantic
structure of the video data, without video labels. We do not
tune them specifically to any event class.

5. Video Retrieval

In retrieval tasks, we are given a query, and the goal is
to retrieve a set of related examples from a database. We
start by evaluating our embeddings on two types of retrieval
tasks: event retrieval and temporal retrieval. The retrieval
tasks help to evaluate the ability of our embeddings to group
together videos belonging to the same semantic event class
and frames that are temporally coherent.



Method mAP ( %)
Two-stream pre-trained [33] 20.09
fc6 20.08
fc7 21.24
Our model (no temporal) 21.92
Our model (no future) 21.30
Our model (no hard neg.) 24.22
Our model 25.07

Table 1. Event retrieval results on the MED11 event kits.

5.1. Event retrieval

In event retrieval, we are given a query video from the
MED11 event kit and our goal is to retrieve videos that con-
tain the same event from the remaining videos in the event
kit. For each video in the event kit, we sort all other videos
in the dataset based on their similarity to the query video
using the cosine similarity metric, which we found to work
best for all representations. We use Average Precision (AP)
to measure the retrieval performance of each video and pro-
vide the mean Average Precision (mAP) over all videos in
Tab. 1. For all methods, we uniformly sample 4 frames per
video and represent the video as an average of the features
extracted from them. The chance mAP is 6.53%. The dif-
ferent baselines used for comparison are explained below:
• Two-stream pre-trained: We use the two-stream CNN

from [33] pre-trained on the UCF-101 dataset. The
models were used to extract spatial and temporal fea-
tures from the video with a temporal stack size of 5.

• fc6 and fc7: Features extracted from the ReLU layers
following the corresponding fully connected layers of
a standard CNN model [19] pre-trained on ImageNet.

• Our model (no temporal): Our model trained with no
temporal context (Fig. 2(c)).

• Our model (no future): Our model trained with no fu-
ture context (Fig. 2(b)) but with multi-resolution sam-
pling and hard negatives.

• Our model (no hard neg.): Our model trained without
hard negatives from the same video.

• Our model: Our full model trained with multi-
resolution sampling and hard negatives.

We observe that our full model outperforms other rep-
resentations for event retrieval. We note that in contrast to
most other representations trained on ImageNet, our model
is capable of being trained with large quantities of unlabeled
video which is easy to obtain. This confirms our hypothesis
that learning from unlabeled video data can improve feature
representations. While the two-stream model also has the
advantage of being trained specifically on a video dataset,
we observe that the learned representations do not transfer
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Figure 4. t-SNE plot of the semantic space for (a) fc7 and (b) our
embedding. The different colors correspond to different events.

favorably to the MED11 dataset in contrast to fc7 and fc6
features trained on ImageNet. A similar observation was
made in [41, 44], where simple CNN features trained from
ImageNet consistently provided the best results.

Our embeddings capture the temporal regularities and
patterns in videos without the need for expensive labels,
which allows us to more effectively represent the semantic
space of events. The performance gain of our full context
model over the representation without temporal order shows
the need for utilizing the temporal information while learn-
ing the embeddings. For the same temporal window size,
the model without future uses smaller context. This poten-
tially leads to lower visual variety in the context window,
leading to a performance drop.
Visualizing the embedding space. To gain a better qual-
itative understanding of our learned embedding space, we
use t-SNE [38] to visualize the embeddings in a 2D space.
In Fig. 4, we visualize the fc7 features and our embedded
features by sampling a random set of videos from the event
kits. The different colors in the graph correspond to each of
the 15 different event classes, as listed in the figure. Visu-
ally, we can see that certain event classes such as “Groom-
ing an animal”, “Changing a vehicle tire”, and “Making a
sandwich” enjoy better clustering in our embedded frame-
work as opposed to the fc7 representation.

Another way to visualize this space is in terms of the
actual words. Each video in the MED11 event kits is asso-
ciated with a short synopsis describing the video. We repre-
sent each word from this synopsis collection by averaging
the embeddings of videos associated with that word. The
features are then used to produce a t-SNE plot as shown
in Fig. 5. We avoid noisy clustering due to simple co-
occurrence of words by only plotting words which do not
frequently co-occur in the same synopsis. We observe many
interesting patterns. For instance, objects such as “river”,
“pond” and “ocean” which provide the same context for a
“fishing” event are clustered together. Similarly crowded
settings such as “bollywood”, “military”, and “carnival” are
clustered together.



Figure 5. t-SNE visualization of words from synopses describing
MED11 event kit videos. Each word is represented by the average
of our embeddings corresponding to the videos associated with the
word. We show sample video frames for a subset of the words.

Retrieved by our embedding Retrieved by fc7 feature

wedding

make sandwich

board trick

birthday

feeding animal

Figure 6. The retrieval results for fc7 (last two columns) and our
embedding (middle two columns). The first column shows the
query frame and event, while the top 2 frames retrieved from the
remaining videos are shown in the middle two column for our em-
bedding, and the last two columns for fc7. The incorrect frames
are highlighted in red, and correct frames in green.

Event retrieval examples. We visualize the top frames re-
trieved for a few query frames from the event kit videos in
Fig. 6. We observe a few interesting examples where the
query appears visually distinct from our retrieved results.
The retrieved actions might co-occur in the same context as
the query, which is captured by the temporal context in our
model. For instance, the frame of a “bride near a car” re-
trieves frames of “couple kissing”. Similarly, the frame of
“kneading dough” retrieves frames of “spreading butter”.

Method mAP ( %)
Two-stream pre-trained [33] 20.11
fc6 19.27
fc7 22.99
Our model (no temporal) 22.50
Our model (no future) 21.71
Our model (no hard neg.) 24.12
Our model 26.74

Table 2. Temporal retrieval results on the MED11 event kits.

5.2. Temporal retrieval

In the temporal retrieval task, we test the ability of our
embedding to capture the temporal structure in videos. We
sample four frames from different time instants in a video
and try to retrieve the frames in between the middle two
frames. This is an interesting task which has potential for
commercial applications such as ad placements in video
search engines. For instance, the context at any time in-
stant in a video can be used to retrieve the most suited video
ad from a pool of video ads, to blend into the original video.

For this experiment, we use a subset of 1396 videos from
the MED11 event kits which are at least 90 seconds long.
From each video, we uniformly sample 4 context frames,
3 positive frames from in between the middle two context
frames, and 12 negative distractors from the remaining seg-
ments of the video. In addition to the 12 negative distractors
from the same video, all frames from other videos are also
treated as negative distractors. For each video, given the 4
context frames we evaluate our ability to retrieve the 3 pos-
itive frames from this large pool of distractors.

We retrieve frames based on their cosine similarity to the
average of the features extracted from the context frames.
We use mean Average Precision (mAP) and the same base-
lines as event retrieval. The results are shown in Tab. 2. Our
embedding representation is seen to outperform the other
representations. This shows their ability to capture long-
term interactions between events at different time-instants.
Temporal retrieval examples. We visualize the top exam-
ples retrieved for a few temporal queries in Fig. 7. We can
see just how difficult this task is, as often frames that seem
to be viable options for temporal retrieval are not part of
the ground truth. For instance, in the “sandwich” example,
our embedding wrongly retrieves frames of human hands to
keep up with the temporal flow of the video.

6. Complex Event Classification
The complex event classification task on the MED11

event kits is one of the more challenging classification tasks.
We follow the protocol of [7, 30] and use the same train/test
splits. Since the goal of our work is to evaluate the effective-
ness of video frame representations, we use a simple linear
Support Vector Machine classifier for all methods.
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Figure 7. The retrieval results for our embedding model on the temporal retrieval task. The first and last 2 columns show the 4 context
frames sampled from each video, and the middle 3 columns show the top 3 frames retrieved by our embedding. The correctly retrieved
frames are highlighted in green, and incorrect frames highlighted in red.

Method mAP ( %)
Two-stream fine-tuned [33] 62.99
ISA [22] 55.87
Izadinia et al. [7] linear 62.63
Izadinia et al. [7] full 66.10
Raman. et al. [30] 66.39
fc6 68.56
fc7 69.17
Our model (no temporal) 69.57
Our model (no future) 69.22
Our model (no hard neg.) 69.81
Our model 71.17

Table 3. Event classification results on the MED11 event kits.

Unlike retrieval settings, we are provided labeled train-
ing instances in the event classification task. Thus, we fine-
tune the last two layers of the two-stream model (pre-trained
on UCF-101) on the training split of the event kits, and
found this to perform better than the pre-trained model.

In addition to baselines from previous tasks, we also
compare with [7], [22] and [30], with results shown in
Tab. 3. Note that [7, 30] use a combination of multiple im-
age and video features including SIFT, MFCC, ISA, and
HOG3D. Further, they also use additional labels such as
low-level events within each video. In Tab. 3, Izadinia et
al. linear refers to the results without low-level event labels.

We observe that our method outperforms ISA [22], an
unsupervised neural network feature. Additionally, the Ima-
genet pre-trained CNN features seem to perform better than
most previous representations, which is also consistent with
previous work [41, 44]. Our performance gain could be at-
tributed to the use large amounts of unlabeled data to learn
a better representations.

7. Temporal Order Recovery
An effective representation for video frames should be

able to not only capture visual similarities, but also preserve
the structure between temporally coherent frames. This fa-

HVC465414 (our: 0.3030, fc7: 0.6061)

(a) order recovered by fc7

(b) order recovered by our embedding

1 2 3 4 56

4 5 6 1 23

Figure 9. An example of the temporal ordering retrieved by fc7 and
our method for a “Making a sandwich” video. The frame indexes
already in the correct order are shown in green, and others in red.

Method 1.4k Videos 1k Videos
Random chance 50.00 50.00
Two-stream [33] 42.05 44.18
fc6 42.43 43.33
fc7 41.67 43.15
Our model (pairwise) 42.03 43.72
Our model (no future) 40.91 42.98
Our model (no hard neg.) 41.02 41.95
Our model 40.41 41.13

Table 4. Video temporal order recovery results evaluated using the
Kendell tau distance (normalized to 0-100). Smaller distance in-
dicates better performance. The 1.4k Videos refers to the set of
videos used in the temporal retrieval task, and the 1k Videos refers
to a further subset with the most visually dissimilar frames.

cilitates holistic video understanding tasks beyond classifi-
cation and retrieval. With this in mind, we explore the video
temporal order recovery task, which seeks to show how the
temporal interaction between different parts of a complex
event are inherently captured by our embedding.

In this task, we are given as input a jumbled sequence
of frames belonging to a video, and our goal is to order the
frames into the correct sequence. This has been previously
explored in the context of photostreams [17], and has po-
tential for use in applications such as album generation.
Solving the order recovery problem. Since our goal is to
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wedding images Image clusters ordered with our embedding Figure 8. After querying the Internet for images of the “wedding” event, we cluster them into sub-events and temporally organize the
clusters using our model. On the left, we show sample images crawled for the “wedding” event, and on the right the temporal order
recovered by our model is visualized along with manual captions for the clusters.

evaluate the effectiveness of various feature representations
for this task, we use a simple greedy technique to recover
the temporal order. We assume that we are provided the
first two frames in the video and proceed to retrieve the next
frame (third frame) from all other frames in the video. This
is done by averaging the first two frames and retrieving the
closest frame in cosine similarity. We go on to greedily
retrieve the fourth frame using the average of the second
and third frames, and continue until all frames are retrieved.
In order to enable easy comparison across all videos, we
sample the same number of frames (12) from each video
before scrambling them for the order recovery problem. An
example comparing our embeddings to fc7 is show in Fig. 9.
Evaluation. We evaluate the performance for solving the
order recovery problem using the Kendall tau [16] distance
between the groundtruth sequence of frames and the se-
quence returned by the greedy method. The Kendall tau
distance is a metric that counts the number of pairwise dis-
agreements between two ranked lists; the larger the distance
the more dissimilar the lists. The performance of different
features for this task is shown in Tab. 4, where the Kendall
tau distance is normalized to be in the range 0− 100.

Similar to the temporal retrieval setting, we use the sub-
set of 1396 videos which are at least 90 seconds long. These
results are reported in the first column of the table. We ob-
served that our performance was quite comparable to that
of fc7 features for videos with visually similar frames like
those from the “parade” event, as they lack interesting tem-
poral structure. Hence, we also report results on the subset
of 1000 videos which had the most visually distinct frames.
These results are shown in the second column of the table.
We also evaluated the human performance of this task on a
random subset of 100 videos, and found the Kendell tau to
be around 42. This is on par with the performance of the
automatic temporal order produced by our methods, and il-
lustrates the difficulty of this task for humans as well.

We observe that our full context model trained with a

temporal objective achieves the best Kendall tau distance.
This improvement is more marked in the case of the 1k
Videos with more visually distinct frames. This shows the
ability of our model to bring together sequences of frames
that should be temporally and semantically coherent.
Ordering actions on the Internet. Image search on the In-
ternet has improved to the point where we can find relevant
images with textual queries. Here, we wanted to investigate
whether we could also temporally order images returned
for complex event textual queries. As a toy example, we
used query expansion on the “wedding” query, and crawled
Google for a large set of images. We clustered the result-
ing images semantically, and for each cluster, averaged our
embeddings to obtain a representation. We then used our
method to recover the temporal ordering of these clusters of
images. In Fig. 8, we show the recovered temporal ordering,
and some example images from each cluster. Interestingly,
the recovered order seems consistent with typical weddings.

8. Conclusion

In this paper, we presented a model to embed video
frames. We treated videos as sequences of frames and em-
bedded them in a way which captures the temporal context
surrounding them. Our embeddings were learned from a
large collection of more than 40000 unlabeled videos, and
have shown to be more effective for multiple video tasks.
The learned embeddings performed better than other video
frame representations for all tasks. The main thrust of our
work is to push a framework for learning frame-level rep-
resentations from large sets of unlabeled video, which can
then be used for a wide range of generic video tasks.
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