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Humans are remarkably efficient at categorizing natural scenes. In
fact, scene categories can be decoded from functional MRI (fMRI)
data throughout the ventral visual cortex, including the primary
visual cortex, the parahippocampal place area (PPA), and the ret-
rosplenial cortex (RSC). Here we ask whether, and where, we can
still decode scene category if we reduce the scenes to mere lines.
We collected fMRI data while participants viewed photographs
and line drawings of beaches, city streets, forests, highways,
mountains, and offices. Despite the marked difference in scene
statistics, we were able to decode scene category from fMRI data
for line drawings just as well as from activity for color photo-
graphs, in primary visual cortex through PPA and RSC. Even more
remarkably, in PPA and RSC, error patterns for decoding from line
drawings were very similar to those from color photographs.
These data suggest that, in these regions, the information used
to distinguish scene category is similar for line drawings and pho-
tographs. To determine the relative contributions of local and
global structure to the human ability to categorize scenes, we
selectively removed long or short contours from the line drawings.
In a category-matching task, participants performed significantly
worse when long contours were removed than when short con-
tours were removed. We conclude that global scene structure,
which is preserved in line drawings, plays an integral part in rep-
resenting scene categories.

scene perception | line art | multivoxel pattern analysis | neuroimaging |
visual processing

Humans have captured scenes of everyday life with simple
lines since prehistoric times (1). Line drawings pervade the

history of art in most cultures on Earth (see Fig. 1 A–C for
examples). Although line drawings lack many of the defining
characteristics seen in the real world (color, most texture, most
shading, etc.), they nevertheless appear to capture some essential
structure that makes them useful as a way to depict the world for
artistic expression or as a visual record. In fact, children use
“boundary lines” or “embracing lines” to define the shapes of
objects and object parts in their first attempts to depict the world
around them (2) (see Fig. 1D for an example). The natural ability
of humans to recognize and interpret line drawings has also
made them a useful tool for studying objects and scenes (3–5).
In the experiments described in this article, we used line

drawings of natural scenes of six categories (beaches, city streets,
forests, highways, mountains, and offices; Fig. S1) to explore the
human ability to efficiently categorize natural scenes. Humans
can recognize the gist of a scene with presentations as short as
120 ms (6), even when their attention is engaged elsewhere in the
visual field (7, 8). This gist can include many details beyond a
basic category-level description (9–11).
One reason why humans may be so fast at processing natural

scenes is that our visual system evolved to efficiently encode
statistical regularities in our environment. However, we can
nevertheless recognize and categorize line drawings of natural
scenes despite their having very different statistical properties
from photographs (Fig. 2D and Fig. S1). Indeed, the fact that
early artists as well as young children represent their world with
line drawings suggests that such depictions capture the essence
of our natural world. How are line drawings processed in the

brain? What are the similarities and the differences in processing
line drawings and color photographs of natural scenes? Here we
approach these questions by decoding scene category infor-
mation from patterns of brain activity measured with functional
MRI (fMRI) in observers viewing photographs and line drawings
of natural scenes.
We have previously found that information about scene cate-

gory is contained in patterns of fMRI activity in the para-
hippocampal place area (PPA), the retrosplenial cortex (RSC),
the lateral occipital complex (LOC), and the primary visual cortex
(V1) (12). PPA activity patterns appear to be linked most closely
to human behavior (12), and activity in V1, PPA, and RSC elicited
by good exemplars of scene categories contains significantly more
scene category–specific information than patterns elicited by bad
exemplars do (13). Interestingly, inspection of the average images
of good and bad exemplars of a category suggests that good
exemplars may contain more defined global structure apparent in
the images than bad exemplars (13), suggesting that features that
capture global information in the image may play a particularly
important role in scene categorization.
In the work presented here, we examine the effect of scene

structure, or layout, more directly by stripping down images of
natural scenes to the bare minimum, mere lines. If such structure
really is critical, does thismean thatwe candecode scene categories
from thebrain activity elicited by line drawings? If so, how are these
representations related to those from full-color photographs?
Finally, what aspects of the structure preserved in line draw-

ings allow us to categorize natural scenes? With color and most
texture out of the picture, all that is left is the structure of the
scene captured by the lines. In a behavioral experiment, we at-
tempt to discriminate the contributions of local versus global
structure by selectively removing long or short contours from line
drawings of natural scenes.

Results
fMRI Decoding. To investigate and compare the neural activation
patterns elicited by color photographs and line drawings of
natural scenes, we asked participants to passively view blocks of
images while inside an MRI scanner. In half of the runs, partic-
ipants saw color photographs of six categories (beaches, city
streets, forests, highways, mountains, and offices) and, in the
other half, viewed line drawings of the same images (Fig. 2 and
Fig. S1). The order of blocks with photographs and corresponding
line drawings was counterbalanced across participants. Blood
oxygen level–dependent activity was recorded in 35 coronal slices,
covering approximately the posterior two-thirds of the brain.
We analyzed blood oxygen level–dependent activity in reti-

notopic areas in the visual cortex as well as in the PPA, RSC, and
LOC. V1 is an interesting brain region for comparing photo-
graphs with line drawings because it is optimized for extracting

Author contributions: D.B.W., B.C., E.C., D.M.B., and L.F.-F. designed research; D.B.W.,
B.C., and E.C. performed research; B.C. contributed new reagents/analytic tools; D.B.W.
analyzed data; and D.B.W., D.M.B., and L.F.-F. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.
1To whom correspondence should be addressed. E-mail: bernhardt-walther.1@osu.edu.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.
1073/pnas.1015666108/-/DCSupplemental.

www.pnas.org/cgi/doi/10.1073/pnas.1015666108 PNAS | June 7, 2011 | vol. 108 | no. 23 | 9661–9666

N
EU

RO
SC

IE
N
CE

PS
YC

H
O
LO

G
IC
A
L
A
N
D

CO
G
N
IT
IV
E
SC

IE
N
CE

S

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1015666108/-/DCSupplemental/pnas.201015666SI.pdf?targetid=nameddest=SF1
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1015666108/-/DCSupplemental/pnas.201015666SI.pdf?targetid=nameddest=SF1
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1015666108/-/DCSupplemental/pnas.201015666SI.pdf?targetid=nameddest=SF1
mailto:bernhardt-walther.1@osu.edu
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1015666108/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1015666108/-/DCSupplemental
www.pnas.org/cgi/doi/10.1073/pnas.1015666108


edges and lines from the retinal image (14, 15). Therefore, it is
conceivable that V1 may represent photographs and line draw-
ings in a similar way. Visual areas V2, VP (known as V3v, for
ventral V3, in some nomenclatures), and V4 are of interest be-
cause they build more complex representations based on the
information in V1, including representations that rely on more
global aspects of the image (16–18). The PPA and the RSC,
which have been shown to prefer scenes over objects and other
visual stimuli (19, 20), are of interest in this analysis because they
(and, to some extent, the LOC) contain information about scene
category in their activity patterns that are closely linked to be-
havioral scene-categorization performance (12).
A separate fMRI session for measuring retinotopy allowed us

to delineate areas V1 and V4, but the border between V2 and
VP was not apparent in all participants, so we considered those
regions as a group (V2+VP). The PPA, RSC, and LOC were
defined based on linear contrasts in a standard localizer session
showing faces, scenes, objects, and scrambled objects (SI Mate-
rials and Methods).

Decoding Photographs. Using only data from the runs when par-
ticipants viewed color photographs, we trained and tested a de-
coder to predict which of the six scene categories participants
were viewing in a leave-one-run-out (LORO) cross-validation

procedure with the data from each of the regions of interest
(ROIs) in turn. We found above-chance (>16.7%) decoding
accuracy all along the visual-processing hierarchy (Fig. 3): 24%
in V1 [t(9) = 3.03, P = 0.0071; one-tailed t test versus chance
level], 27% in V2+VP [t(9) = 7.40, P = 2.05 × 10−5], 24% in V4
[t(9) = 5.18, P = 2.9 × 10−4], 32% in the PPA [t(9) = 3.97, P =
0.0016], and 23% in the RSC [t(9) = 3.02, P = 0.0073]. These
results confirm our earlier observations that these regions con-
tain information that distinguishes among natural scene cate-
gories (12). Unlike with our previous data (12), decoding
accuracy of 21% in the LOC did not reach significance [t(9) =
1.5, P = 0.080], possibly because of differences in the scene
categories used in the two studies and, in particular, differences
in the number of objects that uniquely identify a category. For
example, cars appeared in both highways and city streets in the
current experiment, whereas cars uniquely identified highways in
the previous experiment. Although the LOC has been shown to
encode objects in scenes (21) as well as the spatial relationship
between objects (22, 23), its contribution to the categorization of
scenes likely depends on such diagnostic objects.

Decoding Line Drawings. How does decoding fare when the pho-
tographs are reduced to mere lines? To address this question, we
repeated the LORO cross-validation analysis using the runs
during which participants saw line drawings of natural scenes.
Decoding of category from line drawings was not only possible in
all of the same brain regions as was decoding from color pho-
tographs [V1: 29%, t(9) = 4.71, P = 5.5 × 10−4; V2+VP: 27%,
t(9) = 4.09, P = 0.0014; V4: 26%, t(9) = 3.72, P = 0.0024; PPA:
29%, t(9) = 7.24, P = 2.4 × 10−5; and RSC: 23%, t(9) = 3.17,
P = 0.0057; all one-tailed t tests versus chance level], but, even
more surprisingly, decoding accuracy for line drawings was also
at the same level as decoding for color photographs in all ROIs
[V1: t(9) = 1.18, P = 0.27; V2+VP: t(9) = 0.15, P = 0.88; V4:
t(9) = 0.77, P = 0.46; PPA: t(9) = 0.79, P = 0.45; and RSC:
t(9) = 0.02, P = 0.98; all paired, two-tailed t tests] (Fig. 3). That
is, despite marked differences in scene statistics and considerable
degradation of information, line drawings can be decoded as
accurately as photographs in every region tested. In fact, in V1,
we even saw somewhat higher, albeit not significantly, decoding
accuracy for line drawings than for photographs. Although we
predicted that line drawings might contain some essential fea-
tures of natural scene categories, thus making decoding possible,
it is surprising that there appears to be no further benefit for
photographs. One should keep in mind, however, that the line
drawings used in this study were created by trained artists tracing
just those contours in the image that best captured the scene. The
clearly defined contours may make it easier to extract, in V1 in
particular, differences and regularities in orientations in certain
image regions across categories. Such prevalent orientation in-
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Fig. 1. Examples of line art. (A) Cave painting at Chauvet, France, ca. 30,000
B.C. (B) Aerial photograph of the picture of a monkey as part of the Nazca
Lines geoglyphs, Peru, ca. 700–200 B.C. (C) Shen Zhou (A.D. 1427–1509): Poet
on a mountain top, ink on paper, China (The Nelson-Atkins Museum of Art,
Kansas City, MO). (D) Line drawing by 7-y-old I. Lleras (A.D. 2010).

Fig. 2. Example of a photograph of a mountain scene (A) and the corre-
sponding line drawing (D). Also shown are the degraded line drawings with
50% (B and E) or 75% (C and F) of the pixels of the line drawings removed
through deletion of the shortest (B and C) or the longest (E and F) contours.
See Fig. S1 for examples for all six categories.
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Fig. 3. Accuracy of straight decoding of scene categories from brain activity
while participants viewed color photographs (CP) and line drawings (LD) as
well as cross-decoding from CP to LD and from LD to CP. Accuracy was sig-
nificantly above chance (1/6) in all conditions, except for cross-decoding from
LD to CP in the RSC. Straight decoding for CP and LD was statistically the
same for all ROIs. The drop from straight decoding LD to cross-decoding
from LD to CP was significant in V1 (*P < 0.05). Error bars are SEM over 10
participants.
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formation has previously been shown to be decodable from
multivoxel activity patterns in V1 (24).
In the fMRI experiment, blocks of photographs were alter-

nated with blocks of line drawings. Could the high decoding
accuracy for line drawings be because of the visual imagery of the
corresponding color photographs presented in the preceding
block? To address this possibility, we compared decoding rates
for the five participants who saw photographs first to the five
participants who saw line drawings first. In no ROI did we see
a significant improvement in the decoding of line drawings for
the group that saw the photographs first (P > 0.22; one-tailed,
unpaired t tests), and, in fact, in all regions but V1, the decoding
rates were numerically lower for the photographs-first group.
The similar decoding accuracy for line drawings and photo-

graphs raises an interesting question: Are we decoding similar in-
formation in the two cases? Although the representations of color
photographs and line drawingsmust differ to some extent, itmay be
that those features that denote scene category are best captured by
the edges and lines in the image. However, before making such
a conclusion, we must consider an alternative possibility: that the
brain uses different, but equally effective, information to derive
scene category for photographs and line drawings.

Decoding Across Image Types. If the brain uses different in-
formation to decode scene category from photographs and line
drawings, then we should see a decrease in decoding accuracy
when we train on one image type and test on the other (e.g., train
on line drawings and test on photographs). If, on the other hand,
the information that distinguishes between categories is similar
for photographs and line drawings, then we should see similar
decoding accuracies for cross-decoding from one image type to
the other as we do for straight decoding from one image type to
the same image type.
To test these two hypotheses, we crossed the factors of training

on photographs or line drawings with testing on either the same
image type (straight decoding) or the other image type (cross-
decoding) (Fig. 3). For each ROI, we performed a two-way
ANOVA with two independent variables: (i) training on pho-
tographs versus line drawings and (ii) straight decoding versus
cross-decoding. Neither the main effects of training and straight
versus cross-decoding nor their interaction reached significance
in any ROI, although there was a marginal drop in accuracy for
cross-decoding in V1 (F1,9 = 3.74, P = 0.061). These data sug-
gest, with the possible exception of V1, that decoding category
from line drawings relies on similar information as decoding
category from photographs does. We cannot, however, draw any
strong conclusions from null results. We therefore tested the
similarity of category representations elicited by line drawings
and photographs further by turning to decoding errors.

Correlating Decoding Errors. As an additional measure of the
similarity of the activity patterns elicited by photographs and line
drawings, we compared decoding errors from the two image
types. The particular errors, or confusions, made by the decoder,
which are recorded in a confusion matrix, can reveal aspects of
the underlying representation of our categories (12, 25). If line
drawings and photographs evoke similar category representa-
tions in an area, then the confusions made by the decoder are
bound to be similar. The rows of a confusion matrix indicate
which scene category was presented to the participants, and the
columns represent the prediction of the decoder. Diagonal ele-
ments correspond to correct decoding, and off-diagonal ele-
ments correspond to decoding errors (Fig. 4). For this analysis,
we combined error entries for symmetric pairs of categories (e.g.,
confusing beaches for highways was combined with confusing
highways for beaches), and we averaged confusion matrices over
all 10 participants. To compare the confusions elicited by photo-
graphs with those elicited by line drawings, we computed the
Pearson correlation coefficient for correlating the off-diagonal
elements of the confusion matrix for the two types of images
(Fig. S2).
Error patterns when decoding from line drawings were highly

correlated with the error patterns when decoding from photo-

graphs in the PPA [r(13) = 0.86, P = 3.3 × 10−5] and the RSC
[r(13) = 0.76, P= 9.7 × 10−4], somewhat correlated in V4 [r(13) =
0.52, P = 0.047], but not correlated in V1 [r(13) = 0.47, P =
0.075] or V2+VP [r(13) = 0.47, P = 0.081]. These results lend
further support to the claim that the category-specific infor-
mation elicited by color photographs or line drawings is most
similar in the PPA, somewhat similar in V4, and least similar in
V1 and V2+VP. In other words, this pattern of results suggests
an increase in the similarity of the representations of photo-
graphs and line drawings as we ascend the visual hierarchy.
To rule out the possibility that the differences across brain

regions could be attributed to differences in the number of voxels
in each ROI, we repeated the analysis by subsampling equal
numbers of voxels in each ROI. Although slightly different nu-
merically, the results obtained from this analysis confirm the same
patterns of effects reported above (SI Materials and Methods).
Finally, we conducted a whole-brain searchlight analysis to look
for areas beyond our predefined ROIs that encode scene cate-
gory. In addition to the known ROIs, we found a small cluster of
voxels with decoding accuracy significantly above chance in the
left precuneus (Figs. S3 and S4).

Global Versus Local Structure. Since the information contained
within line drawings is sufficient for categorization and leads to
comparable decoding performance as with photographs, we can
begin to ask what about the line drawings makes such surpris-
ingly good performance possible. In their well-accepted model,
Oliva and Torralba used properties of the amplitude spectrum of
spatial frequencies (the “spatial envelope”) to discriminate cat-
egories of natural scenes (26). However, the spatial-frequency
spectra of line drawings are radically different from those of the
corresponding photographs (Fig. S5), yet humans can still cate-
gorize them with ease. What properties of line drawings allow
humans to categorize them like this? With shape or structure
being the main image property retained in the line drawings, we
here ask whether global or local structure is an important factor
for categorization.
What do we mean by global and local structure in this context?

Our line drawings were generated by trained artists, who traced
the contours of the color photographs on a graphics tablet. We
consider all lines drawn in one stroke without lifting the pen
from the tablet as belonging to the same contour. Each contour
consists of a series of straight line segments, with the end point of
one line segment being the starting point of the next. We hy-
pothesized that long contours are more likely to reflect global
structure and short contours are more likely to represent local
structure in the image. Here we interpret “global structure” as
representing gross areas in the image, such as sky, water, sand, or
building façade, as opposed to smaller details, such as leaves,
windows in buildings, or individual ridges in a mountainside.
Intuitively, such large image areas are likely to be separated by
long contours, whereas short contours are more likely to de-
lineate the smaller details. How can we test whether this pre-
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Fig. 4. Confusion matrices for straight decoding of scene categories from
color photographs and line drawings in the PPA. Diagonal entries are correct
decoding rates for the respective categories, and off-diagonal entries in-
dicate decoding errors.
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sumed connection between line length and global/local structure
holds in our images? If a contour separates two large areas of the
image, then the areas on either side of the contour should differ
in their image properties, e.g., in their color distributions. If a
contour only defines local structure within a large area, then the
color distributions on either side are more likely to be similar.
To assess the regions separated by our contours, we determined

the color histogram distance (CHD) between regions that fell on
either side of the line segments in the original color photographs
(Fig. S6). Within the area on one side of a line segment, we di-
vided each of the three color channels (red, green, and blue) into
four equally sized bins (43 = 64 bins in total), counted the num-
bers of pixels in each bin, and divided by the total number of pixels
in the area. This procedure was repeated for the image area on
the other side of the line segment. We then computed the CHD as
the Euclidean distance between the two histograms and averaged
the CHD over all line segments belonging to the same contour.
If long contours do indeed separate global regions of the image,

then we should expect that the image areas on opposite sides of
the contour differ from each other more for long than for short
contours, i.e., that their CHDs are larger. For each image, we
sorted the contours by their total length and computed the av-
erage CHD separately for the top and bottom quartile of con-
tours, as measured by the fraction of pixels covered. The average
CHD for long contours was significantly larger than that for
short contours [long: 0.589; short: 0.555; t(474) = 8.16, P= 3.01 ×
10−15; paired, two-tailed t test; for CHDs for the individual
categories see Table S2]. These data suggest that long contours
do indeed separate global structures in the image, defined here as
large regions in the image that differ in their image properties
(captured here by the color histogram), whereas short contours
are less likely to do so.

Degrading Line Drawings. Now we can investigate the role of
global versus local structure in the ability to categorize scenes by
systematically removing contours from the line drawings (omit-
ting them when rendering the line drawings), starting either with
the longest or the shortest contours. Which deletion impacts
human categorization performance more? Our procedure for
modifying the line drawings also allowed us to ask how far we
could push the degradation of the line drawings while leaving
categorization performance intact. In particular, we deleted
contours from our line drawings such that 50% and even 75% of
the pixels were removed (Fig. 2). Removing contours also led to
the removal of angles and intersections from the line drawings:
when removing 50% of the pixels starting from the shortest/
longest contours, on average 61% (SD = 12%)/44% (SD =
10%) of the angles and line intersections were removed; when
removing 75% of the pixels, 81% (SD = 9%)/70% (SD = 8%) of
the angles were removed. In other words, fewer angles and
intersections were removed when removing long contours.
We used a same/different task to assess categorization per-

formance for the different forms of line degradation behavior-
ally. On each trial, participants were shown three line drawings in
rapid succession (Fig. 5A). The first and the third image were
line drawings of two different natural scenes from the same
category (e.g., both city streets). Participants were asked to in-
dicate whether the second image was a line drawing of that same
category or of a different one by pressing “S” (same) or “D”
(different) on the computer keyboard. Chance level was at 50%.
To effectively mask the critical second image, the first and third
image were shown as white line drawings on a black background,
and the second image was shown as black on white. We chose
this same/different judgment task, because (i) the same/different
judgment was easier than a six-alternative forced-choice category
judgment, and (ii) we found other line drawings with reversed
contrast to be the most effective forward and backward masks for
line drawings, allowing us to adjust the difficulty of the task for
each participant by modifying the presentation duration of
the images.
After a practice phase to familiarize participants with the ex-

periment, the presentation duration of each of the three images
was systematically reduced from 300 ms in a staircasing pro-

cedure. Staircasing was terminated when a stable performance
level of 70% was reached (SD over one block less than screen
refresh rate). Remarkably, this level of accuracy in the same/
different judgment was still possible with presentation times as
short as 102 ms per image (mean: 175 ms; SD: 66 ms). This
finding demonstrates that categorizing line drawings of natural
scenes can be achieved with a single brief glance.
In the subsequent test phase, presentation times remained

constant at the values obtained for each participant during stair-
casing. To test the effect of line deletion on behavioral perfor-
mance, we substituted four different versions of degraded images
for the second image, omitting lines starting from the longest/
shortest contours until 50% or 75% of the pixels were removed
(see Fig. 2 and Fig. S1 for examples). These four types of degra-
dations were counterbalanced over target categories and over
same/different trials for each participant.
Remarkably, performance for all four types of degradation

was still significantly above chance (P < 0.05; Fig. 5B). Perfor-
mance was significantly better for line drawings with 50% of the
pixels removed than with 75% removed when those pixels were
removed in the form of long contours [t(12) = 5.76, P = 9.0 ×
10−5] but not when they were removed in the form of short
contours [t(12) = 1.77, P = 0.10; paired, two-tailed t tests]. In
other words, degrading line drawings beyond 50% hurt perfor-
mance only when long contours were deleted. Note that this
result is unlikely to be caused by differences in the number of
deleted angles and intersections because fewer angles and
intersections were removed when removing long rather than
short contours.
Interestingly, performance with 50% degradation was the

same, no matter which type of contours was removed, pre-
sumably because there was still sufficient scene information
present in both cases. However, when the images were degraded
further, a significant difference between the long and short lines
emerged: performance with 75% degradation was significantly
lower when removing long rather than short contours [t(12) =
2.67, P = 0.020], although the fraction of pixels that remained in
the image was identical. This result means that long contours,
which we argue capture global image information better than
short contours, were more important for correctly identifying
scene categories. Together, these results suggest a primary role
for global rather than local image information in defining scene
category. Global image information may be an important factor
in computing scene layout, a role often ascribed to the PPA (19),
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which has been heavily implicated in natural scene categorization
here and elsewhere (12, 27, 28).
To test how these behavioral results relate to the results from

decoding scene category from fMRI activity, we compared the
patterns of errors in the two experiments (SI Materials and
Methods and Fig. S7). The high error correlation with behavior
in the PPA (r = 0.69, P = 0.0043), first established for a six-
alternative forced-choice task in ref. 12, strengthens the close link
between this area’s neural activity and human scene-categoriza-
tion behavior for the images and categories themselves as op-
posed to the task being performed.

Discussion
Artistic expression by means of line drawings pervades most
human cultures. Our results show that, despite being drastically
reduced versions of natural scenes, line drawings capture the
structure of scenes that enables scene categorization. The neural
activity elicited by line drawings contains sufficient information
to allow for six-way decoding of scene categories along the
visual-processing hierarchy, starting from V1 through V4 all the
way up to the PPA and RSC. Remarkably, decoding scene cat-
egories from the neural activity patterns elicited by line drawings
was just as accurate as decoding from activity generated by
color photographs.
Successful cross-decoding as well as similar decoding error

patterns between color photographs and line drawings suggest
that the two image types generate similar category-specific ac-
tivity. We saw an increase in the correlation of error patterns
along the visual hierarchy, starting from low correlation in V1
and V2+VP, through intermediate but significant correlation in
V4, to high correlation in the PPA and RSC. We conclude that
the structural information preserved in line drawings is sufficient
to generate a strong category-specific representation of natural
scene categories that is highly compatible with the one generated
by color photographs in the PPA and RSC but is less compatible
in early visual areas.
In V1, accuracy of cross-decoding from line drawings to pho-

tographs was significantly lower than straight decoding of line
drawings. Furthermore, the error patterns recorded in V1 for
photographs and line drawings were not correlated significantly,
which is compatible with the view that early visual areas allow for
the decoding of natural scene categories based on common low-
level features among the exemplars of a given scene category but
that these features differ to some extent between photographs
and line drawings. This difference in the robustness of the cate-
gory representations between V1 and later areas is also compat-
ible with the view that, although scene category may be dis-
tinguishable on the basis of low-level V1-like features, these
features are not necessarily all used by humans to make such
categorizations (12).
Compared with a fully textured and colored photograph, the

line drawing of an image is a drastically impoverished version of
the picture. Moreover, converting photographs to line drawings
alters the spatial-frequency spectrum considerably. However, our
behavioral as well as our decoding experiments show that the
human ability to categorize natural scenes is robust to the de-
letion of this information. These results argue against the rich
statistical properties of natural scenes as being necessary for
quick and accurate scene categorization.
Of course, the brain may still use color, shading, and texture

information in photographs to aid in categorizing a scene, but
our work suggests that the features preserved in line drawings are
not only sufficient for scene categorization but that they are also
likely used in categorizing both line drawings and photographs.
What could those features be?
We hypothesized that scene structure, which is preserved in

line drawings, is important for categorization. Specifically, we
predicted that global structure, which we defined as contours
that separate large but relatively homogenous regions of the
image, would be more important than local structure, because
the PPA has been implicated in both scene layout (19) and scene
categorization (12, 28) and because good category exemplars
appear to have more consistent global scene structure (13). To

test this hypothesis, we modified line drawings by selectively
removing long or short contours. We found that accuracy of
a same/different category judgment was significantly lower when
we removed 75% of the pixels from long contours than when we
removed the same percentage of pixels from short contours.
Thus, it appears that global structure (better captured by long
contours) is more important for categorizing scenes from line
drawings than local structure (captured in short contours).
In summary, we have found that we can perform six-way

decoding of scene category equally well from brain activity
generated from line drawings and color photographs in early to
intermediate visual areas (V1, V2+VP, and V4) as well as in the
PPA and RSC. The brain activity in the PPA and RSC for the
two kinds of images is particularly compatible, as shown by cross-
decoding and the analysis of decoding errors. By systematically
degrading the line drawings, we have determined that global
structure is likely to play a more prominent role than local
structure in determining scene categories from line drawings.

Materials and Methods
Participants. Ten volunteers (mean age 29.5 y, SD 4.9 y; 6 female) participated
in the fMRI experiment, and 13 volunteers (mean age 21.6 y, SD 4.3 y; 11
female) participated in the behavioral experiment. Both experiments were
approved by the Institutional Review Board of the University of Illinois. All
participants were in good health with no past history of psychiatric or
neurological diseases and gave their written informed consent. Participants
had normal or corrected-to-normal vision.

Images. Color photographs (CPs) of six categories (beaches, city streets, forests,
highways, mountains, and offices) were downloaded from theWorldwideWeb
via multiple search engines. Workers at the Amazon Mechanical Turk web
service were paid to rate the quality of the images as exemplars of their re-
spective category. For the experiments in this article, we only used the 80
highest-rated images for each category. Images with fire or other potentially
upsetting content were removed from the experiment (five images total). See
Torralbo et al. (13) for details of the image-ratings procedure. All photographs
were resized to a resolution of 800 × 600 pixels for the experiment.

Line drawings (LDs) of the photographs were produced by trained artists at
the LotusHill Research Institute by tracing contours in the color photographs via
a custom graphical user interface. The order and coordinates of all line strokes
were recorded digitally to allow for later reconstruction of the line drawings at
any resolution. For the experiments, line drawings were rendered at a resolu-
tion of 800 × 600 pixels by drawing black lines on a white background.

fMRI Experiment. In the fMRI experiments, participants passively viewed
blocks of eight images of the same category. Each imagewas presented for 2 s
without a gap. A 12-s fixation interval was inserted before the first block of
each run, between blocks, and after the last block. Each run contained six
blocks, one for each of the six categories. CPs and LDs were presented in
alternating runs, with the order of the image type counterbalanced across
participants. The order of blocks within runs as well as the selection and order
of images within blocks were randomized for all odd-numbered runs. In even-
numbered runs, the block structure of the preceding odd-numbered run was
repeated, except that the other image type (CP or LD) was used. Two par-
ticipants saw 14 runs, the other eight participants saw 16 runs total. Images
were presented with a back-projection system at a resolution of 800 × 600
pixels, corresponding to a visual angle of 23.5° × 17.6°.

fMRI Data Acquisition. MRI images were recorded on a 3-T Siemens Allegra.
Functional imageswere obtainedwith a gradient echo, echo-planar sequence
(repetition time, 2 s; echo time, 30 ms; flip angle, 90°; matrix, 64 × 64 voxels;
field of view, 22 cm; 35 coronal slices, 2.8-mm thick with 0.7-mm gap; in-
plane resolution, 2.8 × 2.8 mm). We also collected a high-resolution (1.25 ×
1.25 × 1.25 mm voxels) structural scan (MPRAGE; repetition time, 2 s; echo
time, 2.22 ms, flip angle, 8°) in each scanning session to assist in registering
our echo planar images across sessions.

fMRI Data Analysis. Functional data were registered to a reference volume
(45th volume of the eighth run) by using AFNI (29) to compensate for subject
motion during the experiment. Data were then normalized to represent
percentage signal change with respect to the temporal mean of each run.
No other smoothing or normalization steps were performed. Brain volumes
corresponding to the blocks of images in each run were extracted from the
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time series with a lag of 4 s to account for the delay in the hemodynamic
response. Data were processed separately for each of the ROIs.

Activation data from all except one of the runs with color photographs
were used in conjunction with the corresponding scene category labels to
train a support vector machine (SVM) classifier (linear kernel, C = 0.02) using
LIBSVM. Presented with the data from the left-out run, the SVM classifier
generated a prediction for the scene category labels for each brain acqui-
sition. Disagreements in the predicted labels for the eight brain volumes
belonging to the same block were resolved by majority voting, resulting in
the label predicted most frequently among the eight volumes to be chosen
as the label for the entire block. Ties were broken by adopting the label with
the highest decision value in the SVM classifier. By repeating this procedure
such that each of the CP runs was left out once (LORO cross-validation),
predictions for the scene categories were generated for the blocks in each
run (straight decoding). Decoding accuracy was computed as the fraction of
correct predictions over all runs. The same LORO cross-validation procedure
was used to determine decoding accuracy for the runs with line drawings.

To see whether category-specific information learned from activation
patterns elicited by color photographs generalizes to line drawings, we
modified the analysis procedure slightly. As before, the SVM classifier was
trained on the fMRI activation data from all except one of the CP runs. Instead
of testing it with the data from the left-out CP run, however, the classifier was
tested with the fMRI data from the LD run whose block and image structure
was the same as that of the left-out CP run (cross-decoding). The analysis was
repeated such that each CP runwas left out once, thus generating predictions
for each of the LD runs. Decoding accuracy was again assessed as the fraction
of correct predictions of the scene category label. Cross-decoding from line
drawings to color photographs was computed in an analogous manner,
training the classifier on all except one of the LD runs and testing it on the CP
run corresponding to the left-out LD run.

Behavioral Experiment. In the behavioral experiment, participants were asked
to perform a same/different category judgment among three images pre-
sented in rapid serial visual presentation. Stimuli were presented on a CRT
monitor at a resolution of 800 × 600 pixels, subtending 23° × 18° of visual
angle. At the beginning of each trial, a white fixation cross was presented at

the center of the screen on a 50% gray background for 1,000 ms. Then
a sequence of three images was shown at full screen size in rapid succession
for a predetermined duration, without gap, followed by 1,500 ms of blank
screen to allow participants to respond (Fig. 5A). The first and the third
image were line drawings of two different natural scenes from the same
category. In half of the trials, the second image was yet another line drawing
from the same category, and in the other half, it was a line drawing from
a different category. Participants were asked to press “S” on the computer
keyboard when the second image was from the same category as the first
and third or “D” when it was from a different category. To effectively mask
the critical second image, the first and third image were shown as white line
drawings on a black background, and the second image was shown as black
on white.

The experiment was composed of three parts: practice, staircasing, and
testing. During practice and staircasing, the second images were intact line
drawings, and a tonewas given as feedback for erroneous responses. The pre-
sentation time for the three images was systematically reduced from 700 ms
to 300 ms during practice. In the subsequent staircasing phase, presentation
time was reduced further by using the Quest staircasing algorithm (30) until
a stable accuracy level of 70% was achieved. This presentation duration, de-
termined individually for each participant, was then used in the testing phase.
Average presentation time after staircasing was 175 ms (SD: 66 ms).

In the testing phase, the second images were degraded versions of the
original line drawings. Contiguous sets of lines (contours) in each line drawing
were sorted by their total length. Degraded versions of the line drawings
were obtained by omitting contours such that 50% or 75% of the pixels were
removed, starting from the longest or starting from the shortest contours
(Fig. 2 and Fig. S1). When necessary, individual line segments were short-
ened or removed from contours to achieve the accurate percentage of
pixels. These four types of degradations were counterbalanced over target
category and over same/different trials for each participant. Accuracy was
measured as the fraction of trials, in which participants correctly responded
by pressing “S” for same trials and “D” for different trials.
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