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Human observers categorize visual stimuli with
remarkable efficiency—a result that has led to the
suggestion that object and scene categorization may be
automatic processes. We tested this hypothesis by
presenting observers with a modified Stroop paradigm in
which object or scene words were presented over
images of objects or scenes. Terms were either
congruent or incongruent with the images. Observers
classified the words as being object or scene terms while
ignoring images. Classifying a word on an incongruent
image came at a cost for both objects and scenes.
Furthermore, automatic processing was observed for
entry-level scene categories, but not superordinate-level
categories, suggesting that not all rapid categorizations
are automatic. Taken together, we have demonstrated
that entry-level visual categorization is an automatic and
obligatory process.

Introduction

Visual categorization is a fundamental cognitive
process that allows for efficient action in the world.
However, it is not yet known whether categorization
proceeds automatically from visual input, or is directed
by attentional processes. Automatic processes are those
well-learned processes that demand little attention. They
can often be computed in parallel, and are obligatory in
nature, that is, difficult to ignore, alter, or suppress
(Shiffrin & Schneider, 1977). The status of visual
categorization remains controversial. Both object (Grill-
Spector & Kanwisher, 2005) and scene recognition (Fei-
Fei, Iyer, Koch, & Perona, 2007; Greene & Oliva, 2009b;
Thorpe, Fize, & Marlot, 1996) occur rapidly and
seemingly without effort. The impressive performance of
human observers in rapid visual categorization has been
taken as evidence for the automaticity of categorization
(Grill-Spector & Kanwisher, 2005; Thorpe et al., 1996).

However, these results are at odds with theoretical
(Fodor, 1983; Pylyshyn, 1999), computational (Riesen-
huber & Poggio, 2000) and neurophysiological (Freed-
man, Riesenhuber, Poggio & Miller, 2001) models that
separate categorization from purely visual processes.
Furthermore, the attentional requirements for visual
categorizations remain controversial (Cohen, Alvarez, &
Nakayama, 2011; Evans & Treisman, 2005; Li, Van-
Rullen, Koch, & Perona, 2002). This controversy may be
explained in part by the difficulties of separating
categorization processes from the processing of visual
features that are diagnostic for a class (Delorme,
Rousselet, Mace, & Fabre-Thorpe, 2004; Evans &
Treisman, 2005; Johnson & Olshaussen, 2003; McCot-
ter, Gosselin, Sowden, & Schyns, 2005). In this work, we
examine the extent to which objects and scenes are
categorized when the images themselves are task-
irrelevant using a Stroop-like paradigm. We will then
show that this paradigm can be used to assess the entry-
level categories of real-world scenes.

Although a brief glance at a novel visual scene is
sufficient to detect a variety of information about the
image, it is known that some visual classifications are
easier for human observers than others. In particular,
classifying an environment as ‘‘urban’’ or ‘‘natural’’ is an
easier task for observers than determining that the
environment is, say a ‘‘beach’’ or ‘‘highway’’ (Greene &
Oliva, 2009b; Joubert, Rousselet, Fize, & Fabre-Thorpe,
2007; Loschky & Larson, 2010). However, the reason for
this difference is not yet known. Although some have
argued that the natural-urban distinction may reflect the
true entry-level1 category of scenes (Loschky & Larson,
2010), urban and natural environments vary in many
low-level visual features (Torralba & Oliva, 2003), and
early visual processing is sensitive to such differences
(Wichmann, Drewes, Rosas, & Gegenfurtner, 2010). We
will test the automaticity of both entry-level scene
categorization (e.g., ‘‘forest’’ or ‘‘street,’’ Tversky &
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Hemenway, 1983), as well as the superordinate catego-
rization (‘‘natural’’ and ‘‘urban’’).

The automaticity of a cognitive process can be
assessed with a modified Stroop paradigm. Stroop
(1935) presented observers with written color names
that were either printed with ink matching the color
name (e.g., the word ‘‘red’’ written in red ink) or in a
different color (the word ‘‘red’’ written in purple ink).
Observers were then asked to name the ink color as
quickly as possible. Although the meaning of the words
was irrelevant to the task, incongruent words resulted
in significantly longer reaction times compared to
congruent words. Thus, reading (for fluent readers) can
be considered an automatic task. Since this influential
work, similar logic has been used to study the
automaticity of various cognitive processes (see Ma-
cLeod, 1991, for a review).

In the domain of object perception, the picture-word
interference paradigm (Hentschel, 1973) has been
considered a Stroop-like effect. Here, an object name is
printed inside a line drawing of an object. As in the
original Stroop paradigm, the word can be either
congruent or incongruent with the picture. Participants
could then be asked either to name the object depicted
in the drawing, or to read the word in it. It has been
demonstrated that an incongruent word will signifi-
cantly slow object naming, but that an incongruent
object has little effect on reading time (Rosinski,
Golinkoff, & Kulish, 1975). However, given the

automaticity of reading, we cannot infer that object
categorization is not automatic, nor can we make
inferences on the nature of scene categorization.

Here, we present a paradigm in which observers view
images of objects and scenes with congruent or
incongruent nouns superimposed, as in the picture-
world interference paradigm. However, we ask partici-
pants to semantically categorize words instead of merely
reading them. We will show that incongruent images of
both scenes and objects interfere with this semantic word
categorization task, suggesting that visual categoriza-
tions are both automatic and obligatory. Furthermore,
we show that this automaticity is limited to entry-level
categories for scenes, suggesting that although some
superordinate distinctions can be made very easily by
human observers, scenes are not automatically processed
into ‘‘natural’’ and ‘‘urban’’ environments.

Experiment 1

Methods

Participants

Twelve participants (five female), ages 18�30 with
normal or corrected-to-normal vision participated in
this experiment. All participants were native English
speakers. They provided informed consent and were
compensated for their time.

Materials

One hundred unique object categories and 100 unique
scene categories were chosen for this experiment. Object
categories were taken from (Konkle, Brady, Alvarez, &
Oliva, 2010), and scene categories were chosen from the
SUN database (Xiao, Hays, Ehinger, Oliva, & Torralba,
2010). As the participants’ task was to categorize the
category names as being object names or scene names,
care was taken to ensure that all category names were
unambiguous (for example, ‘‘bridge’’ could describe an
object or a location). Four image exemplars were chosen
for each of the 200 categories. To equate for stimulus
complexity and size, objects were presented on a colored
1/f noise background. The 1/f noise was created in each of
the three color channels independently. Category names
were written in on top of images in Helvetica font and 40-
point size (1.068 of visual angle in height). Words were
presented in red as preliminary work showed this to be the
most visible for all images. Participants were seated 54 cm
from a 21-inch CRT monitor (Sony Trinitron, Tokyo,
Japan). Images were presented in 15.88 by 15.88 in size.
Matlab with Psychophysics toolbox extensions (Brainard,
1997; Pelli, 1997) was used to present this experiment.
Example stimuli are shown in Figure 1.

Figure 1. Example stimuli used in Experiment 1. Congruent

terms (top) matched the task-irrelevant image while incongru-

ent terms (bottom) came from a different category from the

image.
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Design

Participants completed 800 experimental trials. Two
hundred of these trials (100 for objects and 100 for
scenes) were congruent (category name matched the
picture, such as the word ‘‘gym’’ over an image of a
gym, see Figure 1) and 200 trials were incongruent (e.g.,
the word ‘‘kitchen’’ over an image of a gym).
Incongruent images were created by randomly selecting
a different category name for an image. To decouple
the correct response from the type of image presented
(object or scene), the 400 remaining trials consisted of
object category names written on scene images and
scene category names presented on objects (400 of
each). These trials were excluded from analysis. Images
were not repeated.

Procedure

Each participant completed 10 practice trials before
completing experimental trials. Images and category
names used in the practice trials were not used in the
main experiment. Each experimental trial commenced
with a fixation point for 300 ms. In each trial,
participants would view an image-word pair, and were
instructed to classify the word as being an object
name or a scene name as quickly and accurately as
possible. The image remained on the screen until
response. Participants were given performance feed-
back: Incorrect responses were followed by a 200 ms
tone. Reaction times less than 200 ms and greater
than 2 s were discarded from analysis (1.4% of data
and no more than 5.8% of trials from any one
participant).

Results

Participants performed the word classification task
with high accuracy (mean: 95% correct, range:
88%�100%). Overall, there was no significant differ-
ence in reaction time to classify object words (M¼ 721
ms) versus scene words (M ¼ 733 ms, F(1, 11) , 1).
We found a significant main effect of stimulus
congruence, F(1, 11)¼ 52.4, p , 0.001) with congruent
trials performed faster than incongruent trials (708 ms
vs. 767 ms). Furthermore, there was a significant
interaction between congruence and stimulus type,
F(1, 11) ¼ 16.5, p , 0.01) such that objects had a
significantly larger interference effect (defined as
incongruent RT � congruent RT) than scenes (81 ms
vs. 36 ms, t(22) ¼ 3.2, p , 0.05), see Figure 2.

Why did we observe more interference for objects
than for scenes? One possibility is that category
boundaries are fuzzier for scenes than objects
(Boutell, Luo, Shen, & Brown, 2004). If some of the
images used could belong in more than one scene
category, perhaps some of the incongruent trials had
some degree of congruence, driving down the amount
of semantic interference. For example, both ‘‘baggage
claim’’ and ‘‘airport terminal’’ were separate catego-
ries in this experiment. However, these categories
might be more conceptually related than say, ‘‘bag-
gage claim’’ and ‘‘bedroom.’’ Thus, the word ‘‘airport
terminal’’ on an image of a baggage claim might be
treated as congruent by observers. To test this
hypothesis, we examined the semantic similarity
between the word-scene pairs for all incongruent
scene trials used in the experiment using latent
semantic analysis (LSA, Deerwester, Dumais, Lan-
dauer, Furnas, & Harshman, 1990). LSA uses a large

Figure 2. (a) Mean reaction times to categorizing object (right) and scene (left) words on congruent (light gray) and incongruent (dark

gray) images. (b) Interference magnitude (congruent RT – incongruent RT) for objects and scenes.
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text corpus to aggregate contexts in which words are
used. The more similar the contexts two words share,
the more similar the words are to one another. Here,
word similarities can range from 1 (perfectly inter-
changeable) to�1 (completely unrelated). If the fuzzy
nature of scene categories makes highly conceptually
related scene pairs, then we would expect higher
similarity scores for scenes compared to objects.
Indeed, this was what was found: Incongruent object
pairs had a mean LSA similarity of 0.10, while
incongruent scene pairs were 0.18, t(1836)¼ 13.7, p ,
0.001. Does the higher conceptual similarity between
scene categories drive the smaller interference effect?
To test, we omitted any incongruent scene trials that
were out of the 95% confidence interval for the LSA
similarity range for objects. The resulting interference
effect was 42 ms, well within the original 95%
confidence interval for the scene interference effect
(20�51 ms). Thus, although semantic similarity
between incongruent words and images may affect the
interference magnitude, the larger semantic similarity
for incongruent scene pairs does not explain the
smaller interference effect for scenes.

Perhaps the scene categories were on average more
obscure than the object categories. Although it has
been estimated that there are up to 30,000 basic-level
categories of objects (Biederman, 1987), the most
comprehensive scene database (SUN, Xiao et al., 2010)
contains only 899 categories. Thus, the 100 scene
categories used in this experiment may represent a
larger proportion of all types of environments in the
world than do the 100 object categories. If observers
were not familiar with some environments or scene
category labels, perhaps these would not be automat-
ically categorized, therefore driving down the magni-
tude of the interference effect. We tested both the
frequency of the written category labels as well as the
relative prevalence of the scene images themselves.
Term frequency was assessed using Google’s ngrams
(Michel et al., 2011), a word-frequency analysis of 5
million books. For all object and scene category labels,
term frequency was defined as the peak frequency of
that term between 1990 and 2008. The date range was
chosen to approximate the date when our participants,
on average, began reading. Unlike LSA, this technique
does not disambiguate between senses of a word, so it
can overestimate the frequency of some terms. For
example, ‘‘fan’’ can be a device for creating a breeze
(the sense used in this experiment), or a person with a
strong interest in something. As both senses make up
the frequency, this method is biased towards overesti-
mating word frequency of some terms. Overall, word
frequencies did not significantly differ between objects
and scenes (M ¼ 0.0009 vs. M ¼ 0.0005, two-sample t
test: t(188) ¼ 1.6, p¼ 0.11). Furthermore, word
frequency had low correlation with interference mag-

nitude for both objects (r¼�0.12) and scenes (r¼0.04).
Thus, word frequency does not seem to be responsible
for the smaller interference effect for scenes.

Image frequency was assessed using the number of
images returned using a Google Image search. Thus,
insofar as the frequency of images on the internet can
be a proxy for the frequency of the images that we
observe,2 examining the number of images in each
category can provide information about the frequency
of scene environments. However, we found that queries
for object and scene categories yielded a similar number
of terms (M ¼ 803 million for objects vs M ¼ 993 for
scenes, two-sample t test: t(197) , 1), suggesting that
both object and scene categories have similar frequen-
cies on the internet. Furthermore, there was little
correlation between object or scene frequency in
Google and the magnitude of the interference effect (r¼
�0.05 and r¼�0.06 respectively). Therefore, the
difference in magnitude of the interference effect for
objects and scenes cannot be explained by the relative
frequencies of categories in the world.

Discussion

The results of this experiment demonstrate that
human observers automatically categorize meaningful
visual stimuli, even when doing so is task irrelevant and
harmful to performance. Thus, visual categorization
seems to be an automatic and obligatory process.
Unexpectedly, we found that this effect was more
pronounced for objects than for scenes. Although
increased semantic similarity between incongruent
words and pictures reduced the interference effect, it
does not completely explain the reduced magnitude of
the scene interference effect. Furthermore, the effect
could not be explained by differences in familiarity with
the object and scene categories.

These results immediately beg the question of why
the scene interference effect is so much smaller than the
object interference effect. A remaining possibility is
that the larger size of the scene images distributed the
meaning of these images over a larger space, making
them easier to ignore. Although scene images show a
strong bias towards presenting diagnostic information
in the center (Tatler, 2007), the possibility remains that
the spatially distributed nature of scenes reduced the
magnitude of the interference effect. This hypothesis is
tested in Experiment 2.

Experiment 2

To test whether the spatial extent of the stimuli was
driving the interference effect, we ran a new experi-
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ment, identical to Experiment 1, except that scene size
was reduced to the median size for objects.

Methods

Participants

Ten participants (eight female), age 18�30 with
normal or corrected-to-normal vision participated in
this experiment. They provided informed consent and
were compensated for their time. All participants were
native English speakers, and none had participated in
Experiment 1.

Materials

The materials for Experiment 2 were identical to
those of Experiment 1 with the exception that scene
images were reduced to 62% of their original size,
equating to the median size for objects (9.58 of visual
angle). The overall stimulus size remained the same as
the scenes, like the objects, were presented on top of
colored 1/f noise.

Design and procedure

Experiment 2 used the same design and procedure as
Experiment 1. As in Experiment 1, reaction times less
than 200 ms or greater than 2 s were discarded from
further analysis (4% of trials overall, no more than 15%
from any participant).

Results and discussion

Replicating the results of Experiment 1, task
performance was high (mean: 95% correct, range,
91%�99%). Again, there was no significant difference

in reaction time to categorize object words versus scene
words (M¼ 771 ms and M¼ 799 ms, respectively, F(1,
9)¼3.08, p¼0.11). Furthermore, we found a significant
main effect of word-picture congruence, with words
categorized significantly faster on a congruent back-
ground than an incongruent background (M¼ 773 and
M ¼ 809, F(1, 9) ¼ 28.3, p , 0.001). There was no
significant interaction between stimulus (object versus
scene words) and stimulus congruency, F(1, 9) , 1),
demonstrating that the magnitude of the interference
effect was similar for objects (M ¼ 41 ms) and scenes
(M ¼ 37 ms), see Figure 3.

In addition to providing a replication of the original
result, Experiment 2 demonstrates that when object and
scene images are small and centralized over the text
being categorized, that the degree of interference
created by an incongruent picture is similar for objects
and scenes. This implies that the smaller interference
observed for scenes in Experiment 1 can be explained
by the larger spatial extent of the scene stimuli. As the
meaning of the scenes was distributed over a larger
spatial area, it is possible that observers could more
effectively filter out scene meaning, resulting in less
interference. As spatial attention was focused on the
word, some of this attention was placed on the scene
immediately beneath the word. When the size of the
scenes was reduced, more attention was focused on
more of the scene, resulting in greater interference.
Although photographs tend to be composed in a way
that places the most informative regions in the center
(Tatler, 2007), scene meaning is largely global and often
cannot be solely predicted from a local region (Greene
& Oliva, 2009a). Furthermore, scene meaning is largely
invariant to changes in size and human observers can
accurately recognize scenes as small as 32 · 32 pixels
(Torralba, 2009).

So far, we have demonstrated that both scenes and
objects are automatically categorized by human
observers at the basic-level (Rosch, Mervis, Gray,
Johnson, Boyes-Braem, 1976; Tversky & Hemenway,
1983). Although objects have a clear hierarchical
category structure, less is known about the category
structure of scenes. Human observers can categorize a
scene as ‘‘natural’’ or ‘‘urban’’ quicker and easier than
they can categorize it at a putative entry-level (such as
‘‘kitchen’’ or ‘‘beach’’). Does this mean that the
urban/natural distinction reflects the true entry-level
category for scenes? On the other hand, the ease of
distinguishing between urban and natural scenes
could reflect the low-level statistical differences
between these environments. In Experiment 3, we test
this directly by examining interference patterns for
both putative entry-level categories (‘‘street’’ and
‘‘forest’’) as well as the superordinate natural/urban
distinction.

Figure 3. Interference effect (incongruent RT – congruent RT) for

object and scene words in Experiment 2.
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Experiment 3

The image in the top left corner of Figure 4a can be
validly categorized as a ‘‘natural environment,’’ a
‘‘forest,’’ or a ‘‘deciduous forest in autumn’’ with
increasing levels of specificity. As with objects, human
observers tend to prefer naming scenes at the middle
level of specificity (i.e., ‘‘forest’’) as this level maximizes
within category similarity, and between-category dis-
tinctiveness (Rosch et al., 1976; Tversky & Hemenway,
1983).

However, not all of the basic-level advantages
observed for objects are observed for scenes. For
example, although human observers are faster to
classify an object at the basic-level (e.g., ‘‘chair’’) than
at the superordinate level (e.g., ‘‘furniture’’), the
opposite appears to be true for scenes: Participants are
actually faster to categorize a scene as an ‘‘urban’’ or
‘‘natural’’ environment than as, for example, a ‘‘high-
way’’ or ‘‘beach’’ (Fei-Fei et al., 2007; Greene & Oliva,
2009b; Joubert et al., 2007; Loschky & Larson, 2010).

These differences could arise due to a number of
factors: Some have argued that easier tasks may be
processed earlier by the visual system (Crouzet,
Joubert, Thorpe, & Fabre-Thorpe, 2012), while others
(Loschky & Larson, 2010) have argued that easier
classifications reflect entry-level category status, while
still others have suggested that low-level image
differences could be driving the effect (Wichmann et al.,
2010). These possibilities are difficult to disentangle
because categorization performance depends both on
the information requirements of the task as well as they
availability of visual features that are relevant for the
task (Schyns, 1998), and we have limited knowledge of
both. However, our modified Stroop paradigm allows
us to directly test the hypothesis that the natural/urban
distinction could reflect an entry-level category for
scenes, as interference reflects automatic processing.

Methods

Participants

Twenty native English-speaking participants (14
female, ages 18�30) with normal or corrected-to-
normal vision participated in this experiment. They
provided informed consent and were compensated for
their time. None of these participants took part in
Experiments 1 or 2.

Materials

The images consisted of 200 images: 100 images of
forests and 100 images of streets, all taken from the
SUN database (Xiao et al., 2010). The words consisted
of 10 adjectives and 10 nouns, matched for word length

and lexical frequency (from Project Guttenberg). Of
these, ‘‘natural’’ and ‘‘urban’’ were the experimentally
critical adjectives while ‘‘forest’’ and ‘‘street’’ were the
critical nouns.

Design and procedure

As Experiment 3 consisted of scenes only, the
semantic categorization task was changed to catego-
rizing words as adjectives or nouns. Participants
completed 200 experimental trials: 50 trials with
adjectives on top of forest images, 50 trials with nouns
on forests, 50 with adjectives on street scenes, and 50
with nouns on street scenes. Each noun or adjective was
viewed 10 times throughout the experiment. As only
four words were experimentally critical, 40 of the 200
trials were experimental (see Figure 4a for examples of
each condition), while the remainder served as a
baseline for assessing whether any congruence effect
was due to interference in incongruent conditions or
facilitation of congruent conditions. Images were not
repeated.

The experiment commenced with 10 practice trials.
In each experimental trial, participants viewed a word-
image pair, and then indicated as rapidly and
accurately as possible whether the word was an
adjective or a noun. As before, they were told to ignore
the picture and focus only on the words. Stimuli
remained on the screen until response, and perfor-
mance feedback (a 200-ms tone following incorrect
responses) was given. Reaction times less than 200 ms
and greater than 2 s were discarded from analysis (2.1%
of data, no more than 4.8% from any given partici-
pant). One participant was omitted from analysis for
having more than 10% of trials flagged, and having
high error rates (;25%).

Results and discussion

Overall, noun/adjective word classification was 90%
correct (range: 83%�97%). Although word-image
congruence did not have a significant overall effect on
reaction time, F(1, 18)¼ 1.8, p ¼ 0.19, there was a
significant interaction between congruence and cate-
gorization level (basic versus superordinate, F(1, 18)¼
4.5, p , 0.05), such that a significant interference effect
was observed for scenes at the basic level, 97 ms, t(18)¼
2.4, p , 0.05, but not the superordinate level, t(18) ¼
1.1, p¼ 0.28), see Figure 4b. Additionally, there was a
significant main effect of word type (noun vs.
adjective), with nouns categorized significantly faster
than adjectives, M ¼ 760 for nouns vs. M ¼ 809 for
adjectives, and F(1, 18) ¼ 4.7, p , 0.05.
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Figure 4. (a) Example stimuli in each of the experimental conditions of Experiment 3. Participants were instructed to categorize words

as adjectives or nouns while ignoring the scene. (b) Interference, measured as the difference (in ms) between congruent and

incongruent RTs. Basic-level congruence showed significant interference while superordinate-level congruent showed none. (c)

Difference between experimental RTs and neutral RTs. Congruent scenes showed significant facilitation of RT.
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The experimental design allowed us to ask whether
the Stroop-like effect was due primarily to facilitation
of congruent trials, or interference from incongruent
trials. For each subject, we subtracted reaction times to
each of the experimental conditions at the basic-level
(congruent and incongruent) from the reaction times to
neutral, non-experimental trials. Longer RTs for
incongruent trials compared to neutral can be taken as
evidence of interference, while shorter RTs for con-
gruent trials relative to neutral suggest facilitation. We
found a significant facilitation effect for congruent
trials, t(18) ¼ 2.1, p , 0.05, see Figure 4c, as well as a
trend for interference for incongruent trials, t(18)¼ 1.1,
p¼ 0.29, that seems driven by four participants who
showed large (. 100 ms) interference effects. Therefore,
a congruent scene on top of the word ‘‘forest’’ or
‘‘street’’ will facilitate word categorization.

The results of Experiment 3 demonstrate that the
automaticity of visual scene categorization is limited to
basic-level categorizations. Although human observers
can very rapidly classify a scene as a natural or urban
environment (Greene & Oliva, 2009b; Joubert et al.,
2007; Loschky & Larson, 2010), it does not appear to
be the case that observers automatically classify scenes
in this way. Instead, our results demonstrate that upon
viewing a novel scene, we automatically generate only
the basic-level class label for this scene.

Our experimental design allowed for us to test one
proposed explanation for the facility of natural/urban
scene classifications: that ‘‘natural’’ and ‘‘urban’’
represent the entry-level categories for scenes (Loschky
& Larson, 2010). If this were the case, then we would
expect an interference effect for the words ‘‘natural’’
and ‘‘urban’’ on incongruent scenes. We did not
observe any interference at the superordinate level,
suggesting that the natural/urban distinction is not the
entry-level category for scenes. As natural and urban
environments differ in a number of low-level visual
features (Torralba & Oliva, 2003), it is likely that
observers capitalize on these differences in performing
rapid categorization.

General discussion

It is well established that we can rapidly recognize
visual information (Fei-Fei et al., 2007; Greene &
Oliva, 2009b; Grill-Spector & Kanwisher, 2005; Potter,
1976; Thorpe et al., 1996). Although we can extract a
wide variety of information in a brief glance, we often
approximate understanding in terms of entry-level
categorization performance, partially because these
category labels are especially informative (Rosch et al.,
1976). It has not yet been established whether
categorization is a necessary step in visual processing,

or whether rapid categorization is made possible
through the extraction of one or more diagnostic
features of a target category for preferential processing.
This work demonstrates that human observers auto-
matically categorize object and scene stimuli, even
when doing so is irrelevant and harmful to performance
at the task at hand. Thus, object and scene categori-
zation may be viewed as automatic and obligatory
processes.

Categorization is the act of abstracting over certain
stimulus features to create equivalence classes of
objects so that we may act similarly to similar objects.
Although some categories exist to facilitate moment-to-
moment goals (Barsalou, 1983), the results of these
experiments suggest that entry-level categorization is
not limited by the observer’s task. On the one hand, the
remarkable results of rapid categorization experiments
has led some to assume automatic categorization (Grill-
Spector & Kanwisher, 2005; Thorpe et al., 1996), while
on the other hand, those in the theoretical and
modeling communities have posited that categorization
occurs in a separate stage, after visual processing
(Fodor, 1983; Pylyshyn, 1999; Riesenhuber & Poggio,
2000). The current work fills this gap by providing
evidence for visual categorizations being intrinsic to
visual processing, rather than a separate, possibly later
stage.

Our results further emphasize the distinction be-
tween classifications that are easy for observers to do
versus those that are automatic. Although a number of
studies have found that classifying a scene as a
‘‘natural’’ or ‘‘urban’’ environment is easier than
classifying it as, say a ‘‘mountain’’ or ‘‘forest’’ (Fei-Fei
et al., 2007; Greene & Oliva, 2009b, Joubert et al, 2007;
Loschky & Larson, 2010), the results of Experiment 3
demonstrated that scenes are not automatically classi-
fied into natural and urban categories. This interference
technique can be used to determine more about the
conceptual structure of scene categories. Theoretical
insights into scene understanding are currently limited
by a lack of knowledge about this structure, as basic
scientific inquiry requires a common characterization
of what is being studied. Although entry-level catego-
ries have been identified for some types of environ-
ments (Tversky & Hemenway, 1983), scenes represent
continuous spaces and ongoing activities, making their
classification challenging.

Although these experiments provide evidence for the
requisite nature of object and scene categorization, they
do not say whether categorization processes are a part
of early detection and recognition mechanisms (Grill-
Spector & Kanwisher, 2005), a necessary step in feed-
forward visual processing (Serre, Oliva, & Poggio,
2007), or a result of rapid feedback (Kveraga, Ghuman,
& Bar, 2007). Grill-Spector and Kanwisher (2005)
demonstrated that the time courses of object detection
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and basic-level categorization were similar, and that
these processes were correlated on a trial-by-trial basis,
suggesting that basic-level categorization and object
detection could be part of the same mechanism.
However, object detection and categorization can be
decoupled when the task is made more difficult, such as
when stimuli are inverted or noisy (Mack, Gauthier,
Sadr, & Palmeri, 2008), or when the task requires finer-
grained category distinctions (Mack & Palmeri, 2010).
Another possibility is that rapid categorization is made
possible through top-down signals that make category
predictions on the basis of early visual input (Kveraga,
Ghuman, & Bar, 2007).

Our results are consistent with recent work showing
that the category status of an object can alter visual
detection ability. Lupyan, Thompson-Schill, and
Swingley (2010) had participants perform a same-
different stimulus judgment on letter stimuli, and found
that when letters were different, but shared the same
category (e.g., B and b), that participants were slower
to reject them as being different. Thus, category
membership can alter very simple task-irrelevant visual
discriminations. Similarly, observers presented with a
seemingly random stream of pictures can pick out
patterns of repeating scene categories (e.g., images of
classrooms follow images of fields; Brady & Oliva,
2008), suggesting that scene category information is
automatically and implicitly processed from these
image streams.

More broadly, these results show that our perceptual
system is deeply connected with conceptual stored
knowledge. This view is congruent with recent neuro-
imaging work that has demonstrated that semantic and
visual information can co-exist within brain regions.
For example, visual scene categories can be decoded
from patterns of neural activity in the frontal gyrus
(Broadman areas 44�45, Walther, Caddigan, Fei-Fei,
& Beck, 2009), and written object names can be
predicted from activity in occipitotemporal areas
(Kherif, Josse, & Price, 2011). Altogether, these results
suggest the possibility that shared visual and semantic
representations can serve as top-down signals to
facilitate rapid visual recognition.

In summary, we have demonstrated that visual
objects and scenes are automatically categorized into
entry-level categories, even when doing so is harmful to
task performance. We have demonstrated that not all
rapid categorizations are automatic, and that scenes
seem to be automatically categorized only at the entry-
level. These results provide evidence for strong
interactions between visual and semantic systems, and
show the interconnection between perceptual repre-
sentations and stored conceptual knowledge.

Keywords: basic-level categorization, Stroop, object
recognition, scene recognition
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Footnotes

1We use the term ‘‘entry-level’’ rather than ‘‘basic-
level’’ for scene categories as less is known about their
conceptual structure. ‘‘Entry-level’’ makes no claims
about the hierarchical level of entry, and allows for
shifts due to typicality, experience and other factors.

2Americans spend over 7 hours a day, on average,
looking at television and computer screens outside of
work (American Time-Use Study http://www.bls.gov/
tus), suggesting that the distribution of images on the
internet does indeed make up a large portion of our
daily visual experience.
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