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ABSTRACT
In this paper, we investigate a problem of predicting what
images are likely to appear on the Web at a future time
point, given a query word and a database of historical image
streams that potentiates learning of uploading patterns of
previous user images and associated metadata. We address
such a Web photo prediction problem at both a collective
group level and an individual user level. We develop a pre-
dictive framework based on the multivariate point process,
which employs a stochastic parametric model to solve the
relations between image occurrence and the covariates that
influence it, in a globally optimal, flexible, and scalable way.
Using Flickr datasets of more than ten million images of 40
topics, our empirical results show that the proposed algo-
rithm is more successful in predicting unseen Web images
than other candidate methods, including reasoning on se-
mantic meanings only, a state-of-art image retrieval method,
and a generative topic model.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—Retrieval models

Keywords
Web image prediction, multivariate point processes, penal-
ized Poisson regression, personalization

1. INTRODUCTION
The prevalence of digital cameras and smartphones has led

to an explosion of pictures being uploaded and shared online,
across websites, platforms and social networks. This phe-
nomenon poses great challenges and opportunities in multi-
media data mining research. In this paper, we address an
interesting problem along this line – predicting likely images
to appear on the Web at a future time point and retrieving
images similar to them from the database, after learning
patterns of previous user images and associated metadata.
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Fig.1 shows our problem statement with an example of
the query world+cup. Suppose that we have the image
database downloaded from Flickr for the world+cup up to
12/31/20081. Can we then estimate what would be the
most likely pictures that are taken in a future query time2

6/6/2009, and retrieve images similar to them from the
database? As Fig.1.(c) has shown, the pictures actually
taken at 6/6/2009 and shared on Flickr are not necessarily
about the best possible world cup pictures (if the definition
of best is even possible). Instead, they are the pictures that
not only reflect the semantic meaning of the keyword, but
also people’s intends at that given moment of time. Further-
more, if a user cue is supplemented, the image prediction be-
comes highly personalized as shown in Fig.1.(d), given that
individual users have their own preferences and photo-taking
styles.

The problem in this paper is closely related to one active
area of research in information retrieval: exploring the tem-
poral dynamics of user behaviors on Web queries [5, 16, 18,
22]. The popularity of queries and their best search results
change over time as people’s interests evolve. For exam-
ple, in [18], it is reported that more than 7% of queries are
the ones that do not actually contain a year, but the user
implicitly formulate with a specific year in mind (e.g . miss
universe, Olympics). Moreover, many of them are connected
to the events that have occurred with predictable periodic-
ity. This line of research aims to improve search relevance
by identifying what search terms are sensitive to time, what
documents should be retrieved to the query time, and what
webpages are likely to be clicked by a user at a particular
time point. However, much of previous work has targeted at
the search of documents such as blogs and news archives by
analyzing the query log data; modeling and predicting tem-
poral dynamics of Web user images has yet received little
attention, even though photos are another popular modal-
ity to share the information on the Web.

1Strictly speaking, we address a varient of image re-ranking ;
we assume that a text-based image search engine (e.g . Flickr
search engine) provides a large-scale pool of unordered Web
images for a given query word. Then, our goal is to re-rank
those images to be fit for a query time. Image re-ranking
following a text-based image search is the de facto pipeline
for major image search engines such as Google and Bing [4].
2We are interested in a future time point as a query rather
than past or present because it is most interesting and chal-
lenging. For a query time in the past, we may trivially
retrieve the images taken at that time from the database.
However, if the query time is in future, we have to learn
users’ photo uploading patterns and extrapolate likely im-
ages to appear for the query time.



Figure 1: (a) Given an image sequence of world+cup, can we guess what images are likely to appear at a future time

tq=6/6/2009? (c) Collective image prediction. The world+cup usually refers to the soccer event, so a soccer scene can

be a reasonable guess. However, the actual Web images are diverse because they reflect different users’ experiences

and preferences. (d) Personalized image prediction for a user u1. A user’s unique angle of seeing the topic can make

the prediction more focused. The images are sampled from Flickr at each time.

Consequently, one important application of our image pre-
diction is time and user sensitive Web image re-ranking.
Suppose that a user submits a query word of world+cup
into Google and Bing image search, which then invariably re-
trieve redundant photos of soccer in the first page. Although
the term world+cup usually refers to the international soc-
cer event, it is also commonly used in other international
sports and competitions (e.g . ski, skate, bicycle, or horse
riding, as shown in Fig.1.(a)). Therefore, if the world+cup
is submitted in winter by a user who likes skiing, it is more
desirable to include ski world cup photos in the retrieved
result. Our image prediction framework can enable the re-
ranking of the retrieved images, so that various views of the
query word are shown, according to who searches, and when
the search takes place. With the majority of Web photos
now coming from hundreds of millions of general users with
different experiences and preferences, the contents of im-
ages that are associated even with the same keyword can be
highly variable according to owners and temporal informa-
tion.

On the technical aspect, we develop an image prediction
algorithm using a multivariate point process, which is a
stochastic process that consists of a series of random events
occurring at points in time and space [6]. In our method, an
observed image stream is viewed as an instance of the multi-
variate point process. Although this well-established statis-
tical model has been employed for studying neural spiking
activities [27], and for event detection in video [21], no at-
tempt has been made for image retrieval or re-ranking so
far. Nonetheless, we adapt it to offer several key advantages
for large-scale image prediction as follows: (i) Flexibility :
The image occurrence on the Web is correlated with a wide
range of factors or covariates (e.g . season, time, user pref-
erence, and other external events). A parametric model can
be easily set up to relate the image occurrence probability
with any number of factors that influence it (section 3.3).
(ii) Optimality : The sparse globally-optimal MLE solution
is computed to identify only a small number of key factors
and their relative weights (section 3.2). (iii) Scalability : The
learning and prediction are performed in a linear time with
respect to all parameters, including time steps and the num-
ber of covariates (section 3.4). (iv) Prediction accuracies:
Our experiments on more than ten millions of Flickr images
have demonstrated compelling results on both collective and
personalized image forecast over various 40 topic keywords.

Indeed we show that our approach outperforms other meth-
ods including a PageRank-based image retrieval [15] and a
generative author-time topic model [23] (section 4).

1.1 Relations to Previous work
The problem of image prediction using large-scale Web

photo collections remains an under-addressed topic in the
image retrieval literature. Our work is remotely related to
following four lines of research, but is significantly different
on the task, utility and methodology. Due to vast volume of
literatures on these topics, we introduce only some selected
papers that are most closely related to our work.

Web content dynamics: This research aims at large-
scale analyses to describe how the Web content changes over
time. Most previous work [1, 28] has dealt with the textual
content on the Web such as news articles and scientific li-
braries. In the image domain, the most related work to ours
may be [15] in that both involve studying topic evolution in
large-scale Flickr photos. However, the main tasks of [15]
were subtopic outbreak detection and classification of noisy
web images. They did not address the image prediction,
which is our main task here. Also, they did not explore any
issues regarding personalization, as done in this work.

Similar image retrieval: The image prediction prob-
lem is also related to similar image retrieval, a well-studied
topic in computer vision [8, 20, 26]. They are related in a
way that in both cases, given a query, relevant images are
returned from the database. Yet, there are a number of key
differences. Traditional similar image retrieval tends to fo-
cus solely on the semantic meaning of the query word and
feature-wise image similarity, whereas our image prediction
additionally emphasizes the temporal trends and user histo-
ries associated with the images.

Image based collaborative filtering: The goal of this
research is to mine the trends of people’s interests from com-
munity photos such as Flickr. Examples include the so-
cial trends in politics and market [13], and spatio-temporal
events [24]. However, most existing work has used images as
the source of information to infer other phenomena rather
than taking themselves as a subject to be forecasted.

Leveraging Web photos to infer missing informa-
tion: The final related work is on inferring missing in-
formation by leveraging a large-scale Web image corpus.
Some notable examples include scene completion [12], geo-
location estimation of a photo sequence [14], 3-D models of



landmarks [25], semantic image hierarchy [17], and people
matching [11]. However, future image occurrence has not
been explored as missing information to be inferred.

1.2 Summary of Contributions
Departing from the literatures reviewed above, the main

contributions of our work can be summarized as follows:
(1) We develop a method for collective and personalized

image prediction. To the best of our knowledge, there have
been few attempts so far on such prediction tasks using
large-scale Web photos. Our work can be used in several
interesting data mining applications, such as time and user
based image suggestion and re-ranking.

(2) We design our algorithm using multivariate point pro-
cesses. We are not aware of any prior instances of multivari-
ate point process in image re-ranking applications; here we
adapt this well-founded statistical model to address a num-
ber of key challenges of Web image prediction, including
flexibility, optimality, scalability, and prediction accuracies.

2. PROBLEM STATEMENT
We define the image prediction as a variant of the time

and user sensitive image re-ranking problem. As an input,
an image database consists of Flickr photos in [0, T ) that are
downloaded by a topic keyword, together with their meta-
data including timestamps and user IDs. Then, given a fu-
ture time point tq>T in the form of (M/D/Y), we retrieve L
number of the most likely images from the database. Actual
Web images to be predicted at any days are usually hun-
dreds or more in volume and extremely diverse in content.
Therefore, we first predict the trends of image clusters, and
sample multiple L images as output accordingly, in order to
cover various aspects of the topic.

We address both collective and personalized image predic-
tion. The former refers to a generic prediction for arbitrary
individuals using all collected information; and the latter
concerns a customized forecast for a particular individual
uq to be specified at test time. The personalized prediction
focuses on an individual user’s history, whereas the collective
prediction deals with societally aggregated trends.

Our problem involves learning a model of the image occur-
rences with related factors or covariates, and then building a
forecast algorithm to sample the likely images based on the
learned model. Multivariate point processes are a unified
statistical framework to solve these problems, which will be
discussed in detail in the next section.

In this paper, we exploit three information modalities
based on which a prediction is made: image description, user
description, and timestamps at which photos are taken. For
clarity, we explain bellow the preprocessing steps of the first
two modalities, and the third one is self-explanatory.

Image Description: All images are clustered into M
different groups, which we call as visual clusters in this pa-
per. We first extract two types of features for each image,
spatial pyramids of dense HSV SIFT and HOG3. Then, we
construct a visual dictionary of M clusters (e.g . M = 500)
for each topic by applying K-means to randomly selected
100K features. Finally, each image is assigned to the near-
est visual cluster in the feature space.

3We use the codes for dense SIFT and HOG available at
http://www.vlfeat.org/ and http://www.robots.ox.ac.uk/∼
vgg/software/, respectively.

User Description: Measuring user propensity is impor-
tant in collaborative filtering [7] because a user’s future be-
havior is likely to be correlated with those of users who are
similar to her. Intuitively, each user can be represented by
a set of images that she has posted. We first compute an
M -dimensional histogram for each user where each bin rep-
resents the count of images belonging to the corresponding
visual cluster. Instead of directly using the user descrip-
tor, we perform the pLSI based user clustering proposed by
Google News personalization [7]. In pLSI, the distribution
of visual cluster v in a user ui’s images (p(v|ui)) is given by
the following generative model:

p(v|ui) =
∑
z∈Z

p(v|z)p(z|ui). (1)

The latent variable z ∈ Z is assumed to represent the cluster
of user propensity. Thus, p(z|ui) is proportional to the frac-
tional membership of user i to cluster z. We denote p(z|ui)
by ui, which is used as the descriptor of a user ui. The ui

is an L-1 normalized |Z|-dimensional vector (i.e. |Z| = 50).
For simplicity and better exposition of our point process

framework, we use relatively simple image and user descrip-
tors, and assume that the images in the same visual cluster
are interchangeable. However, it is straightforward to en-
hance our method by replacing them with richer descriptors
(e.g . soft assignment of visual clusters) or by adding other
types of information (e.g . text tags).

3. POINT PROCESSES FOR WEB PHOTO
STREAMS

3.1 Multivariate Point Processes
We employ a multivariate point process to model a stream

of input images, as illustrated in Fig.2. Formally, a multi-
variate point process can be described by a counting pro-
cess N(t) = (N1(t), · · · , NM (t))T where M is the number
of visual clusters and N i(t) is the total number of observed
images assigned to thei-th visual cluster in the interval (0, t].
Then, N i(t + ∆) − N i(t) represents the number of images
in a small interval ∆. By letting ∆→0, we obtain the inten-
sity function λi(t) (i.e. image occurrence rate) at t, which
indicates the infinitesimal expected occurrence rate of the
images of the i-th visual cluster at time t [6]:

λi(t) = lim
∆→0

P [N i(t+∆)−N i(t) = 1]

∆
, i ∈ {1, . . . ,M}. (2)

Data likelihood: Suppose that we partition the interval
(0, T ] by a sufficiently large number K (i.e. ∆=T/K) so
that in each time bin ∆ only one or zero image occurs. In
other words, if we let ∆N i

k = N i
k −N i

k−1 be the number of
images of the i-th visual cluster occurred between tk−1 and
tk, then ∆N i

k can be zero or one. Here, tk is the k-th interval
(tk=k∆). Now we can denote the sequence of images up to
T by N i

1:K=(∆N i
1, · · · ,∆N i

K). This discretization induces
that the log-likelihood function is represented by [27]

l(N i
1:K |θi) =

K∑
k=1

log(λi(tk|θ)∆)∆N i
k −

K∑
k=1

λi(tk|θ)∆ (3)

where λi(tk|θ) is the parametric form of the intensity func-
tion at k-th interval.



Figure 2: A multivariate point process for a short image stream of the penguin. (a) Each image is assigned to a visual

cluster (v) up to M=3 and a timestamp (t). The visual clusters are {ice hockey, animal penguin, and snowy mountain}.
(b) The image stream is modeled by a discrete-time trivariate point process according to visual clusters.

3.2 Regularized Generalized Linear Model
In order to connect the image occurrence with covariates,

we model the intensity function as the exponential of a linear
combination of functions f i

j of the covariates xk:

log λi(tk|θi) =

n∑
j=1

θijf
i
j (x1, · · · , xk), i ∈ {1, . . . ,M} (4)

where θi = (θi1, · · · , θin) is a vector of model parameters.
It is shown in [27] that the likelihood of a point process in

Eq.(3) along with λi of Eq.(4) is identical to the likelihood
of a generalized linear model (GLM) under a Poisson proba-
bility model and a log link function, which is also known as
the Poisson regression.

L1 regularized likelihood: It is reasonable to assume
that although numerous factors affect image occurrences,
each visual cluster depends on only a small subset of them.
Hence, it is important to detect a small number of strong
covariates by encouraging a sparse estimator of θi, and we
maximize the likelihood with l1 penalty:

lR(N i
1:K |θi) = l(N i

1:K |θi)− µ
n∑

j=1

|θij |. (5)

We can efficiently solve the MLE solution to Eq.(5) (i.e.
generalized linear models with mixed l1/l2 norm regulariza-
tion) by using the cyclical coordinate descent in [10]. We
use the regularized path to find the best regularization pa-
rameter µ; we perform a 10-fold cross validation procedure
and choose µ that minimizes the mean cross-validated error.

Example: Here, we introduce a toy example to intuitively
show how the proposed model predicts the image occurrence.
For simplicity of the example, we assume that the intensity
function is affected by only year and month covariates:

log λi(tk|θi) = θi0+

2009∑
y=2003

θiyIy(tk)+
12∑

m=1

θimIm(tk) (6)

where the parameter set comprises seven θiy and twelve θim.
Iy(tk) is an indicator function that is 1 if the year of tk
is y, and 0 otherwise (e.g . Iy(tk)=1 if y=2009 and tk=
03/01/2009). Im(tk) is an indicator for the month.

Fig.3 shows the learned intensity functions λi(t) of two
visual clusters N1 and N2 with respect to years and months.
Fig.3.(b) presents the observed image sequences. For both
N1 and N2, the intensity functions increase every year (See
Fig.3.(c)). The rates decrease in 2009 because the shark
dataset was gathered up to mid 2009. Interestingly, N1 and
N2 show different monthly behaviors (See Fig.3.(d)). The
N1 for dolphins in the sea has a higher intensity value (i.e.
more frequently occurred) in summer, whereas the N2 for
the ice hockey team peaks around January. This observation

Figure 3: An example of the Poisson regression model

for two visual clusters of the Shark topic: {dolphins in the

sea, ice hockey team}. (a) Four images sampled from two

visual clusters. (b) Observed occurrence data. (c)-(d)

The estimated intensity functions for years and months.

The N1 (top) and N2 (bottom) have different intensify

functions peaked in summer and winter, respectively.

is reasonable because sea tours are popular in summer and
the ice hockey season takes place during winter.

The learned intensity functions can be used for a simple
image prediction. For example, if the month of query time
tq is January, then λ2(tq)(≈2.5)>λ1(tq)(≈0.4), and we can
sample the images from N2 six times more than from N1.

3.3 A Composite Model of Intensity Functions
Now we introduce the full model of the intensity function

λi that can be used in image prediction. Note that any prob-
able factors can be flexibly included into the model with-
out any performance loss, because our objective function in
Eq.(5) encourages a sparse solution in which the weights of
irrelevant covariates are zeros.

We assume that the occurrence of each visual cluster is
affected by three types of covariates: (i) its own history, (ii)
behaviors of other visual clusters, and (iii) external covari-
ates. It leads to the following composite intensity function:

λi(tk|θi) = λi
h(tk|θi

h)λi
e(tk|θi

e)λi
x(tk|θi

x), i ∈ {1, ...,M} (7)

where the λi
h, λi

e, and λi
x are called the components of in-

tensity functions for history, correlation, and external covari-
ates, respectively. They are described in Eq.(8)-(10) with an
example of Fig.4. For brevity, we omit the superscript i in
the following equations.

The first history component is modeled as a linear autore-



Figure 4: Examples of the Penguin topic for the learned parameters of history and correlation components. Visual

clusters are {penguins in landscape, penguins on grass, ice hockey team}. (a) Four images sampled from each visual cluster.

(b) Observed occurrence data. The N1 and N2 are strongly synchronized and periodically peaked in summer, whereas

the N3 has two high peaks in winter. (c)-(d) Learned parameters for history and correlation components, respectively.

gressive (AR) process of order P with θh = {α0, · · · , αP }:

log λh(tk|θh) = α0 +
P∑

p=1

αp∆N
(
tk−pd, tk−(p−1)d

)
. (8)

∆N(t1, t2) denotes the number of images during [t1, t2), and
d is the width of the time window (e.g . if ∆= 1 day and
d=7, then ∆N(tk−d, tk) is the number of images occurred
during previous one week from t). The history component
reflects the dynamic behavior of a visual cluster. As shown
in Fig.4.(c), the learned parameters of N1 (top) and N2

(middle) show the typical patterns for yearly periodic behav-
iors, whereas the parameters of N3 (bottom) are biphasic,
which indicates a bursty occurrence.

The second correlation component models the influence
from the history of other visual clusters:

log λe(tk|θe) = β0 +

M∑
c=1
c6=i

R∑
q=1

βic
j ∆Nc(tk−qd, tk−(q−1)d

)
(9)

where the parameter θe consists of (M−1)×R+1 parame-
ters of β in the full model. This correlation component is
quite useful for the actual prediction in the Flickr dataset;
we observe that there are strong correlations between visual
clusters, and thus the existence or absence of a particular
visual cluster gives a strong clue for others’ prediction. The
learned parameters β in Fig.4.(d) clearly present the corre-
lations observed in Fig.4.(b). For example, the subfigures
of β12 and β21 in Fig.4.(d) show that the occurrence of N1

and N2 are highly synchronized, whereas the subfigures of
β13 and β23 illustrate the occurrence of N3 precedes those of
N1 and N2 by four months. For fast computation, instead
of using the full pairwise model, we learn the correlations of
each N i with top K most frequent visual clusters.

The extrinsic component incorporates any types of factors
that are likely to influence the image occurrence. In this
paper, we use months and user descriptors as covariates:

log λx(tk|θx) = γ0 +

12∑
m=1

γmg(tk−m) +
Z∑

z=1

γzutk-d:tk (z). (10)

We use g(tk−m) ∝ exp(−α(tk−m)2) for month covari-
ates. The idea is that if an image occurs in June, some
contributions are also given on nearby months like May and

July, assuming that images are smoothly changed as time
goes. The user covariate is the average of user preferences
for the images in [tk−d, tk). The ut-d:t(z) is the mean of z-th
elements of user descriptors for the images in [tk−d, tk).

In this paper, we introduce only three types of covariates
for modeling of image occurrences, but one can freely add or
remove functions of covariates according to the characteris-
tics of image topics to be predicted unless they contradict
the definition of Eq.(4). For example, other textual or social
factors may be supplemented as covariates or AR functions
can be replaced by a more general linear temporal model
such as ARMA (AutoRegressive Moving-Average) model.

3.4 Learning and Prediction
The learning corresponds to obtain MLE solution θi∗ of

Eq.(5) from the observe image sequences N i
i:K by solving

max
θ

(
K∑

k=1

log λi(tk|θ)∆N i
k −

K∑
k=1

λi(tk|θ)− µ
n∑

j=1

|θij |

)
(11)

where λi(tk|θ) has the form of Eq.(7). We use the cyclical
coordinate descent in [10].

In the prediction step, given a query time tq, we first ob-
tain the set of λi(tq|θi∗) for i = {1, . . . ,M}, which indi-
cates the occurrence rates of each visual cluster for tq. It is
computed by gathering covariate values at tq, and plugging
them with θ∗ into the Eq.(7). The final output is L number
of most likely images for tq, which is sampled according to
λi(tq|θ∗). The images of visual clusters with higher λi(tq|θ∗)
are more likely to be chosen for tq. We use the thinning al-
gorithm [19], which is a rejection sampling to simulate new
samples from intensity functions.

Our parametric model is scalable; The learning time is
O(M |T |J) where |T | is the number of time steps (e.g . dis-
cretized by day) and J is the number of covariates. Our code
written in Matlab takes about 30 minutes to learn the model
for the 810K of soccer images with M = 200, |T | = 1, 500,
and J = 118. The complexity of prediction time is O(MJ).
In the same experiment, it takes far less than one second.

3.5 Personalization
Given a query user uq, the idea of personalization is to

weight more the history of pictures taken by uq or similar
users to uq during learning. For collective prediction, one



Figure 5: Flickr datasets. (a) The numbers of images

and users for the 40 topics. (b) The seasonal distribution

and (c) the log-log plot between the number of images

and users for the soccer topic.

image occurrence is counted by equally one (e.g . the occur-
rence data in Fig.3.(b) simply count the number of images
uploaded in each day). On the other hand, for personalized
prediction, an image by uq is weighted by a larger value so
that the model fitting is more biased to the images of uq.
Likewise, the weight of an image occurrence can be assigned
according to the similarity between its owner and uq.

We implemented this idea by using the locally weighted
learning framework [2], which is a form of lazy learning for a
regression to adjust the weighting of data samples according
to a query. More specifically, the weights of image data of
any user ux are assigned by wx=

√
K(d(uq,ux)) where uq

is the user descriptor of a query user uq, d is the distance
function d(uq,ux)=(uq−ux)2, and K is the Gaussian kernel
function K(d) = exp(−d2/σ).

This approach is lazy learning in which the training is
deferred until a query is available. If the number of users to
be considered is very large, we can perform a user clustering
method in collaborative filtering [7], and learn the prediction
models offline for each group of users.

4. RESULTS
We evaluate the performance of our algorithm for collec-

tive and personalized image prediction using Flickr datasets.
A simplified MATLAB demo code is available at our web-
page http://www.cs.cmu.edu/∼gunhee.

4.1 Evaluation Setting
Datasets: Our dataset consists of 10,284,945 images of

40 topics from Flickr. Some topics are re-used from the
datasets of [15] and others are newly downloaded. Both
datasets are collected by the same protocol, in which the
topic name is used as a search word and all queried images
are downloaded without any filtering. For the timestamp,
the date taken field is used. Fig.5 summarizes some statis-
tics of our Flickr dataset. Fig.5.(a) shows the numbers of
images and users of all 40 topics, which are roughly clas-
sified into {nations, places, animals, objects, activities, ab-

stract, hot topics}. Fig.5.(b) shows a seasonal variation in
the soccer topic; the image uploading peaks in autumn but
falls in winter. Fig.5.(c) is a log-log plot between the num-
ber of images (x-axis) and the frequencies of users (y-axis).
The number of images per user follows Zipf’s law in almost
all topics. That is, a few users contribute the majority of
images, and most users have only a small number of images.

Tasks: We first divide all image sets into training and test
sets by time; training sets IT consist of the images taken up
to 12/31/2008 and test sets are the others. In the following
experiments, IT is used as the image database for retrieval
and training data to learn the image occurrence patterns.

The collective image prediction is performed as follows; a
topic name and a future time point tq are given in a form
of (M/D/Y) (i.e. tq is a time point in 2009 or 2010). The
images that are actually taken in [tq±1 days] are the positive
test set I+ to be estimated. The goal is to select L images
Ie from IT so that Ie and I+ are as similar as possible to
each other. We set L to 200 for all our experiments, and
the numbers of actual images at tq (|I+|) are hundreds or
thousands (|I+| > L in almost all cases).

The personalized image prediction is tested similarly ex-
cept that both a future time tq and a query user uq are
specified at test time. The goal of the algorithm is to pre-
dict L likely images Ie for the user uq at tq. The actual
images taken by uq at tq are the positive test set I+.

For each topic, we randomly generate 20 tq values and
20 (tq, uq) pairs as test cases of collective and personalized
image forecast, respectively. A user is considered as uq if she
has a sufficiently large number of images in both training and
test sets (i.e. at least 500 images in the training set and at
least 100 images in the test set).

Baselines and Competitors: Since the Web image pre-
diction is relatively novel, there are few existing methods to
be compared. Hence, we come up with three alternatives
for image prediction, and quantitatively compare them with
our algorithm. Table 1 summarizes the baselines.

The (SemIN) [9] represents the prediction based on seman-
tic meaning only. It is compared to show that the semantic
meaning of a topic word is not enough to predict the user
images on the Web. The (RetPR) [15] and (TopAT) [23]4 are
the state-of-the-art methods for PageRank-based image re-
trieval and topic modeling for collaborative filtering.

In the personalized forecast, the locally weighted learning
is also applied to all the other competitors except SemIN,
which is a random sampling from the ImageNet dataset.

Evaluation Measures: We evaluated the performance
of all algorithms by measuring the similarity between the
estimated images Ie and actual images I+ at tq. Due to
lack of a perfect measure for image similarity, we calculate
three popular metrics in image retrieval according to infor-
mation levels: L2, Tiny, and average precision (AP), as shown
in Table 2. L2 is the most low-level metric by feature-wise
comparison, and AP is the most high-level one based on clas-
sification ability. No single measure may be perfect, but one
algorithm can be fairly said better if it constantly outper-
forms others in all three metrics. For L2 and Tiny, we first
find the one-to-one correspondences between estimated Ie
and actual I+, and then calculate average distances. Since
L2 and Tiny are distance measures, a lower value means a
better prediction, whereas in the AP, the higher is the better.

4We modified the toolbox at http://psiexp.ss.uci.edu/
research/programs data/toolbox.htm.



Methods Rationale Description

Sampling from ImageNet Using semantic ImageNet data are representative images of each topic cleaned by human
(SemIN) [9] meaning only annotation. We randomly sample images as predicted images for tq .

PageRank-based prediction State-of-the-art We first gather the images taken around the similar month to tq from IT , and
(RetPR) [15] retrieval algorithm sample highly ranked images by using PageRank [3].

State-of-the-art We modify Author-Topic model [23] to jointly model image contents, users,
Author-Time Topic Model topic modeling and month data. We first estimate the subtopic distribution to know what

(TopAT) [23] as collaborative images are popular in each month. We sample the images according to the
filtering subtopic distributions at the month of tq .

Table 1: Summary of the three baselines used for quantitative comparison with our image prediction algorithm.

Figure 7: Examples of collective image prediction for the topics of world+cup ((a)-(c)), cardinal ((d)-(f)), shark ((g)-

(i)), and penguin ((j)-(l)) in some selected months. In all sets, we first find one-to-one correspondences between the

estimated images Ie and the actual images I+ by the L2 measure, and then sample five image pairs per month. The

first row shows the estimated images by our method, and the second row depicts their matched actual images.

Metric Description

L2 L2 distance between image descriptors (i.e. Spatial
pyramids of denseSIFT and HOG features).

tiny Inspired by [26], we first resize the images to 32×32
tiny color images, and compute SSD (the sum of
squared differences between pixels of images).

AP Let I+ be actual images at tq (i.e. positive test
data) and I− be negative data by randomly selecting
the same number images outside of [tq±3 months].
Each algorithm ranks top L images out of (I+ ∪ I−),
from which average precisions are computed.

Table 2: Summary of three evaluation metrics. For
L2 and Tiny, we first find the one-to-one correspon-
dences between estimated Ie and actual I+, and then
calculate average distances.

Figure 6: Quantitative comparison between our method

and three baselines (RetPG[15], TopAT[23], SemIN[9]) for col-

lective image prediction using three metrics in (a)-(c).



Figure 8: Quantitative comparison between our method

and three baselines (RetPG[15], TopAT[23], SemIN[9]) for per-

sonalized image prediction using three metrics in (a)-(c).

4.2 Results of Collective Image Prediction
Fig.6 shows the quantitative comparison between our method

and three baselines. In each figure, the leftmost bar set is
the average performance of 40 topics, and the results of ten
sampled topics follow. Our algorithm significantly outper-
formed all the competitors in most measures. In the average
performance, the L2(tiny) measure of our method is smaller
by 5.1(8.8)%, 17.1(6.5)%, and 34.2(15.5)% over the RetPR,
TopAT, and SemIN, respectively. Our AP is also higher than
the best of baselines by 8 %. Among the baselines, the RetPR
was the best, and the SemIN was the worst.

Fig.7 shows several examples of collective prediction for
the topics of world+cup, cardinals, shark, and the penguin in
several months. Each figure is obtained as follows. We first
find the one-to-one correspondences between the estimated
Ie and the actual I+ by the L2 measure. Out of L matched
pairs (L=200), we only sample five matches and show the
predicted images by our algorithm in the first row, and the
matched actual images in the second row. The five samples
may be too small compared to 200 matched pairs, but here
our goal is qualitative analysis. We already show the quan-
titative superiority of our algorithm over three baselines in
Fig.6.

The term world+cup is commonly used in different sports
and competitions (e.g . soccer, ski, skating, cycling, horse
riding, and even cocktail competitions), and the popular
sports in the images are changed according to the query
times. The topic cardinal is also used in different meanings,
including a bird, a baseball team, and an American football
team. The football images are frequent from fall to winter,
whereas the baseball images are dominant from spring to
fall. They agree with the scheduled seasons of correspond-
ing sports. The bird images are also varied according to the
query times. The popular backgrounds of bird images are
snowy fields in winter and leafy trees in summer. The im-
ages about eggs and baby cardinals also appear in summer.
Similar observations can be made as well in the shark and
penguin topics, as shown in Fig.7.(g)-(l).

This observation concludes that indeed the Web image
collections are extremely diverse, but they follow some pat-
terns that can be predictable. Specifically, our predictive
model works well for polysemous topics that show strong
annual or periodic trends, and is promisingly applicable to
image suggestion or re-ranking.

4.3 Results of Personalized Image Prediction
Fig.8 shows the quantitative results of personalized image

prediction. In the average performance, our method is far
better than all the baselines. The personalized prediction is
more accurate than the collective forecast, because knowing
the user at query time provides a strong clue to predict the
images.

Fig.9 delivers a clear evidence for the importance of per-
sonalization in image prediction tasks. Even with the same
keyword, users show various preferences. As shown in Fig.9.(a)-
(c), the meanings of the term fine+art are differently recog-
nized according to the users, such as paintings, classes, and
photography. Other examples in Fig.9, including Brazilian,
apple, and picnic, also show that this personal variation in
user photo sets is quite common.

This observation presents that our method can be em-
ployed in the image search where a query word has a board
concept, which can be varied according to people’s thoughts
and interests. This personalized search has been widely
studied in textual information retrieval, but our analysis
also reveals that images can convey more delicate informa-
tion about user preferences that are hardly captured by text
descriptions (e.g . what paintings does the user like? How
does the presentation look like?).

5. CONCLUSION
We studied the collective and personalized image predic-

tion tasks, as a time and user sensitive Web image re-ranking
using large-scale Flickr images. The multivariate point pro-
cess model was successfully tailored to achieve the flexibil-
ity, optimality, scalability, and prediction accuracies. As a
promising direction of future research, it is interesting to in-
corporate other meta data surrounding Flickr photos such
as comments or favs for better forecast.
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